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Abstract. We consider the action of the Hilbert matrix operator, H, on the Hardy space H1,
weighted Hardy spaces Hp

α (α ≥ 0), Bergman spaces with logarithmic weights, etc. In particular,
we extend Diamantopoulos–Siskakis result by proving that H maps Hp

α into Hp
α if and only if

α+1/p < 1. A criterion for Hf to belong to H1 is given provided the coefficients of f are nonnegative.
Also, H maps the A2-space with weight logα(2/(1 − |z|2)) into the ordinary Bergman space A2 if
α > 3. Similarly, the Bloch space with logarithmic weight is mapped by H into the ordinary Bloch
space.

1. Introduction

The Hilbert matrix is an infinite matrix H whose entries are an,k = (n + k + 1)−1.
This matrix induces a linear operator on sequences:

H : (ak)k∈N0 7−→
( ∞∑

k=0

ak

n + k + 1

)

n∈N0

.

The following Hilbert’s inequality implies that this operator is well defined and
bounded on the space lp of all p-summable sequences (p > 1).

Theorem 1.1. (Hilbert’s inequality [5, Chapter IX]) Suppose 1 < p < ∞. If
(ak)k∈N0 ∈ lp, then

(1.1)

( ∞∑
n=0

∣∣∣∣∣
∞∑

k=0

ak

n + k + 1

∣∣∣∣∣

p) 1
p

≤ π

sin π
p

( ∞∑

k=0

|ak|p
) 1

p

.

Moreover, the constant π
sin π

p
is best possible.

Apart from sequence spaces, the Hilbert matrix can be viewed as an operator on
spaces of analytic functions by its action on their Taylor coefficients. If

f(z) =
∞∑

k=0

f̂(k)zk
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is a holomorphic function in the unit disk D = {z ∈ C : |z| < 1}, then we define a
transformation H by

(1.2) Hf(z) =
∞∑

n=0

∞∑

k=0

f̂(k)

n + k + 1
zn.

Let H(D) be the algebra of holomorphic functions in D. For 0 < p ≤ ∞ Hardy
space Hp is the space of all holomorphic functions f ∈ H(D) for which

‖f‖p = sup
0≤r<1

Mp(r, f) < ∞,

where

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reiθ)|p dθ

) 1
p

, 0 < p < ∞;

M∞(r, f) = sup
0≤θ≤2π

|f(reiθ)|.

It follows from the Hardy’s inequality ([4], p. 48)
∞∑

k=0

|f̂(k)|
k + 1

≤ π‖f‖1

that H is well defined for each f ∈ Hp, p ≥ 1. It was proved by Diamantopoulos and
Siskakis ([1]) that the operator H is bounded on Hp, 1 < p < ∞, and not bounded
on H1 and H∞. In [3] the following formula for H acting on Hp, p ≥ 1, was noticed

Hf = P+(MbCf),

where Cf(eit) = f(e−it) is an isometry from Hp into Lp(T), Mb(u) = bu, b(t) =
ie−it(π − t), 0 ≤ t < 2π and P+ is the Szegö projection given by

P+u(z) =
1

2π

ˆ 2π

0

u(t)

(1− ze−it)
dt, z ∈ D.

Recall that the space BMOA consists of the functions f ∈ H1 whose boundary
values f(eit) are of bounded mean oscillation on T, that is

sup
I

ˆ

I

|f(eit)− I(f)|dt < ∞,

where supremum is taken over all intervals I ⊂ T and

I(f) =
1

|I|
ˆ

I

f(eit) dt.

If
lim
|I|→0

ˆ

I

|f(eit)− I(f)| dt = 0,

then we say that f ∈ V MOA.
Since the space BMOA is the Szegö projection of L∞(T), we have also the fol-

lowing

Theorem 1.2. The Hilbert matrix operator H acts as a bounded operator from
H∞ into BMOA.

The next theorem describes the polynomials that are mapped by H into V MOA.
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Theorem 1.3. Let w be a polynomial of degree at least 1. Then Hw ∈ V MOA
if and only if w(1) = 0.

Proof. We know that the operator Hw = P+(w(e−iθ)b(θ)), where b(θ) = ie−iθ(π−
θ) for 0 ≤ θ < 2π. The function b is continuous on the unit circle T except for 1. If
w(1) = 0, then the function w(e−iθ)b(θ) can be continuously extended on the whole
unit circle and Hw is the Szegö projection of this continuous function which means
that Hw ∈ V MOA. It is also clear that if the function w(e−iθ)b(θ) is continuous on
T then w(1) = 0. ¤

In the next section we show that if f ∈ H1, then Hf extends to a continuous
function on D \ {1} and give a sufficient condition for Hf ∈ H1. In the case of
positive Taylor coefficients we obtain a sufficient and necessary condition for Hf ∈
H1. Section 3 is devoted to the weighted Hardy spaces Hp

α, 0 < p ≤ ∞, α > 0,
consisting of those f ∈ H(D) for which Mp(r, f) = O((1− r)−α). We prove that the
Hilbert matrix operator is bounded on Hp

α if and only if α+1/p < 1. It is known that
the operator H cannot be defined on the Bergman space A2 of analytic functions that
are square integrable over the unit disk with respect to the Lebesgue area measure.
Here we find the subspace of A2 which is mapped by H boundedly into A2. Finally,
we study the acting of the operator H on the Bloch space and Besov spaces.

Throughout the paper the notion A ³ B means that there exists a positive
constant C such that B/C ≤ A ≤ CB.

2. Hilbert matrix operator acting on H1

This section contains results on the Hilbert matrix operator acting on H1 that
are analogous to that obtained for the Libera operator in [12]. The proofs presented
here are slightly different from the proofs given in [12].

We start with the following

Lemma 2.1. If f ∈ H1, then Hf extends to a continuous function on D\{1}.
Proof. By (1.2),

Hf(z) =
1

1− z
Ff (z),

where

Ff (z) = (1− z)
∞∑

n=0

∞∑

k=0

f̂(k)

n + k + 1
zn.

We will show that the function Ff can be continuously extended to D. For z ∈ D
we have

Ff (z) =
∞∑

n=0

∞∑

k=0

f̂(k)

n + k + 1
zn −

∞∑
n=0

∞∑

k=0

f̂(k)

n + k + 1
zn+1

=
∞∑

k=0

f̂(k)

k + 1
+

∞∑
n=1

∞∑

k=0

f̂(k)

n + k + 1
zn −

∞∑
n=1

∞∑

k=0

f̂(k)

n + k
zn

=
∞∑

k=0

f̂(k)

k + 1
−

∞∑
n=1

∞∑

k=0

f̂(k)

(n + k)(n + k + 1)
zn.
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To see that the last double series converges absolutely and uniformly on D it is
enough to note that

∞∑

k=0

( ∞∑
n=1

1

(n + k)(n + k + 1)

)
|f̂(k)| =

∞∑

k=0

|f̂(k)|
k + 1

. ¤

Consequently, we also get the following

Corollary 2.2. The operator H acts as a bounded operator from H1 into Hp,
0 < p < 1.

Theorem 2.3. If f ∈ H1 is such that

(2.1)
ˆ π

−π

|f(eit)| log
π

|t| dt < ∞,

then Hf ∈ H1.

Proof. We first show that if f satisfies the assumptions, then the function g(z) =
f(z) log 2

1−z
is in H1. To this end, we note that

(2.2)
ˆ π

−π

|f(eit)| log
2

|1− eit| dt =

ˆ π

−π

|f(eit)| log
1

| sin t
2
| dt ≤

ˆ π

−π

|f(eit)| log
π

|t| dt,

which implies that g(eit) is in L1(∂D). Since g ∈ Hp, 0 < p < 1, the Smirnov theorem
(see, e.g., [9] p. 74) implies that g is in H1. Now using the formula (see [2]),

(2.3) Hf(z) =

ˆ 1

0

f(r)

1− rz
dr, z ∈ D,

and Fubini theorem we get

1

2π

ˆ 2π

0

|Hf(eit)| dt ≤ 1

2π

ˆ 2π

0

ˆ 1

0

|f(r)| dr

|1− reit| dt =

ˆ 1

0

|f(r)| 1

2π

ˆ 2π

0

dt

|1− reit| dr

≤ C

ˆ 1

0

|f(r)| log
2

1− r
dr.

Applying the Fejér–Riesz inequality to g, we see that Hf ∈ L1(∂D). Since Hf is in
Hp for 0 < p < 1, the Smirnov theorem implies that Hf is in H1. ¤

2.1. The case of positive coefficients. If f̂(k) ≥ 0 for all k, then Hf is well
defined by (1.2) or by (2.3) if and only if

(2.4)
∞∑

k=0

f̂(k)

k + 1
< ∞.

To see the “only if” part it is enough to take z = 0. Furthermore, it is shown in [14]
that if f̂(k) ↓ 0, then f is in H1 if and only if (2.4) holds. We use this fact to prove:

Theorem 2.4. If f̂(k) ≥ 0, then Hf ∈ H1 if and only if

(2.5)
∞∑

n=0

f̂(n) log(n + 2)

n + 1
< ∞.
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Proof. The coefficients of h = Hf are given by

(2.6) ĥ(n) =
∞∑

k=0

f̂(k)

n + k + 1

and obviously ĥ(n) ↓ 0 as n → ∞. Hence, by what we mentioned above, h ∈ H1 if
and only if

(2.7)
∞∑

n=0

1

n + 1

∞∑

k=0

f̂(k)

(n + k + 1)
< ∞.

Now note that this double sum is equal to
∞∑

k=0

f̂(k)
∞∑

n=0

1

(n + 1)(n + k + 1)

= f̂(0)
∞∑

n=0

1

(n + 1)2
+

∞∑

k=1

f̂(k)

k

∞∑
n=0

(
1

n + 1
− 1

n + k + 1

)

= f̂(0)
∞∑

n=0

1

(n + 1)2
+

∞∑

k=1

f̂(k)

k

k−1∑
n=0

1

n + 1
,

which implies the result. ¤
Now let us consider the space B1 $ H1 defined by

B1 =
{

f ∈ H(D) :

ˆ

D

|f ′(z)| dA(z) < ∞
}

.

It was also shown in [14] that if f̂(k) ↓ 0 then f belongs to B1 if and only if (2.4)
holds. This can be used to strengthen the statement that H does not map H1 into
itself. More exactly we have

Proposition 2.5. The operator H does not map B1 into H1.

Proof. By the above , the function

f(z) =
∞∑

n=2

zn

log3/2 n

belongs to B1, while Hf , by Theorem 2.4, does not belong to H1. ¤

3. Weighted Hardy spaces

For α > 0 and 0 < p ≤ ∞, we define the weighted Hardy spaces Hp
α as follows.

Hp
α = {f ∈ H(D) : Mp(r, f) = O(1− r)−α},

The norm in these spaces is defined by

‖f‖p,α = sup
0<r<1

(1− r)αMp(r, f).

We start with the following

Theorem 3.1. If α + 1/p < 1, then the operator H maps Hp
α into Hp

α .
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Proof. Let h = Hf, f ∈ Hp
α. Then we have

h′(z) =

ˆ 1

0

rf(r) dr

(1− rz)2
.

Using Minkowski’s inequality, the inequality
ˆ 2π

0

|1− ρeit|−2p dt ³ (1− ρ)1−2p,

and the inequality

|f(r)| ≤ C(1− r)−α−1/p (implied by f ∈ Hp
α)

we get

Mp(ρ, h′) ≤ C

ˆ 1

0

|f(r)|(1− ρr)1/p−2 dr ≤ C

ˆ 1

0

(1− r)−α−1/p(1− ρr)1/p−2 dr

≤ C(1− ρ)−α−1/p

ˆ ρ

0

(1− r)1/p−2 dr + C(1− ρ)1/p−2

ˆ 1

ρ

(1− r)−α−1/p dr.

Now the desired result is obtained by simple computation. It is enough to observe
that 1/p− 2 < −1 and that −α− 1/p > −1. ¤

3.1. The case of monotone coefficients. Now our aim is to prove the
following

Theorem 3.2. If {f̂(k)} is a positive monotone sequence, then f =
∑∞

k=0 f̂(k)zk ∈
Hp

α (1 < p < ∞) if and only if

(3.1) f̂(k) ≤ C(k + 1)α+1/p−1.

Let
∆n(z) =

∑

k∈In

zk, n ≥ 0,

where
I0 = {0, 1}, In = {2n ≤ k ≤ 2n+1 − 1}, n ≥ 1.

For f ∈ H(D), let
∆nf(z) =

∑

k∈In

f̂(k)zk.

The following fact was proved in [11].

Lemma 3.3. Let 1 < p < ∞. A function f ∈ H(D) is in Hp
α if and only if

K(f) := sup
n

2−nα‖∆nf‖p < ∞,

and we have K(f) ³ ‖f‖p,α.

Lemma 3.4. If 1 < p < ∞ and {λn} is a positive monotone sequence, then

C−1λ2n‖∆n‖p ≤
∥∥∥∥∥
∑

k∈In

λkz
k

∥∥∥∥∥
p

≤ Cλ2n+1‖∆n‖p if {λn} is increasing,

C−1λ2n+1‖∆n‖p ≤
∥∥∥∥∥
∑

k∈In

λkz
k

∥∥∥∥∥
p

≤ Cλ2n‖∆n‖p if {λn} is decreasing.
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Proof. Since {zn} is a Schauder basis in Hp, 1 < p < ∞, by Proposition 1.a.3 in
[10], for any sequence {ak} and 0 ≤ m ≤ j < n,

∥∥∥∥∥
j∑

k=m

akz
k

∥∥∥∥∥
p

≤ C

∥∥∥∥∥
n∑

k=m

akz
k

∥∥∥∥∥
p

,

where the constant C is independent of {ak}, m,n and j.
By summation by parts,

n∑

k=m

λkakz
k =

n−1∑

k=m

(λk − λk+1)sk + λnsn,

where

sk =
k∑

j=m

ajz
j.

Consequently,
∥∥∥∥∥

n∑

k=m

λkakz
k

∥∥∥∥∥
p

≤ C

(
n−1∑

k=m

|λk − λk+1|+ λn

)∥∥∥∥∥
n∑

k=m

akz
k

∥∥∥∥∥
p

.

If {λk} is monotonically decreasing, then the sum in brackets is λm, if {λk} is mono-
tonically increasing, this sum is (λn − λm) + λn ≤ 2λn. This proves the right-hand
side inequalities. To prove the left inequalities we observe that if, for example, {λk}
increases, then 1/λk decreases and by what we have already proved,

∥∥∥∥∥
n∑

k=m

akz
k

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑

k=m

1

λk

(λkakz
k)

∥∥∥∥∥
p

≤ C
1

λm

∥∥∥∥∥
n∑

k=m

λkakz
k

∥∥∥∥∥
p

. ¤

Proof of Theorem 3.2. Assume first that 1 < p < ∞. Since

‖∆n‖p = ‖1 + z + · · ·+ z2n−1‖p ³ 2n(1−1/p),

Lemmas 3.3 and 3.4 imply that f ∈ Hp
α if and only if

f̂(2n) ≤ C2n(α+1/p−1),

and our claim follows from the monotonicity of {f̂(k)}. ¤
3.2. Necessity of the condition α + 1/p < 1. To include in our considera-

tions the cases p = 1,∞, we use polynomials Wn (instead of ∆n) constructed in [7]
(see also [13]). Let ϕ be a C∞-function on R such that ϕ(t) = 1 for t ≤ 1, ϕ(t) = 0
for t ≥ 2, and ϕ(t) is positive and decreasing on (1, 2). We set

W0(z) = 1 + z, Wn(z) =
∑

k∈Jn

ω(k/2n−1)zk, n ≥ 1,

where
Jn = {k ∈ N : 2n−1 ≤ k ≤ 2n+1}

and
ω(t) = ϕ(t/2)− ϕ(t).
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The convolution f ∗ g of two functions f, g ∈ H(D) is defined by

f ∗ g(z) =
∞∑

n=0

f̂(n) ĝ(n)zn,

where f(z) =
∑∞

n=0 f̂(n)zn and g(z) =
∑∞

n=0 ĝ(n)zn.
The following inequality was proved in [6] and [7].

(3.2) ‖Wn ∗ f‖p ≤ C‖f‖p, n = 0, 1, 2, . . . , 0 < p ≤ ∞.

We will also need the following lemmas.

Lemma 3.5. [8] Let 0 < p ≤ ∞. A function f ∈ H(D) is in Hp
α if and only if

‖Wn ∗ f‖p = O(2nα), and we have

‖f‖p,α ³ sup
n

2−nα‖Wn ∗ f‖p.

Lemma 3.6. [13, Exercise 7.3.5] Let p ∈ (0,∞], P (z) =
∑4m

k=m akz
k, Q(z) =∑4m

k=m(k + 1)βakz
k, where m is a positive integer and β ∈ R. Then there is a

constant C = C(p, β) such that

C−1mβ‖P‖p ≤ ‖Q‖p ≤ Cmβ‖P‖p.

Moreover, for |β| < 1
2
the constants C(p, β) are uniformly bounded with respect

to β.

Proof. Let Wm be a trigonometric polynomial such as in Lemma 7.3.2 in [13]
with ψ(x) = (x + 1/m)βϕ(x), where ϕ is a C∞-function such that supp(ϕ) ⊂ (1

2
, 5)

and ϕ(x) = 1 for x ∈ [1, 4]. Then

Wm ∗ P (z) = m−βQ(z).

Our claim will follow from Theorem 7.3.4 in [13] if we can find the constant CN in
Lemma 7.3.2 [13] independent of β and m. But, since supp(ϕ) ⊂ (1

2
, 5), the Leibniz

formula

ψ(N)(x) =
N∑

j=0

(
N

j

)
β(β − 1) . . . (β − j + 1)

(
x +

1

m

)β−j

ϕ(N−j)(x)

implies that |ψ(N)(x)| is bounded uniformly with respect to β and m and the claim
follows. ¤

To prove the last statement it is enough to show that

Lemma 3.7. For p ∈ [1,∞] we have

‖Wn‖p ³ 2n(1−1/p).

Proof. The case p = ∞ is easy. Assume that 1 ≤ p < ∞. Since

M∞(r,Wn) ≤ C(1− r)−1/p‖Wn‖p

and M∞(r,Wn) ≥ r2n+1‖Wn‖∞ , taking r = 1− 2−n−1, we obtain

C‖Wn‖p ≥ 2n(1−1/p).
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To prove the reverse inequality, we take f(z) = (1− z)−2 and use Lemma 3.1 in [11]
and (3.2) to obtain

r2n+1

∥∥∥∥∥
∑

k∈Jn

(k + 1)Ŵn(k)zk

∥∥∥∥∥
p

≤ Mp(r,Wn ∗ f) = ‖Wn ∗ fr‖p ≤ C(1− r)−2+1/p.

Taking r = 1− 2−n−1 we get
∥∥∥∥∥

∑

k∈Jn

(k + 1)Ŵn(k)zk

∥∥∥∥∥
p

≤ C2(2−1/p)n,

and the result follows from Lemma 3.6 ¤
We will show that if the condition α + 1/p < 1 is not satisfied, then the operator

H cannot be extended as a continuous operator even into the space H(D). More
exactly, we have

Theorem 3.8. If α + 1/p ≥ 1, α > 0 and p ≥ 1, then the operator H cannot be
extended to a continuous operator from Hp

α into H(D).

Proof. For β ∈ (0, 1
2
) set

fβ(z) =
∞∑

k=0

(k + 1)−βzk.

Then Lemmas 3.6 and 3.7, and the assumption α ≥ 1− 1/p imply that

‖Wn ∗ fβ‖p ≤ C2−nβ‖Wn‖p ≤ C2n(−β+1−1/p) ≤ C2n(−β+α) ≤ C2nα.

By Lemma 3.5 this means that

sup
0<β< 1

2

‖fβ‖p,α < ∞.

If H could be extended to a bounded operator from Hp
α into H(D), then we would

have sup
0<β< 1

2

|Hfβ(0)| < ∞, because f 7→ f(0) is a continuous linear operator on H(D).

However,

Hfβ(0) =
∞∑

k=0

1

(k + 1)β+1

and limβ→0 Hfβ(0) = ∞. This contradiction proves the result. ¤

4. Logarithmically weighted Bergman spaces

It is known that the Hilbert matrix does not act on A2 (see [3]). For α > 0 we
define the logarithmically weighted Bergman space A2

logα
⊂ A2 as follows.

A2
logα = {f ∈ H(D) : ‖f‖2

logα =

ˆ

D

|f(z)|2
(

log
2

1− |z|2
)α

dA(z) < ∞},

where dA(z) is the area measure on D normalized so that
´
D

dA(z) = 1. The
following lemma can be proved in a standard way.
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Lemma 4.1. If f ∈ A2
logα , α > 0, then there exists a constant C > 0 such that

|f(z)| ≤ C‖f‖logα

(1− |z|2)
(
log 2

1−|z|2
)α

2

for every z ∈ D.

We claim that H is well defined on A2
logα for α > 2. This follows from the

following

Lemma 4.2. Let α > 2. If f ∈ A2
logα , then

∞∑

k=0

|f̂(k)|
k + 1

≤ C‖f‖logα .

Proof. Since the function s 7→ M2(s, f) is increasing on [0, 1), the Chebyshev
inequality implies

‖f‖2
logα =

ˆ 1

0

M2
2 (s, f)

(
log

2

1− s2

)α

s ds ≥ 1

2

ˆ 1

r

M2
2 (s, f)

(
log

2

1− s2

)α

ds

≥ 1

2
(1− r)

(
log

2

1− r2

)α

M2
2 (r, f).

This means that for r ∈ [0, 1),

∞∑

k=0

|f̂(k)|2r2k ≤ C‖f‖2
logα(1− r)−1

(
log

2

1− r

)−α

.

Taking r = 1− 1/m, we get

2m∑

k=m

|f̂(k)|2 ≤ C‖f‖2
logαm (log 2m)−α .

Consequently, for α > 2, we have

∞∑

k=1

|f̂(k)|
k + 1

=
∞∑

k=1

2k−1∑

j=2k−1

|f̂(j)|
j + 1

≤
∞∑

k=1

21−k

2k−1∑

j=2k−1

|f̂(j)|

≤
∞∑

k=1

21−k2
k−1
2

(
C‖f‖2

logα2k−1
(
log 2k

)−α
) 1

2

= C‖f‖logα

∞∑

k=1

1

k
α
2

≤ C‖f‖logα . ¤

Moreover, for α > 2 the Hilbert matrix operator acting on A2
logα can also be

expressed in the integral form (2.3). Furthermore, we have

Theorem 4.3. If α > 3, then H acts as a bounded operator from A2
logα to A2.
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Proof. From (2.3) and the integral form of Minkowski’s inequality we obtain

‖Hf‖A2 =

(ˆ

D

|Hf(z)|2 dA(z)

) 1
2

≤
(ˆ

D

(ˆ 1

0

|f(r)|
|1− rz| dr

)2

dA(z)

) 1
2

≤
ˆ 1

0

|f(r)|
(ˆ

D

dA(z)

|1− rz|2
) 1

2

dr ≤ C

ˆ 1

0

|f(r)|
(

log
2

1− r2

) 1
2

dr.

By Lemma 4.1,

‖Hf‖A2 ≤ C

ˆ 1

0

dr

(1− r2)
(
log 2

1−r2

)α−1
2

‖f‖logα ,

and the last integral converges for α > 3. ¤

5. The Bloch and Besov spaces

For 1 < p ≤ ∞, let Bp denote the analytic Besov space consisting of functions
f ∈ H(D) for which

‖f‖Bp := |f(0)|+
(ˆ

D

|f ′(z)|p(1− |z|2)p−2 dA(z)

)1/p

< ∞.

In the case p = ∞ this is understood as

‖f‖B∞ = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞,

and hence B∞ = B is the Bloch space. The reader is referred to, e.g., [15] for results
on these spaces.

It is easy to check that if f(z) = log 1
1−z

, then

Hf(z) =
∞∑

n=0

1

n + 1

(
1 +

1

2
+ · · ·+ 1

n + 1

)
zn.

This shows that Bloch space B is not mapped into itself.
The following lemma describes a space of analytic functions in D that are mapped

by H into the Bloch space.

Proposition 5.1. If f ∈ H(D) satisfies the condition

(5.1) sup
z∈D

|f ′(z)|(1− |z|)
(

log
2

1− |z|
)1+ε

< ∞

for an ε > 0, then Hf ∈ B.

Proof. Assume that f ∈ H(D) satisfies (5.1) and set

F (z) = f(z)− f(0).

It is enough to show that HF ∈ B. Clearly, F also satisfies (5.1). Then by
Lemma 4.2.8 in [15] we can write

F (z) =

ˆ

D

F ′(w)(1− |w|2)
w̄(1− w̄z)2

dA(w).
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Consequently,

|(HF )′(z)| ≤ C

ˆ 1

0

ˆ

D

log−1−ε

(
2

1− |w|
)

1

|1− w̄r|2|1− rz|2 dA(w) dr

≤ C

ˆ 1

0

ˆ 1

0

log−1−ε

(
2

1− s

)
ds dr

(1− sr)(1− r|z|)2

≤ C

1− |z|
ˆ 1

0

log−1−ε

(
2

1− s

)
1

1− s
ds.

Since the last integral is finite, our claim is proved. ¤
On the other hand, we have

Proposition 5.2. If f ∈ B, then

|(Hf)′(z)| ≤ C
1

1− |z| log
2

1− |z| .

Proof. For f ∈ B set

An(f) =
∞∑

k=0

f̂(k)

n + k + 1
=

ˆ

D

f(z)

1− z̄
|z|2n dA(z).

Assuming additionally that f(0) = 0 and using the Fubini theorem, we obtain

|An(f)| ≤
∣∣∣∣
ˆ

D

ˆ

D

f ′(w)(1− |w|2)
w̄(1− w̄z)2

dA(w)
|z|2n

1− z̄
dA(z)

∣∣∣∣

=

∣∣∣∣
ˆ

D

f ′(w)(1− |w|2)
w̄

ˆ 1

0

(
1

π

ˆ 2π

0

dθ

(1− w̄reiθ)2(1− re−iθ)

)
r2n+1 dr dA(w)

∣∣∣∣

≤ C

ˆ 1

0

r2n+1

ˆ

D

dA(w)

|1− r2w̄|2 dr ≤ C

ˆ 1

0

log
2

(1− r2)
r2n+1 dr

≤ C

ˆ 1

0

rn

(
log 2 +

∞∑

k=1

rk

k

)
dr ≤ C

1

n + 1

(
1 +

1

2
+ · · ·+ 1

n + 1

)

Hence

|(Hf)′(z)| =
∣∣∣∣∣
∞∑

n=1

nAn(f)zn−1

∣∣∣∣∣ ≤
∞∑

n=1

n|An(f)||z|n−1

≤ C

∞∑
n=0

(
1 +

1

2
+ . . .

1

n + 1

)
|z|n ≤ C

1

1− |z| log
2

1− |z| . ¤

The example of f(z) = log 1
1−z

shows that the inequality in the last lemma cannot
be improved.

A little bit more complicated calculations give the following

Proposition 5.3. If f ∈ Bp, 1 < p < ∞, then

|(Hf)′(z)| ≤ C
1

1− |z|
(

log
2

1− |z|
) 1

p′
,

where 1
p

+ 1
p′ = 1.
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Proof. Using the notation from the proof of Proposition 5.2 under the assumption
that f(0) = 0 we get, in much the same way as above,

|An(f)| ≤ C

ˆ 1

0

r2n+1

ˆ

D

|f ′(w)|(1− |w|2)
|1− r2w̄|2 dA(w) dr

≤ C‖f‖Bp

ˆ 1

0

r2n+1

(
log

2

1− r2

) 1
p′

dr.

Hence

|An(f)|p′ ≤ C‖f‖p′
Bp

(ˆ 1

0

r2n+1 dr

)p′−1 ˆ 1

0

r2n+1 log
2

1− r2
dr

≤ C‖f‖p′
Bp

(
1

n + 1

)p′ (
1 +

1

2
+ · · ·+ 1

n + 1

)
.

Consequently,

|(Hf)′(z)|p′ ≤
( ∞∑

n=0

(n + 1)|An+1(f)||z|n
)p′

≤
( ∞∑

n=0

(n + 1)p′|An+1(f)|p′|z|n
)( ∞∑

n=0

|z|n
)p′−1

≤ C‖f‖p′
Bp

(
1

1− |z|
)p′−1

( ∞∑
n=0

(
1 +

1

2
+ · · ·+ 1

n + 1

)
|z|n

)

≤ C‖f‖p′
Bp

(
1

1− |z|
)p′

log
2

1− |z| ,

which proves our claim. ¤
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