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Abstract. In this note, we consider the rigidity of the focal decomposition of closed hyperbolic
surfaces. We show that, generically, the focal decomposition of a closed hyperbolic surface does not
allow for non-trivial topological deformations, without changing the hyperbolic structure of the
surface. By classical rigidity theory this is also true in dimension n ≥ 3. Our current result extends
a previous result that flat tori in dimension n ≥ 2 that are focally equivalent are isometric modulo
rescaling.

1. Definitions and statement of results

The purpose of this note is to consider the rigidity of the focal decomposition
of closed hyperbolic surfaces. In order to state the precise result, we first recall
the notion of focal decomposition and focal equivalence for general manifolds. Let
(M, g) be a closed, i.e., compact and boundaryless, and analytic (Cω) Riemannian
n-manifold. A closed hyperbolic surface is naturally a closed analytic manifold in
this sense. Fix a closed analytic manifold (M, g).

Definition 1. The focal index, I(p, v), of the vector v ∈ TpM is defined by

I(p, v) = #
{
w ∈ TpM | |v| = |w| and expp(v) = expp(w)

}
.

and we define
σi(p) = {v ∈ TpM | i = I(p, v)} .

Thus, vectors v ∈ σi(p) are equivalent modulo exponentiation to exactly i − 1
other vectors of TpM of equal length.

Definition 2. (Focal decomposition) The partition of TpM into the sets {σi}∞i=1

is called its focal decomposition at p; we have

(1.1) TpM =
∞⋃
i=1

σi and σi ∩ σj = ∅ if i 6= j.

The tangent bundle has a corresponding focal decomposition {Σi}∞i=1, where

(1.2) Σi =
⋃

p∈M

σi(p) and TM =
∞⋃
i=1

Σi with Σi ∩ Σj = ∅ if i 6= j.

In the setting of closed analytic manifolds the focal decomposition gives an ana-
lytic Whitney stratification of the tangent bundle of the manifold [6]. This is sharp
in the sense that the focal decomposition may be topologically pathological even for
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C∞ manifolds [7]. Further, for analytic manifolds, it follows from the Angle Lemma
in [6] that only σ1(p) can have interior.

Definition 3. (Focal equivalence) Two closed analytic manifolds (M1, g1) and
(M2, g2) are focally equivalent, if there exists an orientation-preserving homeomor-
phism ϕ : TM1 → TM2, such that for every p ∈ M1 and q = ψ(p),

(i) ϕ|TpM1
: TpM1 → TqM2 and ϕ|TpM1

(0) = 0,
(ii) ϕ|TpM1

(σ1
i (p)) = σ2

i (q), for every 1 ≤ i ≤ ∞,
with ψ : M1 → M2 the homeomorphism on the zero section.

It follows from (i) and (ii) in Definition 3 that ϕ(Σ1
i ) = Σ2

i . Note that we
do not require the homeomorphism ϕ to commute with the respective exponential
mappings. It is verified that focal equivalence indeed defines an equivalence relation.
Further, manifolds that are isometric, up to rescaling, are focally equivalent. The
focal decomposition gives in a natural way rise to Brillouin zones, which in a physical
context arise in the theory of wave reflection by crystals on the quantum level.

Definition 4. (Brillouin zones) For v ∈ TpM , we define the Brillouin index

(1.3) B(p, v) = #
{
w ∈ TpM | |w| ≤ |v|, expp(w) = expp(v)

}
.

For every integer k ≥ 1, the k-th Brillouin zone is the interior Int(Bk(p)), of the set
Bk(p) = {v ∈ TpM | B(p, v) = k}

of all points with Brillouin index k.

In a purely mathematical setting, these have been studied in [1] and [4] for lattices
in Euclidean space and in [13] for discrete sets in certain metric spaces. In [15], the
Brillouin zones are studied from an analytic number theoretic point of view. We
refer to [10] for an overview of the interrelationships between the focal decomposition
and physics, arithmetic and geometry. In [7, 12], the notion of focal stability was
introduced, which is a local notion, where the results imply that in dimension two,
in the absence of conjugate points, generically in the strong C∞-Whitney topology,
the focal decomposition is locally topologically stable.

We are interested in the general question to what extent the information encoded
in the focal decomposition determines the geometry of the underlying manifold. That
is, we consider the global counterpart to focal stability. It has been shown in [8]
that flat n-tori, with n ≥ 2, are focally rigid, in the sense that global topological
deformations of the focal decomposition are not possible without essentially changing
the metric. Two surfaces M1 and M2 are commensurable, if their uniformizing surface
groups Γ1 and Γ2 are commensurable, that is, if Γ1 ∩ Γ2 has finite index in both Γ1

and Γ2.

Theorem A. Two closed hyperbolic surfaces that are focally equivalent are com-
mensurable.

Since a generic closed hyperbolic surface (of genus g ≥ 3) is maximal by [3], in
the sense that it is not contained in a larger Fuchsian group, we have the following.

Corollary B. Generically, closed hyperbolic surfaces (in genus g ≥ 3) which are
focally equivalent, are isometric.

The proof of Theorem A uses only an index-preserving homeomorphism between a
pair of tangent planes, rather than the whole tangent bundle as the general definition
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stipulates. We believe the main result remains true if commensurable is replaced by
isometric, by using this ambient structure. In the setting of hyperbolic surfaces,
the Brillouin zones are intimately connected with lattice counting estimates of the
Fuchsian group corresponding to the surface. The fact that the surface is compact
allows for uniform lattice counting estimates that gives rise to universal behaviour
of the geometry of Brillouin zones. Theorem A in dimension n ≥ 3 follows from
the strong rigidity theorem by Mostow–Prasad [9, 14], according to which a closed
hyperbolic n-manifold, with n ≥ 3, is determined up to isometry by its fundamental
group, and thus by its topology. We further refer to a result by Wolpert [17] that
generically the length spectrum determines a closed hyperbolic surface up to isometry,
and the counterexamples by Vignéras [16] whom constructed commensurable closed
hyperbolic surfaces for which this result fails. See also the survey [5] for more on
rigidity in the setting of negatively curved manifolds.

2. Focal rigidity of hyperbolic surfaces

2.1. Preliminaries and notation. A closed hyperbolic surface is a surface
of the form M = D2/Γ, where Γ is a cocompact torsion-free Fuchsian group, with
the metric induced by the Poincaré metric of the universal cover, denoted by d(·, ·).
Since the exponential mapping expp : TpM → M at the basepoint p ∈ M is a cov-
ering mapping by the Cartan–Hadamard theorem, the exponential mapping is thus
isomorphic, as a covering mapping, to the canonical covering mapping π : D2 → D2/
Γ. We adopt this identification in what follows. Assuming that two closed hyperbolic
surfaces

(2.1) M1 = D2/Γ1 and M2 = D2/Γ2,

with Γ1, Γ2 cocompact torsion-free Fuchsian groups, are focally equivalent, M1 and
M2 are homeomorphic and there exists a homeomorphism ϕ0 : D2 → D2 with the
property that ϕ0(σ

1
i ) = σ2

i for 1 ≤ i ≤ ∞, where we will only consider the homeo-
morphism ϕ0 relative to two basepoints p ∈ M1 and q ∈ M2, which by conjugating
Γ1 and Γ2 with a suitable Möbius transformation, we may assume to correspond to
0 ∈ D2 in the cover, so that ϕ0(0) = 0, where 0 ∈ D2. We will assume this normal-
ization throughout the remainder. We denote ϕ0 by ϕ, to simplify notation, and we
henceforth suppress the reference to the basepoint 0, that is, we write σi(0) = σi and
Bk(0) = Bk. Further, define

(2.2) Λ1 = OΓ1(0) ⊂ D2, Λ2 = OΓ2(0) ⊂ D2,

the orbits of the point 0 ∈ D2 under Γ1 and Γ2 respectively. Observe that, since
the groups Γ1 and Γ2 are torsion-free, there is a one-to-one correspondence between
group elements in Γi and lattice points in Λi with i = 1, 2. In case no distinction
has to be made between Γ1 or Γ2 or notions related to these, we suppress the index
and denote the group Γ, its orbit Λ = OΓ(0) and sets Bk, k ∈ N, associated to the
Brillouin zones, to simplify notation.

In order to prove Theorem A, we show the lattices Λ1 and Λ2 coincide up to
rotation, for focally equivalent surfaces M1 and M2 in the above notation. This is
sufficient to conclude that the groups Γ1 and Γ2 are commensurable.

2.2. Focal decomposition of a hyperbolic surface. We start by constructing
the focal decomposition of a closed hyperbolic surface.
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Definition 5. Define the geodesic Lλ ⊂ D2, λ ∈ Λ, by

(2.3) Lλ = {z ∈ D2 | d(z, 0) = d(z, λ)} and L =
⋃

λ∈Λ

Lλ,

where L is referred to as the web of geodesics.

Remark 1. The geodesic Lλ is the perpendicular bisector of the geodesic seg-
ment joining 0, λ ∈ D2. Further, as the orbit Λ is discrete, the web L is locally
finite in the sense that every compact disk in D2 meets only finitely many distinct
geodesics in L.

Given z ∈ D2, define ρ(z) ⊂ D2 be the open geodesic ray connecting 0 and z in
D2. Further, in what follows, given a point z ∈ D2, denote r(z) = d(0, z). Define

ι(z) = #{λ ∈ Λ | Lλ ∩ ρ(z) 6= ∅},(2.4)
υ(z) = #{λ ∈ Λ | Lλ 3 z},(2.5)

where # denotes the cardinality of the set adjoined. In terms of these indices, the
focal decomposition can be expressed as follows, see also [10] and [13].

Lemma 1. (Focal decomposition of a hyperbolic surface) We have

(2.6) σi =
{
z ∈ D2 | υ(z) = i− 1

}
and D2 = σ1 ∪ L,

and

(2.7) ι(z) = # {λ ∈ Λ | λ ∈ D(z, r(z))} .

Proof. Take q ∈ M , take z ∈ π−1(q) \ {0} and consider C(z, r(z)). For every
λ ∈ Λ ∩ C(z, r(z)), the line Lλ passes exactly through z ∈ D2. Indeed, consider the
triangle formed by the vertices 0, λ, z ∈ D2. If λ ∈ C(z, r(z)), then d(0, z) = d(z, λ)
and thus the triangle is isosceles. Further, the bisector Lλ cuts the base of the
triangle in half and crosses it perpendicularly. By symmetry, we must therefore
have that Lλ 3 z. The distance from z to any point of Λ ∩ C(z, r(z)) is precisely
r(z) by construction and every geodesic arc connecting z and an orbit point λ ∈
Λ ∩ C(z, r(z)) projects to a geodesic curve of length r(z) in M that connects p and
q. If z ∈ σi, then there are exactly i of these geodesic curves, and it thus follows that
i = #{Λ∩C(z, r(z))} = υ(z)+1. This yields (2.6). Similarly, we have Lλ∩ρ(z) 6= ∅
if and only if λ ∈ D(z, r(z)) from which (2.7) follows. ¤

2.3. Topology and geometry of Brillouin zones. The Brillouin zones
exhibit interesting universal behaviour, which is to a large extent independent of the
cocompact Fuchsian group Γ, and is a consequence of the uniform lattice counting
estimates that hold for cocompact Fuchsian groups [2]. Combining these lattice
counting estimates with (2.7) of Lemma 1, we obtain the following.

Lemma 2. Given a cocompact Fuchsian group Γ and z ∈ D2, we have

(2.8)
∣∣∣∣

ι(z)

cosh2(r(z)/2)
− 4π

area(F )

∣∣∣∣ = O (
e−αr(z)

)
.

The constant α = αΓ > 0 and the implied constant depend only on Γ. In particular,
ι(z) →∞ as r(z) →∞.

Topological properties of the Brillouin zones are summarized in the following
lemma, cf. [13].
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Lemma 3. (Topology of Brillouin zones) We have that

(2.9) Int(Bk) = {z ∈ D2 | ι(z) = k, υ(z) = 0},
and Bk = Cl(Int(Bk)). In particular, the union of the Brillouin zones Int(Bk), k ∈ N,
is dense in D2.

Proof. By Lemma 1, we have that ι(z) = k and υ(z) = 0 if and only if

(2.10) #{Λ ∩D(z, r(z)} = k and #{Λ ∩ C(z, r(z))} = ∅.
If υ(z) 6= 0, then the ray ρ(w), with w = (1 + ε)z, will cross additional geodesics in
the web L, and thus ι(w) > k. Therefore, points for which υ(z) > 0 are not in the
interior of any Bk. Conversely, the condition that υ(z) = 0 is clearly open.

To prove that Bk is compact, we define the function that associates the maximal
distance from the origin to Bk as a function of the angle of the ray with respect to the
positive real axis. As ι(z) → ∞ as r(z) → ∞ by Lemma 2, this function associates
a definite real number to every angle. Further, it is continuous as a function of the
angle, since the web is locally finite and every geodesic in the web L that intersects a
ray emanating from the origin crosses the ray transversely. Since the circle is compact,
continuity yields a finite maximum over all angles. Thus Bk is bounded. It follows
that Bk is compact as it is also closed. Since the web of geodesics L is locally finite,
cf. Remark 1, by compactness of Bk, ∂Bk consists of a finite union of geodesic arcs
bounding finitely many geodesic polygons and it follows that Bk = Cl(Int(Bk)). To
prove density, the web of geodesics L ⊂ D2, being a locally finite union of geodesics,
is nowhere dense. Thus σ1 = D2 \ L =

⋃
k∈N Int(Bk) is dense in D2. ¤

Remark 2. The first Brillouin zone appears in several different contexts; for
example, it appears as the Wigner–Seitz cell in physics, the Voronoi cell in the
study of circle packings and, specific to our setting, as the interior of the Dirichlet
region of a Fuchsian group.

The following result expresses the universal geometrical behaviour of the Brillouin
zones.

Lemma 4. (Geometry of Brillouin zones) Let Γ be a cocompact Fuchsian group
with M = D2/Γ a closed surface of genus g. There exists a decreasing function ε(t),
with t ∈ [0,∞), depending only on Γ and k ∈ N, such that if z ∈ Bk ⊂ D2, then

(2.11) τ(g, k)− ε(r(z)) ≤ r(z) ≤ τ(g, k) + ε(r(z)),

where τ(g, k) = log(4(g − 1)k). Furthermore, ε(t) → 0 as t →∞.

Proof. The hyperbolic area of a fundamental domain F of Γ is given by area(F ) =
4π(g − 1) by Gauss–Bonnet, and we denote

β(g) =
4π

area(F )
=

1

g − 1
.

We can rewrite (2.8) in Lemma 2 as

(2.12) β − Ĉ(r(z)) ≤ ι(z)

cosh2(r(z)/2)
≤ β + Ĉ(r(z)),
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where Ĉ(t) → 0 for t →∞ and is decreasing. Equivalently,

(2.13)
ι(z)

β + Ĉ(r(z))
≤ cosh2(r(z)/2) ≤ ι(z)

β − Ĉ(r(z))
.

As cosh2(t/2) = 1
4
(et + e−t + 2), taking logarithms, we find that

(2.14) log

(
4ι(z)

β + Ĉ(r(z))

)
≤ log

(
er(z) + e−r(z) + 2

) ≤ log

(
4ι(z)

β − Ĉ(r(z))

)
,

for all z ∈ D2. Define the function κ : [0,∞) → (0, log(4)] by

(2.15) κ(t) = log(et + e−t + 2)− t = log(1 + e−2t + 2e−t).

It follows that κ(t) → 0 as t →∞. From (2.14) and (2.15), we find

(2.16) κ(r(z)) + log

(
4ι(z)

β + Ĉ(r(z))

)
≤ r(z) ≤ log

(
4ι(z)

β − Ĉ(r(z))

)
+ κ(r(z)).

Since Ĉ(r(z)) → 0 for r(z) → ∞, we can find a function ε(t), with ε(t) → 0 as
t →∞, such that

(2.17) log

(
4ι(z)

β

)
− ε(r(z)) ≤ r(z) ≤ log

(
4ι(z)

β

)
+ ε(r(z)).

Setting τ(g, k) := log(4(g − 1)k) yields (2.11) for z ∈ Int(Bk). By continuity, the
same estimates hold for Bk, since Bk is the closure of Int(Bk). ¤

Further, the homeomorphism ϕ acts in a coherent way on the individual geodesics
in the web L, in the following sense.

Lemma 5. Given λ1 ∈ Λ1, there exists a unique λ2 ∈ Λ2 such that ϕ(Lλ1) = Lλ2 .

Proof. Given a point z ∈ Lλ1 with υ(z) = 1, there exists a unique Lλ2 that
passes through w = ϕ(z). We show that ϕ(Lλ1) ⊆ Lλ2 . A similar argument shows
that ϕ−1(Lλ2) ⊆ Lλ1 . Now suppose that z ∈ Lλ1 is a point through which υ(z) ≥ 2
geodesics in the web L1 pass, take a small Euclidean disk centered at z, which does
not intersect geodesics other than those that pass through z. The geodesic Lλ1 cuts
this disk into two halves, each containing the same number of segments of geodesics
incident to z. Since this is a topological invariant, the curve ϕ(Lλ1) has to pass
through as the same geodesic at w = ϕ(z). As this holds for every such intersection
point, the claim follows. ¤

Every geodesic Lλ, with λ ∈ Λ, separates the disk D2 into two connected com-
ponents H±

λ , where we denote H−
λ the component containing 0 ∈ D2. We say Lλ

separates 0, z ∈ D2 if z ∈ H+
λ . The Brillouin zones are natural with respect to our

homeomorphism ϕ in the following sense.

Lemma 6. (Naturality of Brillouin zones)We have ϕ(B1
k) = B2

k, for every k ∈ N.

Proof. First, let z ∈ Int(B1
k). By Lemma 1, we have that

ι(z) = # {λ ∈ Λ1 | Lλ ∩ ρ(z) 6= ∅} = k.

Every such geodesic Lλ separates 0 and z and there are exactly k such geodesics
in the web L1 relative to Λ1. As ϕ is a homeomorphism for which ϕ(0) = 0 and
ϕ(Lλ1) = Lλ2 , with λ1 ∈ Λ1 and λ2 ∈ Λ2, by Lemma 5, this information is preserved
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by ϕ. Thus there exist exactly k geodesics in the web L2 relative to Λ2 that separate
0 and w = ϕ(z). This shows that ϕ(Int(B1

k)) = Int(B2
k), for every k ∈ N. Passing to

the closure yields ϕ(B1
k) = B2

k, for every k ∈ N. ¤
From the above, we obtain the following.

Lemma 7. (Radial quasi-isometry) There exists a function C(t), such that

(2.18) r(z)− C(r(z)) ≤ r(ϕ(z)) ≤ r(z) + C(r(z)),

for every z ∈ D2, with C(t) → 0 for t →∞.

Proof. Given z ∈ D2, z ∈ B1
k for some k ≥ 1. By Lemma 6, we have that

w := ϕ(z) ∈ B2
k ⊂ D2. Since the genus of M1 and M2 is equal, by Lemma 4, we have

that

(2.19) τ(g, k)− ε1(r(z)) ≤ r(z) ≤ τ(g, k) + ε1(r(z))

and

(2.20) τ(g, k)− ε2(r(w)) ≤ r(w) ≤ τ(g, k) + ε2(r(w)),

with τ(g, k) = log(4(g − 1)k) and where ε1(t), ε2(t) → 0 as t → ∞. In particular,
ε1(t) and ε2(t) are bounded for all t ∈ [0,∞). Combining (2.19) and (2.20), there
exists a constant r0 > 0 such that r(w) ≥ r(z)− r0, and we have

(2.21) |r(w)− r(z)| ≤ ε1(r(z)) + ε2(r(w)) ≤ ε1(r(z)) + ε2(r(z)− r0) := C(r(z)).

Thus (2.18) follows from (2.21) and C(t) → 0 as t → ∞, since ε1(t), ε2(t) → 0 as
t →∞. ¤

2.4. The induced mapping at infinity. Given an interval I ∈ S1, we denote
|I| the length of the interval, relative to the standard Euclidean measure on S1. Given
λ ∈ Λ, we denote Iλ ⊂ S1 the shortest closed interval whose endpoints correspond to
the endpoints of Lλ on S1.

Given a geodesic Lλ ⊂ L, denote δ(λ) = d(0, Lλ). We denote I := {Iλ}λ∈Λ

the collection of these closed intervals associated to the web L. We first collect
combinatorial information about the collection of intervals I.

Lemma 8. The collection of intervals I satisfies the following conditions.
(a) Every point x ∈ S1 is the limit point of an infinite nested sequence of intervals

in the collection I.
(b) Given an interval J ⊂ S1 and given ε > 0, there exists a finite covering of J

by intervals in I of length at most ε.

Proof. To prove (a), we first observe that the lengths of the intervals in I form a
null-sequence; that is, for any given ε > 0, there are only finitely many intervals in I
whose lengths exceed ε. Indeed, if there would be infinitely many intervals in I whose
length is bounded from below, then the distance from the origin of the geodesics in
the web L that correspond to this infinite collection of intervals is uniformly bounded
from above. However, this contradicts that the web L is locally finite. As r(z) →∞,
we have that ι(z) → ∞. By Lemma 3, the number of elements in Λ for which
Lλ ∩ ρ(z) 6= ∅ increases as r(z) → ∞. Thus, given x ∈ S1, we can find infinitely
many intervals that cover x ∈ S1. Passing to a subsequence if necessary to guarantee
nesting, this proves claim (a).
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To prove (b), let J ⊂ S1 be any given interval and ε > 0. By deleting finitely
many geodesics Lλ from D2, and corresponding intervals Iλ from S1, according to
their increasing distance δ(λ), we may assume that all intervals in the remaining
collection are of length at most ε. We obtain a convex hull defined as the connected
component, containing the origin 0 ∈ D2, of the complement of L minus the finitely
many geodesics just deleted. To finish the proof, we argue as in Lemma 3. The convex
hull consists of finitely many edges. Indeed, for every ray emanating from the origin,
define the function that associates the distance to this convex hull as a function of
the angle of the ray with respect to the positive real axis. By (a), this function
associates a definite real number to every angle and is continuous. By compactness
of the circle, continuity yields a finite maximum over all angles. Moreover, the convex
hull is comprised of finitely many edges since the web of geodesics L is locally finite.
The edges of this convex hull can be continued to complete geodesics contained
in L. The intervals in S1 corresponding to this finite collection of geodesics, by
construction, gives a finite covering of S1 by intervals in I whose lengths are at most
ε. In particular, it gives a finite covering of J ⊂ S1 by such intervals. ¤

Lemma 9. The homeomorphism ϕ : D2 → D2 extends to a homeomorphism
f : S1 → S1 of the boundary S1 = ∂D2.

Proof. Given λ1 ∈ Λ1, let λ2 ∈ Λ2 defined by ϕ(Lλ1) = Lλ2 . As ϕ(0) = 0, we
have that ϕ(H+

λ1
) = H+

λ2
, thus it follows that f(Iλ1) = Iλ2 , and the endpoints of the

interval Iλ1 ∈ I1 are sent to the endpoints of Iλ2 ∈ I2.
Given a point x ∈ S1, by Lemma 8 (i), {x} =

⋂
k Iλk

1
for some subsequence

(λk
1)k∈N of nested intervals decreasing in length to zero. As this nesting is preserved

by f , due to the nesting property of the corresponding half-planes H+
λk
1
and H+

λk
2

preserved by ϕ in D2, we have that {y} :=
⋂

k Iλk
2
is a unique point in the image

and f(x) = y. Therefore, f is one-to-one. To prove continuity of f , given x ∈ S

and y = f(x) and an interval Ĵ ⊂ S1 containing y, again by Lemma 8 (i), we can
find an interval Iλ2 ⊂ Ĵ containing y. Consequently, J ⊂ Iλ1 , where Iλ1 = f−1(Iλ2)

containing x, has the property that f(J) ⊂ Iλ2 ⊂ Ĵ . Thus f is a homeomorphism. ¤

Lemma 10. There exist uniform constants 1 ≤ K(t) ≤ K0 for all t ∈ [0,∞),
such that if Lλ2 = ϕ(Lλ1), then

(2.22)
1

K(δ(λ1))
≤ |Iλ2|
|Iλ1|

≤ K(δ(λ1)),

where K(t) → 1 for t →∞.

Proof. If we are given Lλ1 and Lλ2 = ϕ(Lλ1), then by Lemma 7 we have that

δ(λ2) = δ(λ1) + ζ(λ1),

with |ζ(λ1)| ≤ C(δ(λ1)). The Euclidean distance δ̄(λ) of 0 ∈ D2 to Lλ relates to the
hyperbolic distance δ(λ) as

δ̄(λ) = tanh(δ(λ)/2).

The length |Iλ| of the interval Iλ is estimated as follows. We observe that for δ(λ) →
∞, the geodesic Lλ converges, when rescaling to unit size, to a semicircle whose
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distance from the origin is given by δ(λ). Since the Euclidean radius of the semicircle
is 1− δ̄(λ), there exists a function η(t), with η(t) → 0 as t → 0, such that

|Iλ| = 2(1− δ̄(λ))(1 + η(|Iλ|)),
and thus

(2.23) |Iλ| = 2 (1− tanh(δ(λ)/2)) (1 + η(|Iλ|)).
Denoting δ1 = δ(λ1), δ2 = δ(λ2) and ζ1 = ζ(λ1) for brevity, combining (2.23) with
the estimate

1 + η(|Iλ2|)
1 + η(|Iλ1|)

→ 1,

as |Iλ1|, |Iλ2| → 0, we have that

(2.24)
|Iλ2|
|Iλ1|

³ 1− tanh(δ2/2)

1− tanh(δ1/2)
=

1 + eδ1

1 + eδ2
=

1 + eδ1

1 + eδ1+ζ1
³ eδ1

eδ1+ζ1
= e−ζ1 → 1,

since δ1 → ∞ and, simultaneously, |ζ1| ≤ C(δ1) → 0 as δ1 → ∞. Thus (2.22)
follows. ¤

This implies that the boundary homeomorphism ϕ acts trivially, in the following
sense.

Lemma 11. The circle homeomorphism f : S1 → S1 induced by ϕ is a rotation.

Proof. We first observe it is sufficient to show that the homeomorphism f is
Lipschitz for some Lipschitz constant 1 ≤ Kf < ∞. Suppose that this is proved. It
then follows that f is differentiable almost everywhere and that |f(x)−f(y)| = ´ y

x
Df .

By Lemma 8 (a), every point x ∈ S1 is a limit point of a nested sequence of intervals
of I1. By Lemma 10, the ratio of the lengths of the nested intervals in I1 converging
to x and the corresponding image intervals in I2 converging to f(x) converges to 1.
This yields that Df(x) = 1 at every point x ∈ S1 where f is differentiable. It thus
follows that Df(x) = 1 for almost every x ∈ S1, and integration then yields that
|f(x)− f(y)| = |x− y|, so f has to be a rotation.

To prove that f is Lipschitz, we show that f does not shrink an interval by a
factor exceeding (4K0)

−1, where K0 is the uniform constant of Lemma 10. A similar
argument for the inverse f−1 shows that f does not expand intervals by the same
factor either. Take any two points x, y ∈ S1 sufficiently close, say ` = |x− y| < 1/4,
and denote J the (shortest) interval with endpoints x and y. By Lemma 8 (b), we
can find a finite covering of J by a collection of intervals {Iλk

}N
k=1 whose lengths

are at most `/10. By deleting a finite number of intervals of this covering, we may
assume this covering is minimal in the sense that deleting any one more interval of
the collection would make it fail to be a covering.

First, by minimality, it is readily shown that the left-endpoints of the intervals are
distinct, so we can label the intervals according to the ordering of the left-endpoints
xk of Iλk

in S1. Further, by minimality, it is shown that the odd-labeled intervals are
mutually disjoint, and so with the even-labeled intervals. Define Σodd and Σeven to
be the sum of the lengths of the odd- and even-labeled intervals respectively. Either
Σodd or Σeven has to be of length at least `/2. Indeed, if both Σodd and Σeven would
be strictly less than `/2, then their union could not cover an interval of length `, a
contradiction.
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Suppose that Σodd ≥ `/2. As J contains all odd-labeled intervals, except possibly
parts of the first and last, the sum of the lengths of the remaining odd-labeled intervals
strictly contained in J is at least `/2 − 2`/10 > `/4. Similarly, in case Σeven ≥ `/2,
the sum of the lengths of all even-labeled intervals strictly contained in J is larger
than `/4. By Lemma 10, the lengths of these intervals are not shrunk by a factor
more than K0 by f , and thus f can not shrink J by a factor exceeding (4K0)

−1, as
required. ¤

2.5. Proof of the main result. We now finish the proof of Theorem A. By
Lemma 11, ϕ : D2 → D2 extends to S1 = ∂D2 as a rotation. By conjugating Γ2 with
the corresponding rotation fixing the origin 0 ∈ D2, we may assume that the induced
action on the boundary is the identity. In that case we have that Λ1 = Λ2. Indeed, let
Lλ1 ⊂ D2 be a geodesic with endpoints x1, x2 ∈ S1, with λ1 ∈ Λ1. As f(xi) = xi, for
i = 1, 2, and Lλ2 = ϕ(Lλ1), we must have that Lλ1 = Lλ2 , as a geodesic is uniquely
determined by its endpoints. Since Lλ is the perpendicular bisector of 0 and λ in D2,
it follows that λ1 = λ2 ∈ Λ2. Since this holds for every point in Λ1, it follows that
Λ1 = Λ2. Therefore, we have that Λ := Λ1 = Λ2.

To finish the proof, we need to show this condition implies the surfaces M1 and
M2 are commensurable. Consider the stabilizer ΓΛ := {γ ∈ Möb(D2) | γ(Λ) = Λ} of
the discrete set Λ. Since ΓΛ contains Γ1 and Γ2 as subgroups, ΓΛ is not elementary.
Either ΓΛ acts properly discontinuously on D2, or else ΓΛ contains an elliptic element
of infinite order. However, since Λ is a discrete and ΓΛ-invariant set, the latter
is impossible. Therefore, ΓΛ acts properly discontinuously and is thus Fuchsian.
Consequently, since Γ1 and Γ2 act cocompactly, the index of Γ1 and Γ2 in ΓΛ is finite.
Since the index of Γ1 ∩ Γ2 in Γ1 and Γ2 is bounded by the index of Γ1 and Γ2 in ΓΛ

respectively by standard group theory, it follows that Γ1∩Γ2 has finite index in both
Γ1 and Γ2. That is, Γ1 and Γ2 are commensurable. This proves Theorem A.

To prove Corollary B, for a generic Γ1, the stabilizer ΓΛ in the above notation
equals Γ1 by [3]. Since the orbit of 0 under Γ2 equals that of Γ1, if Γ1 ∩ Γ2 6= Γ1, we
can take an element µ ∈ Γ2 not contained in Γ1 and take the group generated by Γ1

and µ. Since this group is contained in the stabilizer ΓΛ and properly extends Γ1, we
have a contradiction. It follows that Γ1 = Γ2.

3. Further remarks

We finish with several remarks regarding the results presented.
3.1. Focal spectrum of hyperbolic surfaces. Let us first pose a problem

regarding the focal spectrum of a closed hyperbolic surface, see also [8] for the case of
flat tori. An analogue of the length spectrum is given by the focal spectrum defined
in terms of the focal decomposition. Given a basepoint p ∈ M = D2/Γ in the surface,
assume that the lift corresponds to 0 ∈ D2, denote Λ = OΓ(0) and let {Lλ}λ∈Λ be
the collection of Brillouin lines relative to the data as given. Now record the radii
r, with multiplicity, for which the hyperbolic circle C(0, r) in D2 meets either (i) a
line Lλ tangentially or (ii) the intersection of two or more such lines. We pose the
problem as to whether this spectrum being equal relative to the basepoints p ∈ M1

and q ∈ M2 chosen is equivalent to the condition that there is an index-preserving
homeomorphism ϕ0 : TpM1 → TqM2.

3.2. Generalizations of focal rigidity. It would be interesting to determine
to what extent the current results extend into the more general setting of variable
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negatively curved manifolds. Indeed, the covering map on the universal cover is
isomorphic to the exponential mapping as before, which gives an explicit construction
of the focal decomposition in terms of equidistant loci in the cover and associated
Brillouin zones. Uniform lattice counting estimates subsequently give bounds on
their shape in the cover, which has to be respected by the homeomorphism sending
one structure to another. The Brillouin zones have a tendency to exhibit behavior
that uniformizes the focal decomposition on a large scale and forms the driving force
behind rigidity. It is an interesting problem to decide whether focally equivalent
closed manifolds of non-positive curvature are commensurable, or isometric, modulo
rescaling.
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