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Abstract. Let p be a real number greater than one and let I" be a connected graph of bounded
degree. We show that the p-Royden boundary of I' with the p-harmonic boundary removed is an
F,-set. We also characterize the p-harmonic boundary of I in terms of the intersection of the
extreme points of a certain subset of one-sided infinite paths in T".

1. Introduction

Let I be a graph with vertex set Vi and edge set Er. We will write V' for Vr
and E for Er if it is clear what graph I" we are working with. For z € V, deg(z)
will denote the number of neighbors of x and NV, will be the set of neighbors of x. A
graph I' is said to be of bounded degree if there exists a positive integer k such that
deg(x) < k for every z € V. A path v in I' is a sequence of vertices x1, s, ..., T,
where 7,41 € N,, for 1 <7 <n—1 and x; # x; if ¢ # j. Assume throughout this
paper that all infinite paths have no self-intersections. A graph is connected if any
two given vertices of the graph are joined by a path. All graphs considered in this
paper will be connected, of bounded degree with no self-loops and have countably
infinite number of vertices. We shall say that a subset S of V' is connected if the
subgraph of I' induced by S' is connected. The Cayley graph of a finitely generated
group is an example of the type of graph that we study in this paper. By assigning
length one to each edge of I'; V' becomes a metric space with respect to the shortest
path metric. We will denote this metric by d(x,y), where x and y are vertices of
['. Thus d(z,y) gives the length of the shortest path joining the vertices x and y.
Finally, if x € V and n € N, then B, (z) will denote the metric ball that contains all
elements of V' that have distance less than n from .

Let p be a real number greater than one. In Section 2 we will define the p-Royden
boundary of I', which we will indicate by R,(I'). We will also define the p-harmonic
boundary of I', which is a subset of R,(I"). We will use 9,(I") to denote the p-harmonic
boundary. Our motivation for investigating the p-harmonic boundary of a graph is
its connection to the vanishing of the first reduced ¢P-cohomology space of a finitely
generated group. More specifically, this space vanishes if and only if the p-harmonic
boundary of the group is empty or contains exactly one element, see |6, Section 7|
for the details of this fact. Gromov conjectured in [1, page 150] that the first reduced
(P-cohomology space of a finitely generated amenable group vanishes. Thus, a better

doi:10.5186/aasfm.2012.3705

2010 Mathematics Subject Classification: Primary 60J50; Secondary 43A15, 31C45.

Key words: p-Royden boundary, p-harmonic boundary, p-harmonic function, F,-set, extreme
points of a path, p-extremal length of paths.



82 Michael J. Puls

understanding of the p-harmonic boundary could be helpful in resolving Gromov’s
conjecture.

Recall that in a topological space a set is said to be F, if it is a countable union
of closed sets. In this paper we will prove that R,(I') \ 0,(I") is F,,. For each infinite
path in I we can associate a set of extreme points, which is roughly the “points at
infinity” of the path with respect to the p-Royden boundary. Our other main result
in this paper is that the p-harmonic boundary is precisely the intersection of the
extreme points of a certain subset of one-sided infinite paths in T'.

The research for this paper was partially supported by PSC-CUNY grant 63873-
00 41 and I would like to thank them for their support.

2. The p-Royden and p-harmonic boundaries

Let 1 < p € R. In this section we construct the p-Royden and p-harmonic
boundaries of I'. For a more detailed discussion about this construction see Section
2.1 of [6]. Before we can give these definitions we need to define the space of p-
Dirichlet finite functions on V. For any S C V, the outer boundary 9S of S is the
set of vertices in V' \ S with at least one neighbor in S. For a real-valued function
f on SUOS we define the p-th power of the gradient, the p-Dirichlet sum, and the
p-Laplacian of x € S by

IDf@)P =D |fy) P L(f.S)=>_|Df()

YyEN, zeS
=Y f) - F@P(fy) - f(x)).

In the case 1 < p < 2, we make the convention that |f(y) — f(x)[P2(f(y) — f(x)) =0
if f(y) = f(z). Let S C V. A function f is said to be p-harmonic on S if A, f(z) =0
for all z € S. We shall say that f is p-Dirichlet finite if I,(f,V) < oco. The set of
all p-Dirichlet finite functions on I' will be denoted by D,(I'). With respect to the
following norm D, (I") is a reflexive Banach space,

11, = (L,(£ V) + [f()1P) 7

where o is a fixed vertex of I" and f € D,(I'). We use HD,(I') to represent the
set of p-harmonic functions on V' that are contained in D,(I'). Let ¢>°(I') denote
the set of bounded functions on V' and let || f|l = supy |f| for f € £°(I"). Set
BD,(I') = D,(I') N £>°(T"). The set BD,(I') is a Banach space under the norm

£, = (£, V)2 + 1| flloos

where f € BD,(I'). Let BHD,(I') be the set of bounded p-harmonic functions con-
tained in D,(I"). The space BD,(I) is also closed under the usual operations of scalar
multiplication, addition and pointwise multiplication. Furthermore, |fg|lzp, <
| fllzp,llgllBp, for f,g € BD,(I'). Thus BD,(I') is a commutative Banach alge-
bra. Let C.(I") be the set of functions on V' with finite support. Indicate the closure
of Ce(I') in Dy(T) by Ce(L)p . Set B(Ce(I)p, ) = Ce(I')p, M £>(I). Using the fact
that the inequality (a + b)'/? < a'/P + b'/P is true when a,b > 0 and 1 < p € R, we
see immediately that || f|lp, < [|fsp,. It now follows that B(C.(I')p, ) is closed in

BD,(I).
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Let Sp(BD,(I')) denote the set of complex-valued characters on BD,(I"), that
is the nonzero ring homomorphisms from BD,(I') to C. Then with respect to the
weak x-topology, Sp(BD,(I')) is a compact Hausdorff space. Given a topological
space X, let C'(X) denote the ring of continuous functions on X endowed with the
sup-norm. The Gelfand transform defined by f (x) = x(f) yields a monomorphism of
Banach algebras from BD,(I') into C'(Sp(BD,(I'))) with dense image. Furthermore
the map i: V' — Sp(BD,(I")) given by (i(x))(f) = f(x) is an injection, and (V) is
an open dense subset of Sp(BD,(I")). For the rest of this paper, we shall write f
for f, where f € BD,(T'). The p-Royden boundary of I', which we shall denote by
R,(I'), is the compact set Sp(BD,(I")) \ i(V). The p-harmonic boundary of I" is the
following subset of R,(I"):

(L) = {x € By(I) | f(x) = 0 for all f € B(Ce(T)p,)}-

Let S be an infinite subset of V' and let A and B be disjoint nonempty subsets
of SUJS. The p-capacity of the condenser (A, B,S) is defined by

cap,(A, B, S) = inf I,,(u),

where the infimum is taken over all functions v € D,(I") with w =0 on A and u =1
on B. Such a function is called admissible. Set cap,(A, B,S) = oo if the set of
admissible functions is empty.

Let A be a finite subset of S U S and let (U,) be an exhaustion of V' by finite
connected subsets such that A C U;. We now define

cap,(4,00,5) = nh_)rrgo cap, (4, (0S U S) \ Uy, S).

Since cap, (A, (0SUS) \ Uy, S) > cap,(A, (0SUS) \ Upy1,S), the above limit exists.
We shall say that S is p-hyperbolic if there exists a finite subset A of S U dS that
satisfies cap,(A, 00,5) > 0. If S is not p-hyperbolic, then it is said to be p-parabolic.
An equivalent definition of p-parabolic is that S is p-parabolic if and only if 15 €
C.(Ts) D, where 15 is the constant function 1 on S and I'g the subgraph of I' induced
by S, 9, Theorem 3.2]. We will define a graph T" to be p-hyperbolic (p-parabolic) if its
vertex set V' is p-hyperbolic (p-parabolic). It was shown in [6, Proposition 4.2| that
I' is p-parabolic if and only if 0,(I') = 0. A useful property of p-hyperbolic graphs
that we will use throughout this paper is the following p-Royden decomposition, see
[6, Theorem 4.6] for a proof.

Theorem 2.1. (p-Royden decomposition) Let 1 < p € R and suppose f €
BD,(T"). Then there exists a unique u € B(Ce(I')p, ) and a unique h € BHD,(T')
such that f = u + h.

Let G be a finitely generated group. The Cayley graph of GG is an example of
the type of graph we study in this paper. As was mentioned in Section 1 the first
reduced (P-cohomology space of GG vanishes if and only if the cardinality of the p-
harmonic boundary of GG is one or zero. The reason for this is that the first reduced
(P-cohomology space of G vanishes if and only if the only p-harmonic functions on G
that are contained in D,(G) are the constants, for a proof of this see the remark after
Theorem 3.5 in [5]. Furthermore, [6, Theorem 2.5] tells us that there are nonconstant
p-harmonic functions with finite p-Diriclet sum on a graph of bounded degree if and
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only if the cardinality of the p-harmonic boundary of the graph is greater than one.
In section 7 of [6] the p-harmonic boundary is computed for several groups.

3. Statement of main results

In this section we will state our main results. In section 4 we will prove

Theorem 3.1. Let 1 <p € R and let I" be a graph of bounded degree. The set
R,(I')\ 0,(I) is F,.

Before we state our other main result we need to define the set of extreme points of
a path in I'. Let P be the set of all one-sided infinite paths with no self-intersections
in I'. For a real-valued function f on V and a path v € P, the limit of f as we
follow v to infinity is given by lim, . f(z,), where xo, z1,...,x,,... is the vertex
representation of the path . Sometimes we write f(v) = lim,,_ f(z,) to indicate
this limit. Let v € P and denote by V() the set of vertices on 7. The closure
of i(V (7)) in Sp(BD,(T)) will be indicated by V(v). Recall that Sp(BD,(T')) is
endowed with the weak#-topology. Thus x € V/(v) if and only if there exists a
subsequence (z,,) of (z,) such that limy_, f(x,,) = x(f) for all f € BD,(I"). The
extreme points of a path v is defined to be

E(y) = V()N R,().
Let f € B(Ce(')p,) and set Ay ={y € P [ f(7) # 0}. Set
Ey ={U,E(y) |y € P\ A}
In Section 5 we shall prove
Theorem 3.2. Let 1 < p € R and let I" be a graph of bounded degree. Then

Op(I') = Nyen@am,,) Er

Let 1 < p € R. If T is p-parabolic, then 9,(I') = () and Theorem 3.1 is true.
Also for the p-parabolic case, 1y € B(Ce(I')p ) by [9, Theorem 3.2], where 1y is the

constant function one on V. Then E;, = () and Theorem 3.2 follows. Thus for the
rest of the paper we will assume I' is p-hyperbolic.

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1. We will start by giving some needed
definitions and proving a comparison principle. A comparison principle for finite
subsets of V' was proved in |2, Theorem 3.14|. Our proof follows theirs in spirit.

Let f and h be elements of BD (F) and let 1 < p € R. Define

(Bph, fr: =73 [h(y) = h(@)P*(hly) = h(@))(f(y) — f(z).
€V yeEN,
The sum exists since
SN Iny) = k(@) P2 (h(y) — h(@)|* = I,(h, V) < o0,
z€V yENg

where % + é = 1. For notational convenience let

T(h, f,2,y) = [h(y) = h(z) P72 (h(y) — h(2))(f(y) — f(2))-
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In order to prove Theorem 3.1 we will need the following:

Lemma 4.1. (Comparison principle) Let hy, hy be elements of BHD,(I') and
suppose hy(z) < hy(x) for all x € 0,(I'). Then hy < hy on'V.

Proof. Define a function f on V' by f = min{hs — hy,0}. Theorem 4.8 of [6] says
f € B(Cc(I')p, ) since f =0 on §,(T'). By Lemma 4.6 of [6] we have (Aphy, f) =0
and (Ayhs, f) = 0, which implies (A,h; — Apha, f) = 0. Now set
A={x eV |h(x) <hy(x)}, B={zeV|hyzr)<h(z)},
and for a € V let
Co={yeV0|ye N, and hi(y) < ha(y)}, Do ={y € V|y € N, and hs(y) < h1(y)}.

Now

(4]‘) O_ZZ hl?fa?y (h27f7x7y>>:T1+T2+T3
z€V yENg

where
Z Z hlafax y (h2>f7x>y))7
z€A yeCy

_ (Z Z +Z Z) (T'(hy, f,z,y) — T(he, f,z,9)),

r€AyeD, xeEByeCy

and

Z Z (hi, fox,y) — T(ha, f,x,y)).

re€ByeD,
Since f(z) = f(y) = 0 for x € A and y € C, it follows that 73 = 0. We now claim
that T3 < 0. To see the claim let a and b be real numbers such that a # b. It follows
from the inequality
laP~2a(a — b) > |b|P"2b(a — b)

that
(4.2) T(hy, hy = ho,z,y) > T(ha, hy — ha, 2, y).
Equality occurs if and only if (hy — ho)(x) = (hy — hg)(y). Now if z € B and y € D,,
then f(y) — f(xz) = (ha — h1)(y) — (ha — hy)(x). Combining (4.2) with the fact
T(hg,h1 — ha,z,y) = =T (hg, he — hy,x,y), where k = 1 or k = 2, we obtain T3 < 0,
which is our claim.

We now proceed to show that if there is a pair of vertices z and y that satisfy
x € Ay€e D, orx € B,y € Cy, then T, < 0. Suppose © € A and y € D,. Then

f(y) = (@) = ha(y) — M(y) <0 and
T(hy, frx,y) = Tlha, fr2,9) = (ha(y) — ha(y)) (|ha(y) = ha(2) P72 (ha(y) — ha())
— |ha(y) — ha(2)[P2(ha(y) — ha(x))).
Also hy(y) — hi(z) > ha(y) — ho(z) because hy(y) — hao(y) > 0 > hy(x) — ha(x). So

if ha(y) > ho(z) we see that T'(hy, f,z,y) — T(ha, f,z,y) < 0 since hy(y) — hi(x) >
ha(y) — ha(x). On the other hand if ho(y) < ho(x) and hy(y) > hi(x) we obtain

T(hla faxay) - T(hQ,f,iL',y)
= (ha(y) = m(®)) (11 (y) = M (@)~ + [ha(y) — ha(x)"7") <0
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since |ha(y) — hao(z)| = —(ha(y) — ha(z)). The only other possibility is ha(y) < ho(z)
and hi(y) < hy(z). If this is the case then hy(y) < hi(y) < hi(z) < ho(x) due to
r € Aand y € D,. Consequently, ha(y) —ha(x) < hi(y) —hi(x) and hy(x) — hy(y) <
ha(x) — ha(y); hence, |hi(y) — hi(z)| < |he(y) — ho(z)|. It now follows that

T(hla f?xa y) - T(h27 f7 x?l/)
= (ha(y) = I (y)) (Iha(y) — ha(@)|P~" = [P (y) — M (2)P7") < 0.

A similar argument can be used to show that T'(hy, f,x,y) — T'(he, f,z,y) < 0 for
each z € Band y € C,. Hence, if x € A,y € D, or x € B,y € C,, then T; < 0. Since
Ty =0 and T3 < 0, it follows from (4.1) that it must be the case T, = 0. Thus it is
impossible to have a pair of vertices x and y with z € A,y € D, or x € B,y € C,.
Now assume that hy(z) > hy(z) for some z € V. We claim that there exists
vertices g, yo in V' for which yg € Ny, hi(xg) > ha(x) and hy(yo) < ha(yo). To see
the claim suppose hy = hy on 0,(I"), then hy = hy on V by [6, Corollary 4.9]. So there
exists an x € 0,(I") that satisfies hy(x) < ho(z). Let (z,,) — = where (x,,) is a sequence
in V. Now there exists a term x,, in this sequence such that hy(z,,) < ha(z,,). Since
I' is connected there is a path from z to z,,. Thus there are vertices xy and 1, on
this path with yo € Ny, hi(xo) > ha(zo), and hy(yo) < h2(yo) because hy(z) > ha(2)
and hi(x,,) < ha(x,). Thus zp € B and yg € C,,, a contradiction. Therefore,
hi(z) < ho(z) for all z € V. O

Proof of Theorem 3.1. Let 1 < p € R. Since Sp(BD,(I')) is a normal space,
there exists for each x € R,(I') a sequence (U;(x)) of open sets containing x such
that Uj,(x) C Uj(z). For each j € N there exists a finite number of points 2,1 <
k < Nj such that U;(z;x) cover R,(I'). For notational simplicity we will denote
Uj(zjx) by Uj . Using Urysohn’s lemma we can construct a continuous function ¢,
with ¢;, = 2 on Uj; and ¢, = —1 on Sp(BD,(I")) \ U;_1,. By the density of
BD,(T') in C(Sp(BD,(T'))) there exists a g € BD,(I') such that [¢;), — g| < 3.
Set fjr = max(min(1,g),0), so fjr € BD,(I),0 < fjrx < 1,fjx = 1 on U;; and
fix =0on Sp(BD,(I')) \ Uj_1 5. The p-Royden decomposition of BD,(I") yields a
unique p-harmonic function h;, € BHD(I') and a unique u;), € B(C.(I)p ) such
that f;r = ujr + h;i. Because u;; = 0 on 0,(I") by [6, Theorem 4.8], we see that
fik = hjr on 0,(I'). Now define

Rjx =A{x € Ry(T) N U | lim hyp(wn) < fin(x) =1},

where (x,,) is a sequence in V. Observe that if R; is nonempty, then it only contains
elements of R,(I") \ 9,(I).
Let x € R,(I') \ 0,(I'). We will now show that there exists j, k& € N such that

z € Rjy. Since x ¢ 9,(I) there exists a u € B(Cc(I'), ) such that u(x) # 0. Since
B(Ce(I)p,) is an ideal we may assume that u > 0 on V' and u(z) > 0. Replacing
u by u~!(x)u if necessary we may assume that u(z) = 1. Let h € BHD,(T) that
satisfies h > 1 on V. Set f =wu+h,so f € BD,(I') and f = h on 0,(I"). Let (z,)
be a sequence in V' that converges to . Now lim, . h(z,) < f(z). Because f is
continuous we can find an open set Uj;;, that contains x and satisfies

m = inf > lim h(z,).
Ujilymp(r)f lim A(z,)
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It now follows F
fj,k S E on RP(F),

which implies that h;; < % on 0,(I'). An appeal to the comparison principle gives
us
1
lim hj(z,) < — lim h(z,) < 1= f;i(2),
n—oo m, n—oo
hence x € R;j. Furthermore,
Ry = (Ry0) N T {y €V Thyaly) < 1 1/1}).

i=1

Thus R; is a countable union of compact sets. Theorem 3.1 now follows because
Ry(I)\ 9p(1) = U Rjk. O

5. Proof of Theorem 3.2

Before we prove Theorem 3.2 we need to state some definitions and prove several
preliminary results.

Fix a real number p > 1. Recall that E denotes the edge set of a graph I". Denote
by F(FE) the set of all real-valued functions on E and let F*(E) be the subset of
F(F) that consists of all nonnegative functions. For w € F(F) set

&w) = 3 (e
ecl
The edge set of a path v in I will be denoted by Ed(y), remember E(7) represents
the extreme points of 7. Let @ be a set of paths in I', denote by A(Q) the set of
all w € F*(E) that satisfy &,(w) < oo and >y, w(e) > 1 for each v € Q. The
extremal length of order p for () is defined by

M(Q) 7 = inf{&,(w) | w e A(Q)}.

A variation of the next lemma was proved for the case p = 2 in |7, Lemma 6.13]. In

the p = 2 case the conclusion of the lemma is stronger in that g belongs to C.(T')p,
instead of the larger space Dy(T").

Lemma 5.1. Let K be a compact subset of R,(I") with K N J,(I") = 0. Then
there exists a function g € D,(I") that satisfies g = oo on K and g = 0 on 0,(I).

Proof. By Urysohn’s lemma there exists an f € C(Sp(BD,(I'))) that satisfies
the following: 0 < f <1,f =1on K and f =0 on 9,(I"). Using the argument from
the first paragraph of the proof of Theorem 3.1 we may and do assume f € BD,(T).

Let (U,) be an exhaustion of V by finite connected subsets. Applying The-
orem 3.1 of [2] yields a function h,, that is p-harmonic on U, and equals f on
V \ U,. It follows from the minimizer property of p-harmonic functions on U,, that
L,(h,, V) < I,(f,V). Hence, h, € BD,(I) for each n € N. Also, h, = 0 on
0y(I'),h, =1 on K and 0 < h, < 1 for each n. By passing to a subsequence if
necessary, we may assume that (h,) converges pointwise to a function h because

{hn(z) | n € N} is compact for each z € V. By Lemma 3.2 of [2], h is p-harmonic on
V. Since the sequence (I,(h,, V")) is bounded, Theorem 1.6 on page 177 of [8] says
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that by passing to a subsequence if necessary, we may assume that (h,) converges
weakly to a function h € D,(T). Because evaluation by x € V is a continuous linear
functional on D,(T'), we have that h,(z) — h(z) for each z € V. Thus h = h and
h € BD,(T'). It follows from [6, Corollary 4.9] that h = 0 on V, due to that fact
h =0 on 0,(I").

Since h,, — h pointwise on Uy, for k € N, it follows I,(hy, Uy) — I,(h,Uy) = 0 for
cach k. Consequently, I,(h,, V) — 0. By taking a subsequence if necessary, we may
assume that ||h,||p, < 27". Let € > 0 be given and for m € N, let g, = > " | hy.
There exists N € N such that 27V < e. For m,n € N with m > n > N we see that

ihk giQ‘k<2‘"<e.

k=n-+1 Dp k=n-+1

||gm - gnHDp =

Hence, the Cauchy sequence (g,,) converges to g = >~ by in the D,-norm. Thus
g € D,(I"). For z € K, gn(x) = m, so g(z) = oo; also ¢ = g, = 0 on 9,(I'). The
proof of the lemma is complete. O

The next result was shown to be true for the case p = 2 in |7, Theorem 6.16].
Our proof is essentially the same, and we include it for completeness.

Lemma 5.2. Let P be a family of one-sided infinite paths in I' and let
K = U'yEPE(’V)'
If K is disjoint from 0,(T"), then \,(P) = oc.

Proof. By Lemma 5.1 there exists a g € D,(I") such that ¢ = oo on K and g =0
on J,(I"). Let v € P and let @y, 29, 23,... be the vertex representation of . Since
E(v) C K we have that g(v) = limg_, g(zx) = 0o. Thus

; l9(zx) = g(@ie)| = lim (g(x) = g(a1)) = 0.

By [3, Lemma 2.3| we obtain \,(P) = oo. O

A connected infinite subset D of V' with 0D # () is defined to be D,-massive
if there exists a p-harmonic function u on D that satisfies the following: 0 < u <
lL,u=0on 0dD,suppu =1 and [,(u, D) < co. The function w is known as an inner
potential of D.

Proposition 5.3. Let D be a D,-massive subset, with inner potential u, of V.
Denote by Pp the set of all one-sided infinite paths contained in D U 0D. Then
)\p(PD) < 0.

Proof. Let a € D and let P, be the set of all paths in Pp with initial point a. If
Ap(P,) < 00, then A\,(Pp) < oo by [3, Lemma 2.1|. Let (B,) be an exhaustion of V
by finite connected subsets of V' such that By N 9D # (. Pick an a € By N 9D. By
combining Theorem 2.1 and Theorem 2.4 of [4] we see that \,(P,) < oo if and only if
cap,({a}, o0, D) > 0. Thus to finish the proof we need to show cap,({a}, oo, D) > 0,
which we now proceed to do.

Choose admissible functions wg, k& > 2, for condensers ({a}, (D U 0dD) \ By, D)
such that

(5.1) I(wr, DN By) < cap, ({a}, (D UOD) \ By, D) + %
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Replacing all values of wy(z) on D N By for which wg(xz) < 0 by 0 and replacing
all values of wg(z) on D N By, for which wi(z) > 1 by 1 decreases the value of
I,(wg, D N By). Thus we may and do assume 0 < w;, < 1 on D N Bg. Theorem 3.11
of [2] tells us that there exists a unique p-harmonic function v, on D N By such that
Ve = wy on (D N By). Extend vy to all of D by setting v = 1 on D \ B,. By the
minimizing property of p-harmonic functions,

]p(l)g, DnN Bg) S ]p(CUQ, DnN BQ)

Since u is p-harmonic on D and u(z) < ve(z) for all x € A(D N By),u < vy on DN By
by |2, Theorem 3.14]. Pick ws. The set A = {z € D | ws(x) > va(x)} is a subset of
DN By. If A# 0, redefine w3 by setting wz = v, on A. The redefined ws decreases
I, (w3, DN Bs), so (5.1) remains true. By continuing as above, we obtain a decreasing
sequence of functions (vy) such that vy is p-harmonic on B N By, vy > u, and

]p(l)k, DnN Bk) S ]p(wk, DN Bk)

Now assume that cap,({a}, (D UJD)\ By, D) — 0. Then I,(vy, DN By) — 0. Since
v > u and suppu = 1, it must be the case that (vy) — 1p, the constant function
1 on D. This is a contradiction because (vy) is a decreasing sequence of functions,
0 <wp <1andwvy # 1. Thus, cap,({a},00, D) > 0 and the proof of the proposition
is complete. O

Our next result is |7, Theorem 6.18| for the case p = 2. We give a different proof
of the result.

Lemma 5.4. Let P be the family of all one-sided infinite paths in I' and let

P, C P be any subfamily with \,(Px) = co. Then
0p(I') S {U,E(y) | v € P\ P}

Proof. Set K = {U,E(y) | v € P\ Px}. Since our standing assumption is that I'
is p-hyperbolic, it follows from [4, theorem 2.1] that \,(P) < oco. By [3, Lemma 2.2],
Ap(P\ Py) < 0co. Lemma 5.2 tells us K N 9,(T") # 0. For purposes of contradiction,
assume that there exists a y € 9,(I") for which y ¢ K. By Urysohn’s lemma there
exists a continuous function f on Sp(BD,(I')) that satisfies the following: 0 < f <
L f(x) =1land f =0 on K N0J,(I'). By density of BD,(I") in C(Sp(BD,(I"))) we
assume f € BD,(I'). The p-Royden decomposition for BD,(I") yields a unique p-
harmonic function 4 on V' and a unique g € B(C.(I') ) such that f = g+h. Theorem

4.8 of |6] shows that g = 0 on 9,(I"). Combining this fact with the maximum principe
(|6, Theorem 4.7]) it follows that 0 < h <1 on V,h(x) =1 and h =0 on 9,(I') N K.
Let
A={z eV |h(z)>1-¢€},

where 0 < € < 1. Let B be a component of A. The set B is D,-massive, see the proof
of |6, Proposition 4.12| for a proof of this fact. Let P4 be the family of all one-sided
infinite paths in A, and let Pp consist of all one-sided infinite paths in B. Since B
is a Dy-massive set, \,(Pg) < oo by Proposition 5.3. It now follows from [3, Lemma
2.1] that A\,(P4) < co. Set

Klz{qu(’YHVEPA\Pw}'

Another appeal to Lemma 5.2 shows K N 9,(T") # 0, because \,(Ps \ Px) < 0.
Furthermore, h = 0 on K1N0,(I") since K;N0,(I') € KNJ,(I'). However, h(y) > 1—¢




90 Michael J. Puls

for all ¥ € P4. Thus we obtain the contradiction h(z) > 1 — € for all x € Kj.
Therefore, 0,(I') C K, as desired. O

Proof of Theorem 3.2. Let f € B(Cc(I'), ) and let a € V. Denote by P, the set
of all one-sided infinite paths in I with initial point a. Set

Aoy ={ve | f(7) #0}.
By [3, Theorem 3.3], A\y(A, ) = oo. Also, [3, Lemma 2.2] tells us \,(4;) =
Mp(UgevAq,r) = 0o. The definition of A; above and Ef below were given in Sec-
tion 3. Now Proposition 5.4 says that

0,(T") C Ey.

For notational convenience set I = N;Ey, where f runs through B(C.(T")p, ). Thus,
0,(I') € F. We now proceed to prove the reverse inclusion. Suppose there exists

a x € F for which x ¢ 0,(I'). By [6, Theorem 4.8] we obtain an f € B(C.(I')p, )

for which x(f) # 0. Let a ~ xg,21,...,Ty,... be a one-sided path with x € V().
Because x(f) # 0, there is a subsequence (x,, ) of (z,,) that satisfies limj_,; f(2n,) #
0. Thus f(a) # 0 and has a result o« € A;. Hence x ¢ {U,E(y) | v € P\ Ay}
We are assuming x € Ey, so it must be the case that there is a sequence (x,) in
{U,E(y) |v€ P\ As} with (xn) — x. Since f(y) =0 for each v € P\ Ay it follows
immediately that x,(f) = 0 for each n € N. This implies x(f) = 0, contradicting
our assumption x(f) # 0. Therefore, F' C 0,(I'). The proof of Theorem 3.2 is now
complete.
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