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Abstract. In this paper, we investigate some properties of planar harmonic mappings in Hardy
spaces. First, we discuss the integral means of harmonic mappings and those of their derivatives,
and as a consequence, we solve the open problem of Girela and Peláez in the setting of harmonic
mappings. In addition, we establish coefficient estimates and a distortion theorem for harmonic
mappings in Hardy spaces.

1. Introduction and preliminaries

For each r ∈ (0, 1], we denote by Dr the open disk {z ∈ C : |z| < r} and by D, the
open unit disk D1. A complex-valued function f defined on D is called a harmonic
mapping in D if and only if it is twice continuously differentiable and ∆f = 0, i.e.
the real and imaginary parts are real harmonic in D, where ∆ represents the usual
complex Laplacian operator

∆ = 4
∂2

∂z∂z
=

∂2

∂x2
+

∂2

∂y2
.

An obvious fact is that every harmonic mapping f defined in D admits the canonical
decomposition f = h + g, where h and g are analytic in D with g(0) = 0. We refer
to [5, 9] for the theory of harmonic mappings.

A classical result of Hardy and Littlewood asserts that if p ∈ (0,∞], α ∈ (1,∞)
and f is an analytic function in D, then

Mp(r, f
′) = O

(( 1

1− r

)α
)

as r → 1

if and only if

Mp(r, f) = O

(( 1

1− r

)α−1
)

as r → 1,

where

Mp(r, f) =





(
1

2π

ˆ 2π

0

|f(reiθ)|p dθ

)1/p

if p ∈ (0,∞),

max
|z|=r

|f(z)| if p = ∞.
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We refer to [4, 8, 9, 11, 12, 13, 14, 15] for many other related discussions concerning
the case of analytic functions. Indeed the above result of Hardy and Littlewood
provides a close relationship between the integral means of analytic functions and
those of their derivatives [8, 12, 13]. In [11, Theorem 1(a)], Girela and Peláez refined
the above result for the case α = 1 as follows.

Theorem A. If p ∈ (2,∞) and f is an analytic function in D such that

Mp(r, f
′) = O

(( 1

1− r

))
as r → 1,

then for all β >
1

2
,

(1) Mp(r, f) = O

((
log

1

1− r

)β
)

as r → 1.

In [11, p. 464, Equation (26)], Girela and Peláez asked whether or not β in (1)
can be substituted by 1/2. This problem was affirmatively settled by Girela, Pavlovic
and Peláez in [10]. In this paper, we first prove that the answer to this problem is
affirmative in the setting of harmonic mappings in the unit disk. Then coefficient
estimates and a distortion theorem for harmonic mappings in Hardy spaces are also
obtained. In order to state our results, we need to introduce some notations. For
p ∈ (0,∞], the harmonic Hardy space Hp

h consists of those functions f , harmonic in
D, such that ‖f‖p < ∞, where

‖f‖p =





sup
0<r<1

Mp(r, f) if p ∈ (0,∞),

sup
z∈D

|f(z)| if p = ∞.

In addition, we let

∇f = (fz, fz) and |∇f | = (|fz|2 + |fz|2)1/2.

We now state our first result which generalizes Theorem A. In the case of analytic
function f , ∇f equals f ′(z) and therefore, the following theorem contains another
solution to the open problem of Girela and Peláez [11, p. 464, Equation (26)] provided
later by Girela, Pavlović and Peláez in [10].

Theorem 1. If p ∈ (2,∞) and f is a harmonic mapping in D such that

(2) Mp(r,∇f) = O

(( 1

1− r

))
as r → 1,

then we have the following:

(a) Mp(r, f) = O

((
log

1

1− r

)1/2
)

as r → 1,

(b) M∞(r, f) = O

(( 1

1− r

)1/p
)

as r → 1.

The following result is a generalization of [11, Theorem 2] for the harmonic case.
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Theorem 2. If p ∈ (0, 2] and f is a harmonic mapping in D satisfying the
condition (2), then

Mp(r, f) = O

((
log

1

1− r

)1/p
)

as r → 1.

Moreover, the result is sharp and one of the extreme functions is f(z) = 1/(1− z)1/p,
where p ∈ (0, 2].

We now state our next two theorems which provide coefficient estimates and a
distortion theorem for harmonic Hardy mappings.

Theorem 3. Let f be a harmonic mapping in D such that

f(z) =
∞∑

n=0

anz
n +

∞∑
n=1

bnzn,

and f ∈ Hp
h for some p ∈ [1,∞]. Then we have the following:

(a) |a0| ≤ ‖f‖p;
(b) for p ∈ [1,∞),

|an|+ |bn| ≤ 2(1/p)+2(1 + np)n+(1/p)

π(pn)n
‖f‖p for each n ≥ 1;

(c) for p = ∞,

|an|+ |bn| ≤ 4

π
‖f‖∞ for each n ≥ 1.

The estimate in this case is sharp and the only extremal functions are

fn(z) =
2α

π
‖f‖∞ arg

(
1 + βzn

1− βzn

)
,

where |α| = |β| = 1.

Theorem 4. Let f be a harmonic mapping in D with f ∈ Hp
h for some p ∈ [1,∞].

Then for p ∈ [1,∞)

|fz(z)|+ |fz(z)| ≤ 2(1/p)+2(1 + p)1+(1/p)

πp(1− |z|2) ‖f‖p,

and for p = ∞,

(3) |fz(z)|+ |fz(z)| ≤ 4

π(1− |z|2)‖f‖∞.

When p = ∞, the estimate (3) is sharp and the only extremal functions are

f(z) =
2α

π
‖f‖∞ arg

(
1 + φ(z)

1− φ(z)

)
,

where |α| = 1 and φ is a conformal automorphism of D.

We remark that Theorem 4 is a generalization of [6, Theorems 3 and 4].
The proofs of Theorems 1–4 are presented in the following section.
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2. Proofs

It seems that the standard technologies from the theory of analytic functions
are not useful to prove Theorem 1, and therefore, we use some ideas from Green’s
theorem in their proofs. Green’s theorem (cf. [3, 16]) states that if g ∈ C2(D), i.e.,
twice continuously differentiable on D, then

(4)
1

2π

ˆ 2π

0

g(reiθ) dθ = g(0) +
1

2

ˆ

Dr

∆g(z) log
r

|z| dA(z)

for r ∈ (0, 1), where dA(z) denotes the normalized area measure in D.
Moreover, the proof of Theorem 1(b) relies on the following lemma.

Lemma B. [8, Lemma 3, p. 84] If a ∈ (1,∞) and ρ = (1 + r)/2, then
ˆ 2π

0

|ρeit − r|−a dt = O
(
(1− r)1−a

)
as r → 1.

Proof of Theorem 1. (a) Let

A(r, f) =
1

2π

ˆ 2π

0

|f(reiθ)|p−2|∇f(reiθ)|2 dθ.

Then Hölder’s inequality yields

(5) A(r, f) ≤ M2
p (r,∇f) ·Mp−2

p (r, f).

By the identity (4), the inequality (5), the subharmonicity of |f | and the fact “Mp(t, f)
being an increasing function of t”, we have

Mp
p (r, f) = |f(0)|p +

1

2

ˆ

Dr

∆(|f(z)|p) log
r

|z| dA(z)

= |f(0)|p + p

ˆ

Dr

[
(p/2− 1)|f(z)|p−4|fz(z)f(z) + f(z)fz(z)|2

+ |f(z)|p−2|∇f(z)|2
]
log

r

|z| dA(z)

≤ |f(0)|p + p(p− 1)

ˆ

Dr

|f(z)|p−2|∇f(z)|2 log
r

|z| dA(z)

= |f(0)|p +
p(p− 1)

π

ˆ 2π

0

ˆ r

0

|f(teiθ)|p−2|∇f(teiθ)|2t log
r

t
dt dθ

≤ |f(0)|p + 2p(p− 1)

ˆ r

0

M2
p (t,∇f)Mp−2

p (t, f)t log
r

t
dt

which in particular implies that

M2
p (r, f) ≤ |f(0)|2 + 2p(p− 1)

ˆ r

0

M2
p (t,∇f)t log

r

t
dt

≤ |f(0)|2 + 2p(p− 1)

ˆ r

0

M2
p (t,∇f)(r − t) dt

= |f(0)|2 + 2p(p− 1)r2

ˆ 1

0

M2
p (rt,∇f)(1− t) dt ≤ |f(0)|2 + C log

1

1− r
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and hence,

M2
p (r, f) = O

((
log

1

1− r

))
as r → 1,

or equivalently

Mp(r, f) = O

((
log

1

1− r

)1/2
)

as r → 1,

where C is a positive constant. The proof of Part (a) in Theorem 1 is complete.

(b) Let z ∈ Dρ be arbitrary with ρ ∈ (0, 1). Then, by the Poisson integral
formula and Hölder’s inequality, there is a positive constant C such that

|f(z)| ≤ 1

2π

ˆ 2π

0

ρ2 − |z|2
|z − ρeiθ|2 |f(ρeiθ)| dθ ≤ 1

2π

ˆ 2π

0

ρ + |z|
|z − ρeiθ| |f(ρeiθ)| dθ

≤ CMp(τ, f)

(
1

2π

ˆ 2π

0

dθ

|z − ρeiθ| p
p−1

) p−1
p

.

Now, we set ρ = (1 + |z|)/2 and apply Lemma B. Obviously, there exists a positive
constant C such that

(6) |f(z)| ≤ CMp

(
1 + |z|

2
, f

) [
(1− |z|)1− p

p−1

] p−1
p

=
CMp(

1+|z|
2

, f)

(1− |z|)1/p
.

By computations, we have

(7) |f(ρeiθ)| ≤ |f(0)|+
∣∣∣∣
ˆ ρ

0

df(teiθ)

dt
dt

∣∣∣∣ ≤ |f(0)|+
√

2

ˆ ρ

0

|∇f(teiθ)| dt.

By the well-known Minkowski inequality and (7), we have

Mp(ρ, f) =

(
1

2π

ˆ 2π

0

|f(ρeiθ)|p dθ

)1/p

≤
{

1

2π

ˆ 2π

0

[
|f(0)|+

√
2

ˆ ρ

0

|∇f(teiθ)| dt

]p

dθ

}1/p

≤ |f(0)|+ C

ˆ ρ

0

(
1

2π

ˆ 2π

0

|∇f(teiθ)|p dθ

)1/p

dt = |f(0)|+ C

ˆ ρ

0

Mp(t,∇f) dt,

where C is a positive constant. In particular,

M2p(ρ, f) ≤ |f(0)|+ C

ˆ ρ

0

M2p(t,∇f) dt.

By (6) (with 2p in place of p) and letting ρ = (1 + r)/2, we get

(8) M∞(r, f) ≤ C

(1− r)1/(2p)

[
|f(0)|+ C1

ˆ (1+r)/2

0

M2p(t,∇f) dt

]
,

where C and C1 are positive constants.
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On the other hand,

M2p(t,∇f) =

(
1

2π

ˆ 2π

0

|∇f(teiθ)|2p dθ

)1/(2p)

=

(
1

2π

ˆ 2π

0

|∇f(teiθ)|p · |∇f(teiθ)|p dθ

)1/(2p)

≤ M1/2
∞ (t,∇f) M1/2

p (t,∇f).

(9)

For α ∈ [0, 2π] and z ∈ D, let Fα(z) = fz(z) + eiαfz(z). Then for each z ∈ Dr,

|Fα(z)| ≤ 1

2π

ˆ 2π

0

r2 − |z|2
|z − reiθ|2 |Fα(reiθ)| dθ ≤

√
2

2π

ˆ 2π

0

r2 − |z|2
|z − reiθ|2 |∇f(reiθ)| dθ,

which gives

|∇f(z)| ≤ max
α∈[0,2π]

|Fα(z)| ≤
√

2

2π

ˆ 2π

0

r2 − |z|2
|z − reiθ|2 |∇f(reiθ)| dθ.

A procedure similar to the proof of (6) shows that

(10) |∇f(z)| ≤ CMp(
1+|z|

2
,∇f)

(1− |z|)1/p

for some constant C > 0, and (9) implies

(11) M2p(s,∇f) ≤ CMp(
1+s
2

,∇f)

(1− s)
1
2p

≤ C

(1− s)1+ 1
2p

,

where s ∈ [0, 1+r
2

]. Therefore, by (8), (10) and (11), we get

M∞(r, f) ≤ O

((
1

(1− r)
1
2p

ˆ 1+r
2

0

(1− s)−1− 1
2p ds

))
= O

(( 1

1− r

)1/p
)

,

and the proof of Theorem 1(a) follows. ¤

We now recall the following well-known result which we need to prove Lemma 1
(and hence Theorem 2).

Lemma C. [17, Lemma 2.29] Let a, b ∈ [0,∞) and p ∈ [1,∞). Then we have

ap + bp ≤ (a + b)p ≤ 2p−1(ap + bp).

Lemma 1. Let f be harmonic in D and p ∈ (0, 2]. If
ˆ 1

0

(1− r)p−1Mp
p (r,∇f) dr < ∞,

then

(12) ‖f‖p
p ≤ C(p)

(
|f(0)|p +

ˆ 1

0

(1− r)p−1Mp
p (r,∇f) dr

)
,

where C(p) is a positive constant which depends only on p.
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Proof. If p ∈ [1, 2], then the proof of the inequality (12) follows from Lemma
C, [11, Theorem B] and the fact that f has the canonical decomposition f = h + g,
where h and g are analytic in D. Therefore, it suffices to prove the theorem for the
case p ∈ (0, 1). Let 0 ≤ r1 < r2 < 1. Then we see that

|f(r2e
iθ)− f(r1e

iθ)| =
∣∣∣∣
ˆ r2

r1

d

dt
f(teiθ) dt

∣∣∣∣ ≤
√

2

ˆ r2

r1

|∇f(teiθ)| dt,

and therefore,

|f(r2e
iθ)− f(r1e

iθ)|p ≤ 2p/2(r2 − r1)
p max

r1≤t≤r2

|∇f(teiθ)|p,

which gives

Mp
p (r2, f)−Mp

p (r1, f) ≤ 1

2π

ˆ 2π

0

|f(r2e
iθ)− f(r1e

iθ)|p dθ

≤ 2p/2(r2 − r1)
p max

r1≤t≤r2

|∇f(teiθ)|p.
(13)

For α ∈ [0, 2π] and z ∈ D, let Kα(z) = fz(z) + eiαfz(z). By using Hardy–Littlewood
maximal theorem to Kα, there is a positive constant C such that

max
r1≤t≤r2

|Kα(teiθ)|p ≤ C

2π

ˆ 2π

0

|Kα(r2e
iθ)|p dθ ≤ 2p/2C

2π

ˆ 2π

0

|∇f(r2e
iθ)|p dθ.

The arbitrariness of α in [0, 2π] implies that

max
r1≤t≤r2

|∇f(teiθ)|p ≤ 2p/2C

2π

ˆ 2π

0

|∇f(r2e
iθ)|p dθ.

Without loss of generality, we assume f(0) = 0 so that Mp(0, f) = 0. For any
n ∈ {0, 1, 2, . . .}, let rn = 1− 2−n. Applying (13), we deduce that

Mp
p (rn+1, f) =

n+1∑

k=1

[
Mp

p (rk, f)−Mp
p (rk−1, f)

] ≤ C

n+1∑

k=1

(rk − rk−1)
pMp

p (rk,∇f)

≤ C

n∑

k=1

2−k(p−1)

ˆ rk+1

rk

Mp
p (r,∇f) dr ≤ C

ˆ rn+1

0

(1− r)p−1Mp
p (r,∇f) dr,

where the positive constant C is not necessarily the same at each occurrence in the
above three inequalities. Then the inequality (12) follows if we let n →∞. ¤

Proof of Theorem 2. Without loss of generality, we assume that f(0) = 0. For
r ∈ (0, 1], let fr(z) = f(rz), z ∈ D. By using (2) and Lemma 1, there is a positive
constant C such that

Mp
p (r, f) ≤ C

ˆ 1

0

(1− t)p−1Mp
p (rt,∇f) dt

≤ C

(ˆ r

0

(1− t)p−1

(1− rt)p
dt +

ˆ 1

r

(1− t)p−1

(1− rt)p
dt

)

≤ C

(ˆ r

0

1

1− t
dt +

1

(1− r)p

ˆ 1

r

(1− t)p−1 dt

)
= O

((
log

1

1− r

))
.

The proof of this theorem is complete. ¤
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We can now prove our final two results concerning the coefficient estimates and
a distortion theorem for harmonic Hardy mappings. Let’s recall the following result
which is referred to as Jensen’s inequality (cf. [19]).

Lemma D. Let (Ω, A, µ) be a measure space such that µ(Ω) = 1. If g is a real-
valued function that is µ-integrable, and if ϕ is a convex function on the real line,
then

ϕ

(ˆ

Ω

g dµ

)
≤
ˆ

Ω

ϕ ◦ g dµ.

Proof of Theorem 3. For 0 ≤ s < 1, by the Poisson integral formula, we have

f(z) =
1

2π

ˆ 2π

0

s2 − |z|2
|z − seiθ|2f(seiθ) dθ

for z ∈ Ds. Using Jensen’s inequality (see Lemma D), we have

|f(z)|p ≤ 1

2π

ˆ 2π

0

s2 − |z|2
|z − seiθ|2 |f(seiθ)|p dθ ≤ 2s

s− |z|M
p
p (s, f).

This in particular gives

|f(z)| < 21/p

(1− |z|)1/p
‖f‖p for z ∈ D.

For ζ ∈ ∂D and a fixed r ∈ (0, 1), let F (ζ) = f(rζ)/r = H(ζ) + G(ζ) so that

H(ζ) =
a0

r
+

∞∑
n=1

Anζ
n and (ζ) =

∞∑
n=1

Bnζ
n
,

where An = anr
n−1 and Bn = bnr

n−1. It is not difficult to see that

|a0| =
(

1

2π

ˆ 2π

0

|f(0)|p dθ

)1/p

≤ ‖f‖p

and

|F (ζ)| < 21/p

r(1− r)1/p
‖f‖p = M(r) for ζ ∈ D.

In particular, the proof of Theorem 3(a) follows.
For the proof of the remaining two cases, we let

T (ζ) =
F (ζ)

M(r)
= H1(ζ) + G1(ζ),

where H(ζ) = H1(ζ)M(r) and G(ζ) = G1(ζ)M(r). Then for any ζ ∈ D, |T (ζ)| < 1.
As in [2] (see also [1]), it follows easily that

(14) |An|+ |Bn| ≤ 4M(r)

π
for n = 1, 2, . . . .

For the sake of completeness, we include the details from [2]. For θ ∈ [0, 2π), let

vθ(ζ) = Im (eiθT (ζ))

and observe that

vθ(ζ) = Im (eiθH1(ζ) + e−iθG1(ζ)) = Im (eiθH1(ζ)− e−iθG1(ζ)).
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Because |vθ(ζ)| < 1, it follows that

(15) eiθH1(ζ)− e−iθG1(ζ) ≺ K(ζ) = λ +
2

π
log

(
1 + ζξ

1− ζ

)
,

where ξ = e−iπIm(λ), λ = eiθH1(0) − e−iθG1(0) and “≺” denotes the subordination
[9, p. 27]. The superordinate function K(ζ) maps D onto a convex domain with
K(0) = λ and K ′(0) = 2

π
(1 + ξ), and therefore, by a theorem of Rogosinski [18,

Theorem 2.3] it follows that

|An − e−2iθBn| ≤ 2M(r)

π
|1 + ξ| ≤ 4M(r)

π
for n = 1, 2, . . . .

By the arbitrariness of θ in [0, 2π), we have (14), whence we deduce that

|an|+ |bn| ≤ 22+(1/p)‖f‖p

π
inf

0<r<1

[
1

rn(1− r)1/p

]

=
22+(1/p)‖f‖p

π

1

max
0<r<1

[
rn(1− r)1/p

] =
22+(1/p)‖f‖p

π

[
(1 + pn)n+(1/p)

(pn)n

]
.

Thus, the proof of Theorem 3(b) follows.
Finally, by a simple calculation, it can be easily seen that

lim
p→∞

21/p(1 + pn)n+(1/p)

(pn)n
= 1

and thus, the proof of (c) follows from (b) as a limiting case. Indeed, by letting
p →∞, we conclude that

(16) |an|+ |bn| ≤ 4‖f‖∞
π

for n = 1, 2, . . .

for f ∈ H∞
h . The estimates of (16) are sharp. By subordination, the equality sign

occurs in (16) if and only if

fn(z) =
2α‖f‖∞

π
Im

(
log

1 + βzn

1− βzn

)
, |α| = |β| = 1,

and the images of D under fn are confined to a diametral segment of the disk D‖f‖∞ =
{z : |z| < ‖f‖∞}. The proof of this theorem is complete. ¤

Proof of Theorem 4. For a fixed z ∈ D, let F (w) = f(φ(w)), where φ(w) = z+w
1+zw

is a conformal automorphism of D. By calculations, we have

Fw(w) = fζ(φ(w))φ′(w) and Fw(w) = fζ(φ(w))φ′(w),

where ζ = φ(w). This gives

|Fw(w)|+ |Fw(w)| = (|fζ(φ(w))|+ |fζ(φ(w))|)|φ′(w)|.
By Theorem 3, we have

|Fw(0)|+ |Fw(0)| = (|fζ(z)|+ |fζ(z)|)(1− |z|2) ≤ 2(1/p)+2(1 + p)1+(1/p)‖f‖p

πp
.

Then

|fζ(z)|+ |fζ(z)| ≤ 2(1/p)+2(1 + p)1+(1/p)‖f‖p

πp(1− |z|2) .
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If we allow p →∞, then the last inequality implies that

(17) |fζ(z)|+ |fζ(z)| ≤ 4

π(1− |z|2)‖f‖∞
The estimates of (17) are sharp. The only extremal functions are

f(z) =
2α‖f‖∞

π
arg

(
1 + φ(z)

1− φ(z)

)
,

where |α| = 1 and φ is a conformal automorphism of D. ¤
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