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Abstract. We study the behaviour of the p-capacity of a compact set E with respect to the
t-neighbourhoods of E as t varies. We establish sharp upper and lower bounds for these capacities
in terms of Minkowski and Hausdorff type contents of E, respectively, and our results hold in both
Euclidean and more general metric spaces. In our lower bounds the porosity of the set E plays an
important role, and it is shown by examples that an assumption like this is in general necessary.
In addition, we present a self-contained approach to the theory of sets of zero capacity in metric
spaces.

1. Introduction

When E ⊂ Rn and t > 0, we denote

Et = {x ∈ Rn : dist(x,E) < t}
and call Et the (open) t-neighbourhood of E. The main purpose of this paper is
to study the behaviour of the p-capacity of a compact set E with respect to the
neighbourhood sets Et as t varies. A very illustrative particular case of our results
can be stated as follows:

Theorem 1.1. Let 1 < p < ∞ and 0 ≤ λ < n, and assume that E ⊂ Rn is an
Ahlfors λ-regular compact set. If p > n− λ, then

capp(E, Et) ≈ tn−λ−p

for all 0 < t < diam(E), and if p ≤ n− λ, then capp(E, Et) = 0 for all t > 0.

Here the (variational) p-capacity of a compact set E with respect to an open set
Ω ⊃ E is defined as

(1) capp(E, Ω) = inf

{ˆ

Ω

|∇u|p dx : u ∈ C∞
0 (Ω), u ≥ 1 on E

}
.

For the definition of Ahlfors regularity see Section 2.2. Notice also that Theorem 1.1
does not hold for n-regular sets of Rn (see Remark 5.3).

In Rn, n ≥ 2, the case p = n of Theorem 1.1 and related results were essentially
solved by Heikkala [5, Sect. 4] using modulus estimates. Nevertheless, our assump-
tions on the set E are in general slightly weaker than in the corresponding results of
[5]. Earlier results concerning neighbourhood capacities can also be found in Väisälä
[13] and Vuorinen [14, Sect. 6].

Theorem 1.1 follows from more general upper and lower estimates that we estab-
lish for capp(E,Et) when E is a compact subset of a metric measure space (X, d, µ);
see Section 2.1 for the precise setting and our requirements on the space X. In
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particular, we replace the smooth test functions u ∈ C∞
0 (Ω) in (1) with compactly

supported Lipschitz functions, as these make sense in any metric space.
The upper bounds for neighbourhood capacities are proven in terms of Minkowski-

type contents of E in Section 3, and the respective lower bounds, where we need
Hausdorff measures and contents, are contained in Section 5. However, if we only
assume that the mesure µ is doubling, then it is convenient to use modified versions
of the usual Hausdorff and Minkowski contents. The definitions and some basic prop-
erties of these are found in Section 2.2. The precise definition of the metric space
version of the p-capacity is given in Section 2.3. Let us remark here that for the
most part of this paper we may take 1 ≤ p < ∞, but that there are also a few
subtle occasions where it has to be required that p > 1. In Section 2.4 we recall the
definition of porous sets, as it turns out that our lower estimates on neighbourhood
capacities require the set E to be porous; the necessity of such an extra condition is
illustrated in the final Section 6.

In addition to the above growth estimates, the context of these neighbourhood
capacities leads one naturally to study questions related to sets of zero capacity.
In Section 4 we present, using only ‘elementary tools’, a self-contained approach to
some of these questions in general metric spaces; we hope that this part is also of
independent interest. In particular, we obtain as a consequence a metric space proof
for the known fact that if E is not of zero p-capacity, then capp(E, Et) →∞ as t → 0.

Let us emphasize here that even though we formulate our results in the setting
of a general metric space, all of our main results are, to the best of our knowledge
and apart from those in Section 4, new even in the space Rn when p 6= n.

For notation we remark that throughout the paper the letter C is used to denote
positive (and finite) constants whose value may change from expression to expression,
and that the dependence of C on parameters A,B, . . . is expressed by writing C =
C(A,B, . . .). We also denote a ≈ b and say that a and b are comparable if there are
constants C1, C2 > 0 so that C1a ≤ b ≤ C2a. Finally, if aα and bα are such that
aα/bα → 0 as α tends to a limit A (usually A = 0 or A = ∞), we write aα ¿ bα (as
α → A).

Acknowledgement. I am grateful to Professor Matti Vuorinen for proposing this
project and for helpful comments during the preparation of this work. Thanks are
also due to Professor Nageswari Shanmugalingam for useful comments on an earlier
version of this paper.

2. Preliminaries

2.1. Metric spaces. We assume that X = (X, d, µ) is a complete metric
measure space equipped with a metric d and a Borel regular outer measure µ such
that 0 < µ(B) < ∞ for all balls B = B(x, r) = {y ∈ X : d(x, y) < r}. For 0 < t < ∞,
we write tB = B(x, tr), and B is the corresponding closed ball. When A ⊂ X, ∂A is
the boundary and A the closure of A, and χ

A
denotes the characteristic function of

A. The distances between two points, a set and a point, or two sets, are all denoted
d(·, ·).

We make the standing assumption that the measure µ is doubling (with respect
to the metric d), i.e. that there exists a constant Cd ≥ 1 such that

µ(2B) ≤ Cd µ(B)
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for all balls B of X. The doubling condition together with the completeness implies
that the space X is proper, that is, closed balls of X are compact.

The doubling condition gives an upper bound for the dimension of X in the sense
that there exists a constant C = C(Cd) > 0 such that, for s = log2 Cd, we have the
estimate

(2)
µ(B(y, r))

µ(B(x,R))
≥ C

( r

R

)s

whenever 0 < r ≤ R < diam X and y ∈ B(x,R). Note that estimate (2) can also
hold for some smaller number(s) s; in the sequel we just assume that (2) holds for
some s, which is called the doubling dimension of X.

Another important property of a metric space that we often require is that the
space X supports a (weak) (1, p)-Poincaré inequality. This means that we assume the
existence of constants Cp > 0 and τ ≥ 1 such that for all balls B ⊂ X, all continuous
functions u, and for all upper gradients gu of u, we have the inequality

(3)
 

B

|u− uB| dµ ≤ Cpr
(  

τB

gp
u dµ

)1/p

.

Here
uB =

 

B

u dµ = µ(B)−1

ˆ

B

u dµ

is the integral average of u over B. Recall that a Borel function g ≥ 0 is said to be
an upper gradient of a function u (on an open set Ω ⊂ X), if for all curves γ joining
points x and y (in Ω) we have

|u(x)− u(y)| ≤
ˆ

γ

g ds

whenever both u(x) and u(y) are finite, and
´

γ
g ds = ∞ otherwise; thus in Rn

the function g = |∇u| is an (optimal) upper gradient of a differentiable function u.
By a curve we simply mean a non-constant, rectifiable, continuous mapping from a
compact interval to X. Nevertheless, let us stress here that, unlike with doubling,
we do not in general assume that the space X supports a Poincaré inequality, and
hence we try to state clearly the occasions where it is needed.

From now on, if C > 0 is a constant which only depends on the doubling and
Poincaré constants Cd, Cp, τ , and the doubling dimension s, we write C = C(X).

Examples of metric spaces equipped with doubling measures and supporting a
Poincaré inequality include (weighted) Euclidean spaces, compact Riemannian man-
ifolds, Carnot groups, and metric graphs. See for instance Hajłasz–Koskela [4],
Heinonen [6], and the references therein for more information on analysis on metric
spaces based on upper gradients and Poincaré inequalities.

2.2. Hausdorff and Minkowski. We define λ-Hausdorff contents of a set
E ⊂ X, for 0 < r ≤ ∞, as

Hλ
r (E) = inf

{∑

k

rλ
k : E ⊂

⋃

k

B(xk, rk), xk ∈ E, 0 < rk ≤ r

}
,

and the λ-Hausdorff measure of E is Hλ(E) = limr→0Hλ
r (E). The Hausdorff dimen-

sion of E is then the number

dim(E) = inf{λ > 0: Hλ(E) = 0}.
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When the balls covering the set E ⊂ X are required to be of equal radii, we
obtain λ-Minkowski contents of E:

Mλ
r (E) = inf

{
Nrλ : E ⊂

N⋃

k=1

B(xk, r), xk ∈ E

}
.

The lower and upper Minkowski dimension of E are then defined to be

dimM(E) = inf
{

λ > 0: lim inf
r→0

Mλ
r (E) = 0

}

and
dimM(E) = inf

{
λ > 0: lim sup

r→0
Mλ

r (E) = 0
}

,

respectively.
Notice that for each compact set E we have

dimH(E) ≤ dimM(E) ≤ dimM(E),

where all inequalities can be strict; see for instance Mattila [12, Ch. 5]. But if
dimM(E) = dimM(E), we simply write dimM(E) = dimM(E). For many sufficiently
regular sets all of these dimensions agree. For instance, a set E is said to be (Ahlfors)
λ-reqular if

Hλ(E ∩B(x, r)) ≈ rλ

whenever x ∈ E and 0 < r < diam(E). For compact Ahlfors regular sets we have
the following result (see e.g. [12, Thm 5.7.]):

Lemma 2.1. Assume that E is compact and Ahlfors λ-regular. Then

dimM(E) = dimH(E) = λ.

In general metric spaces it is often more convenient to use modified versions of
Hλ

r and Mλ
r , namely the Hausdorff and Minkowski contents of codimension q. The

former is defined for a set E ⊂ X by

H̃q
r(E) = inf

{ ∑

k

µ(Bk) r−q
k : E ⊂

⋃

k

Bk, xk ∈ E, 0 < rk ≤ r

}
,

where we write Bk = B(xk, rk), and the latter by

M̃q
r(E) = inf

{
r−q

∑

k

µ(B(xk, r)) : E ⊂
⋃

k

B(xk, r), xk ∈ E

}
.

Then, naturally, the Hausdorff measure of codimension q is defined as

H̃q(E) = lim
r→0

H̃q
r(E).

Note that in a s-regular space H̃q
r ≈ Hs−q

r and M̃q
r ≈ Ms−q

r . On the other hand, in
a general metric space X with doubling dimension s we have the following one-sided
estimate for compact sets:

Lemma 2.2. Let E ⊂ X be a compact set. Then

Hs−q
r (E) ≤ C(X, E)H̃q

r(E)

for each 0 < r < diam(E).
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Proof. We may clearly assume that E 6= ∅. Fix w0 ∈ E and write BE = B(w0,
2 diam(E)). Let E ⊂ ⋃

Bk, Bk = B(xk, rk), rk ≤ r < diam(E). Then Bk ⊂ BE for
all k, and so, by the doubling estimate (2), we have rs

k ≤ C diam(E)sµ(Bk)/µ(BE).
Thus

Hs−q
r (E) ≤

∑

k

rs−q
k ≤ C

∑

k

diam(E)sµ(Bk)µ(BE)−1r−q
k = C(E, X)

∑

k

µ(Bk)r
−q
k ,

and taking the infimum over all such covers yields the claim. ¤

Remark 2.3. By a similar argument we see that if E ⊂ X is compact, then

Ms−q
r (E) ≤ C(X, E)M̃q

r(E)

for all 0 < r < diam(E).

We will also use the following simple upper bound for the contents M̃:

Lemma 2.4. Let E ⊂ X be a compact set. Then

M̃q
r(E) ≤ Cr−qµ(Ediam(E))

for all 0 < r < diam(E), where the constant C > 0 only depends on the doubling
constant of X.

Proof. Cover E with balls Bi = B(wi, r), i = 1, . . . , N , wi ∈ E, in such a way
that the balls (1/5)Bi are pairwise disjoint (see e.g. [6] for this ‘basic’ or ‘5r’-covering
theorem). Then, using the doubling property of µ, we see that

M̃q
r(E) ≤ r−q

N∑
i=1

µ
(
Bi

) ≤ Cr−q

N∑
i=1

µ
(
(1/5)Bi

) ≤ Cr−qµ(Ediam(E)).

This proves the claim. ¤
For H̃q we have the following result, which is well-known for the usual Hausdorff

measures and contents (see e.g. [7]); the converse of this claim is of course trivial
since H̃q

r is decreasing in r.

Lemma 2.5. Assume that E ⊂ X is a compact set with H̃q
R(E) = 0 for some

0 < R < ∞. Then also H̃q(E) = 0.

Proof. We may again assume that E 6= ∅. Fix w0 ∈ E, denote B0 = B(w0, R +

diam(E)), and let ε > 0. It suffices to show that H̃q
ε(E) < ε. By the doubling

estimate (2) we have for each ball B = B(w, r) with w ∈ E and 0 < r < R, and for
every q ≥ s, that

µ(B)r−q ≥ C1µ(B0)(R + diam(E))−q > 0.

Hence, if H̃q
r(E) = 0, we must have q < s.

By assumption, there now exists balls Bi = B(wi, ri), wi ∈ E and ri ≤ R, so that
E ⊂ ⋃

i Bi and
∑

i

µ(Bi)r
−q
i < min

{
C1µ(B0)(R + diam(E))−s εs−q, ε

}
.

From this we obtain for each i the trivial estimate

(4) µ(Bi)r
−q
i < C1µ(B0)(R + diam(E))−s εs−q.
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But now it follows from (2) with the help of (4) that

rs−q
i ≤ r−q

i C−1
1 (R + diam(E))sµ(Bi)/µ(B0) < εs−q.

Since q < s, we have ri < ε for each i. Hence H̃q
ε(E) < ε. ¤

2.3. Capacity. For simplicity, we define the p-capacity in metric spaces using
Lipschitz functions, and only for compact sets. Recall that when Ω ⊂ X, a function
u : Ω → R is said to be (L-)Lipschitz, if

|u(x)− u(y)| ≤ Ld(x, y) for all x, y ∈ Ω.

The set of all Lipschitz functions u : Ω → R is denoted Lip(Ω), and Lip0(Ω) is the
set of Lipschitz functions u ∈ Lip(Ω) with a compact support in Ω; the support of a
function u : Ω → R, denoted spt(u), is the closure of the set where u is non-zero.

The pointwise Lipschitz constant of a function u : Ω → R at x ∈ Ω is

Lip(u; x) = lim sup
y→x

|u(x)− u(y)|
d(x, y)

.

It is not hard to see that this defines an upper gradient g for a Lipschitz function
u : Ω → R by g(x) = Lip(u; x).

When Ω ⊂ X is an open set and E is a compact subset of Ω, the p-capacity of E
with respect to Ω, for 1 ≤ p < ∞, is defined to be

capp(E, Ω) = inf
{ ˆ

Ω

gp
u dµ : 0 ≤ u ∈ Lip0(Ω), u = 1 in E

}
.

Note that the infimum is taken over all upper gradients of Lipschitz functions u
satisfying the above conditions. If there are no such functions, we set capp(E, Ω) =
∞.

If the space X supports a (1, p)-Poincaré inequality (and µ is doubling, as usual),
the above definition of the capacity coincides with the more abstract and more gen-
eral definition of the relative (Newtonian) Sobolev capacity; see Costea [1] for the
definitions and the details, and in particular his Remark 3.4 for the above-mentioned
equivalence of the definitions. From this equivalence we also conclude that in Rn the
above ‘Lipschitz’ capacity agrees with the ‘smooth’ capacity defined in (1).

For more information on capacities we refer to [1] and the book [7, Ch. 2] by
Heinonen, Kilpeläinen, and Martio. The latter only deals with weighted Euclidean
spaces, but many of the underlying ideas are similar in more general metric spaces
as well.

2.4. Porous sets. We say that a set E ⊂ X is α-porous (for 0 < α < 1), if
for every w ∈ E and all 0 < r < diam(E) there exists a point y ∈ X such that
B(y, αr) ⊂ B(w, r) ∩ (X \ E).

It is well-known that in a s-regular metric space X a set E ⊂ X is porous if
and only if the Assouad dimension dimA(E) is bounded from above away from s; see
Luukkainen [11, Thm 5.2] (X = Rn) and David–Semmes [2, Lemma 5.8] (general
X); consult also [9] and the references therein for recent more general results related
to upper bounds of dimensions of porous sets in metric spaces. Recall that dimA(E)
is the infimum of all numbers β > 0 for which there exists C(β) ≥ 1 such that each
subset F ⊂ E can be covered by at most C(β)ε−β balls of radius r = ε diam(F )
whenever 0 < ε < 1/2. It is easy to verify that dimH(E) ≤ dimA(E) for each set
E, and dimM(E) ≤ dimA(E) for each bounded set E. Moreover, if E is s-regular,
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then dimA(E) = s. See the paper [11] for a thorough discussion on the Assouad
dimension.

3. Upper bounds

In this section we obtain upper estimates for neighbourhood capacities with the
help of Minkowski contents. The proofs of these estimates are rather straight-forward,
and, for the most part, we only need to assume that the space X satisfies the doubling
condition. In addition, we also formulate the growth estimates in the case when the
measures of balls (centered at the compact set E) have uniform upper bounds in
terms of the radii; this holds, in particular, in Ahlfors regular spaces. Nevertheless,
no Poincaré inequalities are needed in this section.

Let us begin with a simple observation which gives a ‘unversal’ upper bound for
the growth of neighbourhood capacities; this can be viewed as a generalization of a
result of Vuorinen [14, Lemma 6.27], in which only the the case p = n was concerned.

Proposition 3.1. Let E ⊂ X be a compact set. Then there exists a constant
C = C(X,E) > 0 such that

capp(E, Et) ≤ Ct−p

for every 0 < t < diam(E).

Proof. Fix 0 < t < diam(E) and let 0 < ε < 1. Then the function

u(x) = max
{
0, 1− (1 + ε)t−1 dist(x,E)

}

is clearly an admissible test function for the capacity capp(E, Et), and

gu = (1 + ε)t−1χ
E(t/(1+ε))\E

is an upper gradient of u. Thus

capp(E, Et) ≤
ˆ

Et

gp
u dµ ≤ (1 + ε)pt−pµ(Ediam(E)),

and letting ε → 0 proves the claim with the constant C = C(X, E) = µ(Ediam(E)) <
∞. ¤

In the next lemma we obtain more precise upper bounds for the growth of neigh-
bourhood capacities in terms of Minkowski contents.

Lemma 3.2. (a) Let 1 ≤ p < ∞. Then there exists a constant C = C(X, p) > 0
such that

capp(E, Et) ≤ CM̃q
t/3(E)tq−p

whenever E ⊂ X is a compact set and 0 < r < diam(E).

(b) If in addition µ(B(w, r)) ≤ crd whenever w ∈ E and 0 < r < diam(E), then

capp(E,Et) ≤ CMλ
t/3(E)td−λ−p.

for all 0 < r < diam(E), where C = C(X, p, c) > 0.

Proof. Let 0 < t < diam(E), cover the compact set E with balls Bi = B(wi, t/3),
wi ∈ E, i = 1, . . . , N , and define

u(x) = max
1≤i≤N

{
0, 1− 2t−1 dist(x,Bi)

}
.
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Then u is a Lipschitz function, u = 1 in E, and u is supported in Et. Moreover, u
has an upper gradient gu such that

gu(x)p ≤
N∑

i=1

(t/2)−pχ2Bi
(x)

for a.e. x ∈ Et. Using the doubling condition we thus have

capp(E, Et) ≤
ˆ

Et

gp
u dµ ≤

N∑
i=1

µ(2Bi)(t/2)−p ≤ C

N∑
i=1

µ(Bi)(t/3)−p.

Taking the infimum over all such covers yields

capp(E, Et) ≤ CM̃p
t/3(E) = CM̃q

t/3(E)tq−p,

since the second equality holds for all q. Part (a) follows.

(b) Now, if µ(B(w, r)) ≤ crd for all balls with a center point w ∈ E and r <

diam(E) we have that M̃q
r(E) ≤ cMd−q

r (E) for 0 < r < diam(E). Thus it follows
from part (a), by taking q = d− λ, that

capp(E,Et) ≤ CMλ
t/3(E)td−λ−p,

which is the claim. ¤
If we now know that the Minkowski contents of E remain bounded as r → 0, we

obtain the following extension of Proposition 3.1:

Proposition 3.3. (a) Let 1 ≤ p < ∞ and assume that E ⊂ X is a compact set
satisfying lim supr→0 M̃q

r(E) < ∞. Then there exists a constant C = C(X,E, p, q) >
0 such that

capp(E, Et) ≤ Ctq−p

for all 0 < t < diam(E).

(b) If E ⊂ X is a compact set satisfying lim supr→0Mλ
r (E) < ∞, and if in

addition µ(B(w, r)) ≤ crd whenever w ∈ E and 0 < r < diam(E), then there exists
a constant C = C(X,E, p, d, λ, c) > 0 such that

capp(E, Et) ≤ Ctd−λ−p

for all 0 < t < diam(E). This is true, in particular, if λ > dimM(E).

Proof. (a) By assumption, there exists t0 > 0 such that

M̃q
t (E) ≤ 2 lim sup

r→0
Mλ

r (E) =: A for all 0 < t ≤ t0.

On the other hand, by Lemma 2.4

M̃q
r(E) ≤ C1r

−qµ(Ediam(E)) for all 0 < r < diam(E).

Hence, for t0 < t < diam(E), we have

M̃q
t (E) ≤ C2t

−q
0 with C2 = C1µ(Ediam(E)).

The claim, with the constant C = C3 max{A,C2t
−q
0 }, where C3 is the constant from

Lemma 3.2, follows from the above estimates and Lemma 3.2(a).

(b) This part is an immediate consequence of part (a), since now we have that
lim supr→0 M̃q

r(E) < ∞ for q = d− λ. ¤
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4. Sets of zero capacity

In this section we give slight generalizations for some of the well-known results
concerning (compact) sets of zero capacity (see e.g. [1] and [7]). The novelty for
our approach comes mainly from the replacement of the usual Hausdorff measures
Hλ with the measures H̃q and the fact that we get a (more or less) self-contained
exposition with minimal assumptions on the space X.

We say that a compact set E ⊂ X is of zero capacity, capp(E) = 0, if capp(E, Ω) =
0 for all open sets Ω ⊃ E; otherwise we write capp(E) > 0. It is immediate that
capp(E) = 0 if and only if capp(E, Et) = 0 for all 0 < t < diam(E).

The following results illustrate the intimate connection between capacities and
Hausdorff measures.

Proposition 4.1. Let 1 < p < ∞ and assume that a compact set E ⊂ X

satisfies H̃p(E) < ∞. Then capp(E) = 0.

Remark 4.2. Proposition 4.1 fails to hold when p = 1. Indeed, it was shown
by Kinnunen et al. in [10] that if µ is doubling and X supports a (1, 1)-Poincaré
inequality, then cap1(E, X) ≈ H̃1

∞(E) for all compact sets E ⊂ X. See also [3,
Sect. 5.6.3].

We state below an ‘almost converse’ to Proposition 4.1, but we postpone the
proof until the next section, as the proof is closely related to the lower bounds
for neighbourhood capacities. Note also that here we need to assume a Poincaré
inequality.

Proposition 4.3. Let 1 ≤ p < ∞ and assume that X supports a (1, p)-Poincaré
inequality. Let E  X be a compact set with capp(E) = 0. Then Hs−q(E) =

H̃q(E) = 0 for all q < p, and so in particular dimH(E) ≤ s− p.

We now start to prove that H̃p(E) < ∞ implies capp(E) = 0. The following
simple (but useful) fact is the first step into this direction.

Lemma 4.4. Let 1 ≤ p < ∞ and let E ⊂ X be a compact set. Assume further
that Ω ⊃ E is open. Then

capp(E, Ω) ≤ CH̃p
r(E)

for all 0 < r < d(E, X \ Ω)/2, where actually C = Cd is the doubling constant; here
we interpret d(E, ∅) = ∞.

Proof. Fix 0 < r < dist(E, X \ Ω)/2, and cover E with balls Bi = B(wi, ri),
where wi ∈ E and 0 < ri ≤ r. Define

u(x) = max
1≤i≤N

{
0, 1− ri

−1 dist(x,Bi)
}
,

so that u is a Lipschitz function, u = 1 in E, and u is supported in Ω. Moreover, u
has an upper gradient gu such that

gu(x)p ≤
N∑

i=1

r−p
i

χ2Bi
(x)
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for a.e. x ∈ Ω. Using the doubling condition we obtain

capp(E, Ω) ≤
ˆ

Ω

gp
u dµ ≤

N∑
i=1

µ(2Bi)r
−p
i ≤ Cd

N∑
i=1

µ(Bi)r
−p
i ,

and the the claim follows by taking the infimum over all such covers of E. ¤
Notice that the proof of Lemma 4.4 is almost identical to the proof of Lemma 3.2.

In fact, a similar proof (proving a similar statement) already appears in the paper
[15, pp. 335–336] by Wallin, and the idea is there credited to Carleson. It is also
worth a mention that Lemma 4.4 could be proven by using general properties of ca-
pacities, in particular the sub-additivity; see for instance [1] and [7] for this approach.
Nevertheless, our proof above does not rely on such general theory.

We now proceed to prove Proposition 4.1:

Proof of Proposition 4.1. Let Ω be an open set containing E. By Lemma 4.4
we have, for small enough r > 0, that

(5) capp(E, Ω) ≤ CH̃p
r(E) ≤ CH̃p(E) < ∞.

The claim is now obvious if H̃p(E) = 0, and hence we only have to deal with the
case 0 < H̃p(E) < ∞. As the constant C above is independent of Ω, we formulate
this case as a separate lemma:

Lemma 4.5. Let 1 < p < ∞ and let E ⊂ X be a compact set. Assume that
there exists a constant 0 < M < ∞ such that

capp(E, Ω) < M for all open Ω ⊃ E.

Then capp(E) = 0.

Proof. Let us give a direct constructive proof for this lemma in the spirit of
Evans and Gariepy [3, Sect. 4.7.2]; alternative proofs (using compactness properties
of Sobolev spaces) can be found e.g. in [1] or [7].

As noted at the beginning of this section, it is sufficient to prove that capp(E,Et) =
0 for all 0 < t < diam(E). Thus, fix 0 < t0 < diam(E), and choose u1 ∈ Lip0(Et0)
such that u1|E = 1 and u1 has an upper gradient g1 with

´
gp
1 < M . Write

V1 = {u1 > 1/2} ⊃ E, let t1 = dist(E,X \ V1)/2 > 0, and define v1 = min{2u1, 1}.
It is then clear that v1|V1 = 1 and h1 = 2g1χX\V1

is an upper gradient of v1 with´
hp

1 < 2pM .
We next take u2 ∈ Lip0(Et1) satisfying u2|E = 1 and having an upper gradient

g2 with
´

gp
2 < M ; note that spt(u2) ⊂ V1. Write V2 = {u2 > 1/2} ⊃ E and let

t2 = dist(E,X \ V2)/2 > 0. Define as above v2 = min{2u2, 1}, whence v2|V2 = 1 and
h2 = 2g2χX\V2

is an upper gradient of v2 with
´

hp
2 < 2pM .

Continuing this way we find numbers

t0 > t1 > t2 > · · · > tk > tk+1 > · · · > 0

and functions vk ∈ Lip0(Etk) with their respective upper gradients hk satisfying the
following properties: (i) vk|E = 1, (ii) the supports spt(hk) are pairwise disjoint, and
(iii)

´
hp

k < 2pM for each k = 1, 2, 3 . . .

Now define ϕj = j−1
∑j

k=1 vk. Clearly ϕj ∈ Lip0(Et0) and, by (i), ϕj|E = 1 for
each j = 1, 2, . . .. Moreover, ψj = j−1

∑j
k=1 hk is an upper gradient of ϕj. Using the
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properties (ii) and (iii) of the functions hk we easily calculate that

ˆ

E1

ψp
j dµ = j−p

j∑

k=1

ˆ

E1

hp
k dµ < j1−p2pM

j→∞−−−→ 0

which leads to the desired conclusion capp(E,Et0) = 0; note that here p > 1 is
essential. ¤

Returning to the main question we conclude from (5) and Lemma 4.5 that if
H̃p(E) < ∞, then indeed capp(E) = 0. This finishes the proof of Proposition 4.1. ¤

Since capp(E, Et) is non-increasing in t, the following result is an immediate
consequence of Lemma 4.5; see also the note [13] by Väisälä for a different proof in
the Euclidean case.

Corollary 4.6. Let 1 < p < ∞. If E ⊂ X is a compact set with capp(E) > 0,
then capp(E, Et) →∞ as t → 0.

Heikkala [5, Thm 4.6] showed that, in general, the growth towards ∞ in Corol-
lary 4.6 can be arbitrarily slow. However, in the next section we obtain quantitative
lower bounds for the growth of capp(E, Et) under some additional conditions on the
set E (and the space X, as well). Before that, let us end this section with the following
lemma, which will not be needed in the sequel, but which illuminates the character of
sets of zero capacity in a striking way; see also [7, Lemma 2.9]. Note however that—
contrary to the beginning of this section, with the exception of Proposition 4.3—we
need here the help of a Poincaré inequality, and that it is also convenient to assume
that there is enough of the space X outside E.

Lemma 4.7. Let 1 ≤ p < ∞, and assume that X supports a (1, p)-Poincaré
inequality. Let E ⊂ X be a compact set, and assume that diam(E) < diam(X)/3.
Then capp(E) = 0 if and only if there exists some 0 < t0 < diam(E) such that
capp(E, Et0) = 0.

Proof. The necessity is of course trivial. Hence, assume that capp(E, Et0) = 0
for some 0 < t0 < diam(E) (whence capp(E, Et) = 0 for all t0 < t < diam(E) as
well), and let 0 < t < t0. Pick a sequence uk ∈ Lip0(Et0) with the respective upper
gradients gk such that

´
gp

k → 0 as k → ∞. It then follows with the help of the
(1, p)-Poincaré inequality (and the fact diam(X) > 3 diam(E)) that the functions uk

satisfy a Sobolev type inequality (see for instance [4, Thm 13.1]). Then, in particular,´ |uk| → 0 as k → ∞, and hence there exits a subsequence, also denoted uk, such
that uk → 0 for a.e. x ∈ Et0 .

Now choose ψ ∈ Lip0(Et) with an upper gradient gψ such that 0 ≤ ψ ≤ 1,
ψ = 1 in E, and gψ ≤ L < ∞ a.e. in Et, and define ϕk = min{ψ, uk}; then also
ϕk ∈ Lip0(Et). If we fix ε > 0, it is easy to find ρ > 0 such that µ({0 < ψ < ρ}) < ε.
Furthermore, if we denote Ak = {|uk| > ρ}, there exits (by Egorov’s theorem)
k0 ∈ N so that µ(Ak) < ε for all k ≥ k0. For such k, the function ϕk has an upper
gradient gϕk

which is zero outside Et and coincides with gk at least a.e. in the set
Et \ (Ak ∪ {0 < ψ < ρ}) (where uk ≤ ρ ≤ ψ). It follows that, for k large enough,

ˆ

Et

gp
ϕk

dµ ≤
ˆ

Et

gp
k dµ +

ˆ

{0<ψ<ρ}∪Ak

gp
ψ dµ ≤

ˆ

Et0

gp
k dµ + 2εLp,



46 Juha Lehrbäck

and so, letting first k → ∞ and then ε → 0, we obtain capp(E, Et) = 0. Thus
capp(E, Et) = 0 for all 0 < t < diam(E), and so capp(E) = 0. ¤

5. Lower bounds

The lower bounds for neighbourhood capacities are a bit more involved than the
upper bounds, and here we actually need to have more information on the geometry
of both E and the space X near E. More precisely, we need to assume that E
is porous, and that a (1, p)-Poincaré inequality holds in X, at least for all balls of
radii 0 < r < diam(E) and centered at E. Our main estimate is formulated in the
following lemma:

Lemma 5.1. Let 1 ≤ p < ∞ and let E ⊂ X be a compact α-porous set.
Assume further that the (1, p)-Poincaré inequality (3) is valid for all balls B(w, r)
with w ∈ E and 0 < r < 10τα−1 diam(E), and let q < p. Then there exists a
constant C = C(X,E, p, q) > 0 such that the estimate

capp(E, Et) ≥ CH̃q
10τα−1t(E)tq−p

holds for all 0 < t < diam(E).

Proof. Take q < p and let 0 < t < diam(E). Fix w ∈ E for a moment, define
rk = 21−kα−1t for k ∈ N, and denote Bk = B(w, rk). Also, let u be a test function
for the capacity capp(E, Et). Since E was assumed to be α-porous, there exists
B(y, 2t) ⊂ B0 ∩ (X \ E), and so u = 0 in B̃ = B(y, t). Hence we obtain, using the
doubling estimate (2), that

|uB0| = µ(B0)
−1

ˆ

B0\B̃
u ≤ 1− µ(B̃)

µ(B0)
≤ 1− C

(
t

2α−1t

)s

= 1− C(α/2)s,

and as u ≥ 0 and u(w) = 1, we have

|u(w)− uB0| = C(α/2)s > 0.

From this lower bound we infer, with a standard ‘telescoping’ argument for the balls
Bk using the (1, p)-Poincaré inequality (cf. e.g. [6]), that

(6) 1 ≤ C

∞∑

k=0

rk

(  

τBk

gp
u dµ

)1/p

.

Here we use a trick inspired by the proof of [8, Thm. 5.9]. Namely, it follows
from (6) that if δ > 0, then there must exist a constant C1 > 0, independent of u
and w, and at least one index kw ∈ N such that

(7) rkw

(  

τBkw

gp
u dµ

)1/p

≥ C12
−kwδ = Ct−δrkw

δ.

We now choose δ = (p − q)/p > 0 and write Bw = B(xw, rw) instead of Bkw =
B

(
xkw , rkw

)
for the corresponding ball in (7).

By raising both sides of (7) to power p we thus obtain for each w ∈ E a ball Bw

such that

r−q
w µ(τBw) ≤ Ctp−q

ˆ

τBw

gu(y)p dµ.(8)
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Using (again) the basic ‘5r’-covering theorem from [6], we obtain points wi ∈ E,
i = 1, 2, . . . , such that the balls τBi = B(wi, τrwi

) are pairwise disjoint, but still
E ⊂ ⋃∞

i=1 5τBi. Note that the radii of these covering balls are no more than 10τα−1t.
From estimate (8), the doubling property, the pairwise disjointness of the balls τBi,
and the fact that gu = 0 outside Et we infer

H̃q
10τα−1t(E) ≤

∞∑
i=1

µ(5τBi)(5τrwi
)−q ≤ C

∞∑
i=1

µ(τBi)r
−q
wi

≤ C

∞∑
i=1

tp−q

ˆ

τBi

gu(y)p dµ ≤ Ctp−q

ˆ

Et

gu(y)p dµ.

This proves the desired estimate. ¤

Remark 5.2. Using Lemma 2.2 we see immediately that if E is as in Lemma
5.1 and λ > s− p, then

capp(E, Et) ≥ CHλ
10τα−1t(E)ts−λ−p

for all 0 < t < diam(E).
In particular, if E ⊂ X is porous and capp(E) = 0, then H̃q(E) = Hs−q(E) = 0

for all q < p, and thus dimH(E) ≤ s− p. Actually, with a slight modification to the
proof of Lemma 5.1, we obtain a proof for this same fact without the assumption
that E is porous; this was stated above in Proposition 4.3. Let us outline here the
main ideas:

Proof of Proposition 4.3. Let q < p. We assume here that E  X. Take
y ∈ X \E and denote T = dist(y, E)/2 > 0. As capp(E) = 0, we find uk ∈ Lip0(ET )

with upper gradients gk such that uk|E = 1 and
´

gp
k → 0 as k →∞. Now fix w0 ∈ E

and write BE = B(w0, diam(E) + 3T ). With the (1, p)-Poincaré inequality it is then
not hard to see that, for each w ∈ E,

|(uk)B(w,T )| ≤ |(uk)B(w,T ) − (uk)BE
|+ |(uk)BE

− (uk)B(y,T )|

≤ C(X, E, T, p)

ˆ

BE

gp
k dµ,

whence (by passing to a subsequence, if necessary) we may assume that |(uk)B(w,T )| <
1/2, and so |uk(w)− (uk)B(w,T )| ≥ 1/2 for each w ∈ E. It is now possible to continue
just as in the proof of Lemma 5.1, starting from estimate (6), with the balls Bk now
being 21−kB(w, T ). At the end we obtain the conclusion that

H̃q
5τT (E) ≤ CT p−q

ˆ

ET

gp
k dµ

k→∞−→ 0,

and thus also H̃q(E) = 0 by Lemma 2.5. ¤

Remark 5.3. Lemma 5.1 does not (in general) hold without the assumption
that E is porous. Indeed, for the trivial example of a ball B ⊂ Rn we have

capp(B, Bt) ≈ tn−(n−1)−p = t1−p ¿ t−p ≈ Hn
5t(B)tn−n−p
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as t → 0, and, more generally, for a snowflake-type domain Sλ ⊂ Rn (whose boundary
is a λ-regular set) with dimH(∂Sλ) = λ ∈ (n− 1, n), that

capp(S, (Sλ)t) ≈ tn−λ−p ¿ t−p ≈ Hn
5t(Sλ)t

n−n−p

as t → 0. In these cases the compact sets B and Sλ are n-regular, and so they have,
in particular, positive Lebesgue measure. Nevertheless, we show in Section 6 with
a more sophisticated example that this fact plays no essential role in the failure of
Lemma 5.1.

The following result is an immediate consequence of Lemma 5.1 and our results
for sets of zero capacity:

Corollary 5.4. Let 1 < p < ∞ and assume that X is a doubling metric space
supporting the (1, p)-Poincaré inequality. Let E ⊂ X be a compact α-porous set
with 0 < H̃q(E) < ∞. Then, for all 0 < t < diam(E), we have

capp(E, Et) ≥ Ctq−p if p > q,

and

capp(E) = 0 if p ≤ q.

Proof. The latter claim follows from Proposition 4.1 (and Hölder’s inequality for
p < q). For p > q the estimate follows from Lemma 5.1, since H̃q(E) > 0 implies by
Lemma 2.5 that

0 < H̃q
10τα−1 diam(E)(E) ≤ H̃q

10τα−1t(E)

for all 0 < t < diam(E). ¤
Combining Corollary 5.4 and Proposition 3.3(b), we obtain, for sufficiently nice

subsets of an s-regular space, the following two-sided estimate for neighbourhood
capacities:

Theorem 5.5. Let 1 < p < ∞ and assume that X is an s-regular metric space
supporting the (1, p)-Poincaré inequality. Let E ⊂ X be a porous set with

0 < Hλ(E) ≤ lim sup
t→0

Mλ
t (E) < ∞.

Then, for all 0 < t < diam(E), we have

capp(E, Et) ≈ ts−λ−p if p > s− λ,

and

capp(E) = 0 if p ≤ s− λ.

Notice that Theorem 1.1 is now a special case of Theorem 5.5, since for 0 ≤ λ < n
a λ-regular subset of Rn is necessarily porous (see Section 2.4 and also [11] for more
details). As can be seen from Lemmas 3.2 and 5.1, it is possible to weaken the
assumptions of Theorem 5.5 by only assuming the (upper) regularity condition and
the (1, p)-Poincaré inequality for all balls centered at E and with radii no more than
diam(E).
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6. A more intriguing example

In this section we construct, for a given λ ∈ (1, 2), a Cantor-type set E ⊂ R2 so
that Hλ

∞(E) > 0 and dimH(E) < 2 (we can even take dimH(E) = λ), but for which
there exists a sequence tk → 0 such that, for all 1 ≤ p < ∞,

capp

(
E, Etk

) ¿ t2−λ−p
k as k →∞.

We then know, by Lemma 5.1, that E can not be porous, and in particular this shows
that our results from Section 5 do not (necessarily) hold for non-porous sets, and
also that such non-porous counterexamples need not have positive measure (compare
to Remark 5.3). We also remark that higher dimensional examples can be easily
constructed along the same lines.

6.1. Construction. The idea is to use a typical ‘alternating’ Cantor-type
construction, where we have (a) ‘thick’ generations of squares to guarantee the loss
of porosity (or equivalently giving Assouad dimension 2 for the resulting set E),
and (b) ‘thin’ generations which keep the Hausdorff dimension of E in control, in
particular bounded away from 2.

Let us first fix λ ∈ (1, 2) and 0 < δ < λ− 1. Also pick

0 < d < min
{
1− 2 · 4−1/λ, 1/3

}

and take λ < λ̃ < 2. Our construction consists of the first step (I), and the general
step (II), both of which are divided in two parts (a) and (b) in accordance with the
above description of their purposes.

(Ia) We begin by removing from the unit square I0 = [0, 1]2 the strips ((1 −
d)/2, (1+ d)/2)× [0, 1] and [0, 1]× ((1− d)/2, (1+ d)/2) of width d, and so we obtain
four new squares I1, . . . , I4 of side-length l1 = (1 − d)/2 > 4−1/λ. Set n1 = 0 and
m1 = 1.

(Ib) After this we run the usual λ-dimensional self-similar Cantor construction
on each Ij, j ∈ {1, 2, 3, 4} as follows: we first remove from each square Ij strips of
equal width, symmetrically with respect to the square Ij, in such a way that we are
left with 16 squares Ij1j2 , j1, j2 ∈ {1, 2, 3, 4} of side length l2 = 4−1/λl1. We then
continue the same process with the squares Ij1j2 and remove from these symmetric
strips so that we are left with 43 squares of side length l3 = 4−2/λl1. We repeat this
process until we have 41+m̃1 squares of side length l1+m̃1 = 4−m1/λl1, where m̃1 is so
large that 41+m̃1lλ̃1+m̃1

< 1; it is obvious that such m̃1 exists, since λ < λ̃ (see also the
end of step (IIb)). Finally, define n2 = n1 + m1 + m̃1 (= 1 + m̃1).

Steps (Ia) and (Ib) thus provide the basic step for our recursive construction.
(IIa) We begin the general kth step of the construction by assuming that we have

4nk squares Ij1j2...jnk
, ji ∈ {1, 2, 3, 4}, of side length lnk

. Now choose 0 < tk < lnk
to

be so small that t1−λ+δ
k ≥ lnk

4nk (recall that λ − δ > 1). Remove from the squares
Ij1j2...jnk

symmetric strips of width dtk, so that we obtain 4nk+1 squares of side length
lnk+1. From these new squares we remove strips of width d2tk, and then from the next
generation of squares again strips of width d3tk , and so forth, until we have 4nk+mk

squares of side length lnk+mk
, where mk is chosen to be so large that 2mk ≥ 2lnk

/tk.
Notice here that as d < 1/3, it is possible to keep on removing the strips as described
above (in particular

∑
i 2

i−1di < 1).
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(IIb) After these mk steps we switch again to the λ-dimensional self-similar
Cantor construction starting from the (nk + mk)th generation of squares. That
is, we first remove strips so that we obtain new squares of side-length lnk+mk+1 =
4−1/λlnk+mk

, then remove strips from these smaller squares to obtain squares of side-
length lnk+mk+2 = 4−2/λlnk+mk

, and continue until we have 4nk+mk+m̃k squares of
side-length

lnk+mk+m̃k
= 4−m̃k/λlnk+mk

,

where m̃k is so large that 4nk+mk+m̃k(lnk+mk+m̃k
)λ̃ < 1. This choice is possible, because

from λ < λ̃ we conclude that

4nk+mk+m(lnk+mk+m)λ̃ = 4nk+mk(lnk+mk
)λ̃4m(1−λ̃/λ) m→∞−→ 0.

This finishes the kth step of the construction, and we write

nk+1 = nk + mk + m̃k.

6.2. Justification. Let us now show that if we define E to be the intersection
of all the generations of the squares in the above construction, i.e,

E =
∞⋂

l=1

⋃

ji∈{1,2,3,4}
Ij1j2...jl

,

then the compact set E has the desired properties.
First of all, we claim that

(9) capp

(
E, Etk

) ¿ t2−λ−p
k as k →∞.

For this purpose, we write

Enk =
⋃

ji∈{1,2,3,4}
Ij1j2...jnk

,

so that Enk is the union of all the squares from the nkth level of the construction, and
define uk ∈ Lip(R2) by uk(x) = max{0, 1 − 2t−1

k dist(x,Enk)}. It is immediate that
uk = 1 in E. Moreover, since |∇uk| is at most 2/tk in the union of the ‘tk/2-annuli’
around the squares of the nkth generation, and vanishes elsewhere, we calculate thatˆ

|∇uk|p dx ≤ C4nk lnk
(tk/2)1−p ≤ Ct1−λ+δ

k t1−p
k ¿ t2−λ−p

k ,

where the second inequality follows from the choice of tk in the construction, and the
last estimate is valid since δ > 0; here ∇uk is of course the distributional gradient
of uk. Hence it suffices to show that uk is indeed an admissible test-function for
capp(E, Etk), that is, uk ∈ Lip0(Etk).

To this end, fix a square I ′ = Ij1j2...jnk
from the nkth generation. It is clearly

sufficient to show that I ′ ⊂ Etk . Now, in the part (IIa) of the construction we
divide I ′ into 4mk smaller squares by removing strips of width dtk, d

2tk, . . . , d
mktk.

As d < 1/3, it is clear that if x ∈ I ′ lies in one of these removed strips, we can
actually find w ∈ E so that d(x,w) < tk; in particular x ∈ Etk . On the other hand,
if x ∈ I ′ is not in one of the strips, there exists a square I ′′ from the (nk + mk)th
generation such that x ∈ I ′′. Since by the choice of mk we have 2mk ≥ 2lnk

/tk, and
obviously lnk+mk

≤ lnk
/2mk , we infer lnk+mk

≤ tk/2, and thus I ′′ ⊂ Etk . We have
thereby shown that indeed I ′ ⊂ Etk , and so we conclude that estimate (9) is valid.
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It is also evident that Hλ
∞(E) > 0. Indeed, if instead of the above ‘biphasic’

construction we only run the usual λ-dimensional self-similar Cantor construction,
starting from the unit square, we obtain a set E ′ with 0 < Hλ(E ′) < ∞. Now, by
our convenient choice d < 1− 2 · 4−1/λ, all the removed strips in our construction are
surely narrower than the corresponding strips in that ‘unperturbed’ λ-dimensional
Cantor construction. Hence it is obvious that Hλ(E) ≥ Hλ(E ′) > 0, and thus also
Hλ
∞(E) > 0.
We are left to justify that dimH(E) ≤ λ̃ < 2. Let r > 0 and pick k ∈ N so

that lnk
< r. Then the set E is covered by the squares of the nkth generation,

which by construction satisfy 4nk(lnk
)λ̃ < 1. It follows that Hλ̃

r (E) ≤ C, where C is
independent of r. We conclude that Hλ̃(E) ≤ C, whence dimH(E) ≤ λ̃.

Remark 6.1. Actually, it is possible to obtain even dimH(E) = λ with a slight
modification to the above construction. Namely, pick a decreasing sequence 2 >
λk → λ, and use in the part (IIb) of the kth step the number λk instead of λ̃. It is
then straight-forward to verify (just as above) that dimH(E) ≤ λk for each k.
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