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THE BEURLING OPERATOR
FOR THE HYPERBOLIC PLANE

Håkan Hedenmalm

The Royal Institute of Technology, Department of Mathematics
S-100 44 Stockholm, Sweden; haakanh@math.kth.se

Abstract. We find a Beurling operator for the hyperbolic plane, and obtain an L2 norm
identity for it, as well as two-sided Lp estimates.

1. Introduction and statement of main results

1.1. Outline of the paper. We first mention the classical Cauchy and Beurling
operators C and B in the setting of the plane. We then introduce their hyperbolic
plane analogues C↑,C↓ and B↑,B↓. For instance, the hyperbolic Cauchy operator
C↓ finds the L2-minimal solution to the ∂̄-problem. The mapping properties of
C↑,C↓ rely on the well-known Hardy inequality for the upper half plane. We find a
sharp two-sided estimate for the the norm of B↓[f ] in weighted Lp-spaces, which is
analogous to the well-known two-sided estimate for B[f ]. In the Hilbert space case
p = 2, the estimate becomes a norm isometry. The way the proof is set up, we need
some results of Liouville type for the hyperbolic plane. In the final section, we try
to explain the assertion of the main theorem in geometric terms.

1.2. The Beurling transform. The (Ahlfors–)Beurling transform (or oper-
ator) B : L2(C) → L2(C) is formally the operator B = ∂∂̄

−1. Here, we use the
notation

∂z :=
1

2

(
∂

∂x
− i

∂

∂y

)
, ∂̄z :=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

and put ∆z := ∂z∂̄z; as above, we frequently suppress the subscript z. This way
of defining B leaves some ambiguity, as there are many possible ways to define ∂̄

−1.
The standard choice is to use the Cauchy transform C for ∂̄

−1,

C[f ](z) :=

ˆ

C

f(w)

z − w
dA(w), z ∈ C,

where

dA(z) :=
dx dy

π
, z = x + iy,

is normalized area measure. Unfortunately, the integral defining C[f ] is not well-
defined for all f ∈ L2(C), but at least when f is compactly supported, there is no
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problem. Differentiating the Cauchy transform, we get

B[f ](z) := −pv
ˆ

C

f(w)

(z − w)2
dA(w), z ∈ C,

where “pv” stands for the principal value. It is easy to show, using Fourier analysis
or Green’s formula, that B acts isometrically on L2(C):

(1.1) ‖B[f ]‖2
L2(C) = ‖f‖2

L2(C) =

ˆ

C
|f |2 dA,

where the rightmost identity defines the norm in L2(C). It is well-known that B acts
boundedly on Lp(C) for 1 < p < +∞; let B(p) denote its norm, that is, the best
constant such that

‖B[f ]‖Lp(C) ≤ B(p)‖f‖Lp(C), f ∈ Lp(C),

holds. It is easy to show that there is an estimate from below as well:

(1.2)
1

B(p)
‖f‖Lp(C) ≤ ‖B[f ]‖Lp(C) ≤ B(p)‖f‖Lp(C), f ∈ Lp(C).

A well-known conjecture due to Iwaniec (see [9], [3], [7], [4]) claims that

B(p) = max

{
p− 1,

1

p− 1

}
, 1 < p < +∞.

An easy duality argument shows that with p′ = p/(p− 1) (dual exponent),

B(p) = B(p′), 1 < p < +∞.

We mention that there is a formulation of (1.2) which does not use singular integrals:

(1.3)
1

B(p)
‖∂̄g‖Lp(C) ≤ ‖∂g‖Lp(C) ≤ B(p)‖∂̄g‖Lp(C), g ∈ C∞

c (C),

where C∞
c (C) is the space of compactly supported test functions.

1.3. The hyperbolic plane. Let H denote the hyperbolic plane; we shall use
the model

H = 〈C+, dsH〉,
where

C+ =
{
z ∈ C : Im z > 0

}

is the upper half plane, and

dsH(z) =
| dz|
Im z

is the Poincaré metric. The corresponding hyperbolic area element is given by

dAH(z) =
dA(z)

(Im z)2
.

1.4. The function spaces. For 0 < p < +∞ and real q, we introduce the
space Lp

q(C+) of (equivalence classes of) area-Lebesgue measurable functions subject
to the integrability condition

‖f‖p
Lp

q(C+)
=

ˆ

C+

|f(z)|p(Im z)q dA(z) =

ˆ

C+

|f(z)|p(Im z)q+2 dAH(z) < +∞.

It is a Banach space for 1 ≤ p < +∞. We realize that L2
−2(C+) has the interpretation

of L2(H), the L2 space over the hyperbolic plane.
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1.5. Some notation. We shall at times need conjugate symbol operators, as
defined by

T̄[f ] = conj (T[f̄ ]),

and we apply this notational convention to all the operators considered here. More-
over, if F is a collection of complex-valued functions, we write conj (F) for the col-
lection of complex conjugates of the functions in F .

1.6. Hardy’s inequality for the upper half plane. By Hardy’s inequality
for the upper half space,

(1.4)
ˆ

C+

|f(z)|p dA(z)

(Im z)p
≤ 2p/2(1− 1/p)−p

ˆ

C+

(|∂f(z)|2 + |∂̄f(z)|2)p/2
dA(z)

for f ∈ C∞
c (C+). The constant is sharp (see, e.g., [6], [11]). If we use that for

a, b ∈ C,

(|a|2 + |b|2)p/2 ≤ A(p)(|a|p + |b|p), A(p) := max{1, 2−1+p/2},
we getˆ

C+

|f(z)|p dA(z)

(Im z)p
≤ 2p/2(1− 1/p)−pA(p)

ˆ

C+

(|∂f(z)|p + |∂̄f(z)|p) dA(z),

which in terms of norms reads

(1.5) ‖f‖p
Lp
−p(C+)

≤ 2p/2(1−1/p)−pA(p)
(‖∂f‖p

Lp(C+) +‖∂̄f‖p
Lp(C+)

)
, f ∈ C∞

c (C+).

Next, since by (1.2),

‖∂f‖Lp(C+) ≤ B(p) ‖∂̄f‖Lp(C+), f ∈ C∞
c (C+),

we obtain from (1.5) that

(1.6) ‖f‖p
Lp
−p(C+)

≤ 2p/2(1− 1/p)−pA(p) (1 + B(p)p) ‖∂̄f‖p
Lp(C+), f ∈ C∞

c (C+).

It is not obvious whether the constant appearing on the right hand side of (1.6) is
optimal for general p. However, in case p = 2, (1.6) reads

(1.7) ‖f‖L2
−2(C+) ≤ 4 ‖∂̄f‖L2(C+), f ∈ C∞

c (C+),

and the constant is sharp.

1.7. The Cauchy operators associated with the upper half plane. For
functions f defined on C+, we introduce the Cauchy-type operators

C↓[f ](z) :=

ˆ

C+

[
1

z − w
− 1

z − w̄

]
f(w) dA(w) = 2i

ˆ

C+

f(w) Im w

(z − w)(z − w̄)
dA(w),

z ∈ C+, and

C↑[f ](z) :=

ˆ

C+

[
1

z − w
− 1

z̄ − w

]
f(w) dA(w) = −2i

ˆ

C+

Im z f(w)

(z − w)(z̄ − w)
dA(w),

z ∈ C+, for all locally integrable functions f for which the integrals make sense
(almost everywhere on C+). The operator C↓ appears in the context of the unit disk
in Subsection 4.8.3 of the book [2] by Astala, Iwaniec, Martin. The identity
(

1

z − w
− 1

z − w̄

)
+

(
1

z̄ − w̄
− 1

z̄ − w

)
=

(
1

z − w
− 1

z̄ − w

)
+

(
1

z̄ − w̄
− 1

z − w̄

)
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entails the operator identity

(1.8) C↓ + C̄↓ ≡ C↑ + C̄↑.

Moreover, with respect to the inner product of L2(C+), we have that

(1.9) (C↓)∗ = −C̄↑, (C̄↓)∗ = −C↑, (C↑)∗ = −C̄↓, (C̄↑)∗ = −C↓.

To understand the action of C↑, we note that

F (z)−C↑[∂̄F ](z) = F (z)−
ˆ

C+

(
1

z − w
− 1

z̄ − w

)
∂̄F (w) dA(w)

=

ˆ

C+

∂̄w

{(
1

w − z
− 1

w − z̄

)
F (w)

}
dA(w)

=
1

2πi

ˆ

R

(
1

w − z
− 1

w − z̄

)
F (w) dw, z ∈ C+,

(1.10)

provided F and ∂̄F are smooth and taper off relatively quickly to 0 at infinity (the
middle integral is to be interpreted in the sense of distribution theory). As a first
application of (1.10), we find that

(1.11) C↑[∂̄f ] = f, f ∈ C∞
0 (C+).

The L2(C+)-closure of ∂̄C∞
c (C+) equals L2(C+)ª conj(A2(C+)) (this fact is known

as Havin’s lemma). A second application of (1.10) shows that

(1.12) C↑[g] = 0, g ∈ conj(A2(C+)),

which means that we have determined the action of C↑ on all of L2(C+). It now
follows from (1.11) and (1.12) combined with (1.7) that

(1.13) ‖C↑[g]‖L2
−2(C+) ≤ 4‖g‖L2(C+), g ∈ L2(C+).

Expressed differently, the operator

(1.14) C↑ : L2(C+) → L2
−2(C+)

is bounded and has norm 4. A similar argument based on (1.6) shows that

C↑ : Lp(C+) → Lp
−p(C+), 1 < p < +∞,

with a norm bound which depends on p. Let C↑(p) be the norm of this operator.
By (1.9), and the fact that with respect to the inner product of L2(C+), the spaces
Lp
−p(C+) and Lp′

p′(C+) are dual to one another (here, p′ = p/(p− 1)), we have that

C↓ : Lp
p(C+) → Lp(C+), 1 < p < +∞,

is bounded as well; we denote its norm by C↓(p). The duality argument actually
gives that

C↓(p) = C↑(p′), p′ = p/(p− 1).

As noted previously, for p = 2, we have C↓(2) = C↑(2) = 4.
We specialize for a moment to p = 2 and look for an interpretation of the operator

C↓. By duality, the information on the null space of C↑ supplied by (1.12) leads to
information on the range of C↓:

C↓ : L2
2(C+) → L2(C+)ª A2(C+).
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The operator C↓ therefore furnishes the least norm solution to the ∂̄-problem: u =
C↓[f ] has smallest norm in L2(C+) among all solutions to

∂̄u = f(z), z ∈ C+.

1.8. Double singularity Cauchy-type integral operators. We introduce
the operators D↑, D↓, as given by

D↑[g](z) :=

ˆ

C+

g(w)

(z − w)(z̄ − w)
dA(w), z ∈ C+,

and
D↓[g](z) :=

ˆ

C+

g(w)

(z − w)(z − w̄)
dA(w), z ∈ C+.

We readily check that

(1.15) C↑ = −2iMD↑, C↓ = 2iD↓M,

where M[f ](z) = (Im z)f(z). The analogous operators in the setting of the unit disk
D in place of C+ appeared recently in [5]. The boundedness of the operators C↑ and
C↓ in the corresponding contexts entails that

D↑ : Lp(C+) → Lp(C+), D↓ : Lp(C+) → Lp(C+),

act boundedly for 1 < p < +∞. Moreover, the norms of these operators may be
expressed in terms of C↑(p), C↓(p). In [5], the operators D↑ and D↓ appeared in the
analysis of conformal maps. We may bring the analysis one step further and consider,
for a conformal mapping ϕ : C+ → Ω, where Ω ⊂ C, the operators

D↑
ϕ[g](z) =

ˆ

C+

ϕ′(z)g(w)

(ϕ(z)− ϕ(w))(z̄ − w)
dA(w), z ∈ C+,

and
D↓

ϕ[g](z) =

ˆ

C+

ϕ′(w)g(w)

(ϕ(z)− ϕ(w))(z − w̄)
dA(w), z ∈ C+.

The instance ϕ(z) = z gives us the operators D↑,D↓ already mentioned. The more
general operators D↑

ϕ,D↓
ϕ deserve attention as well (cf. [5]).

1.9. The sum of two Cauchy-type operators. The identity (1.8) suggests
that we should study the operator

Csum := C↓ + C̄↓ = C↑ + C̄↑.

The mapping properties of C↓ and C↑ show that Csum maps boundedly (1 < p < +∞)

Csum : Lp
p(C+) → Lp(C+), Csum : Lp(C+) → Lp

−p(C+).

Interpolation theory allows us to combine these statements to get that Csum maps
boundedly (1 < p < +∞)

Csum : Lp
q(C+) → Lp

q−p(C+), 0 ≤ q ≤ p.

The calculation(
1

z − w
− 1

z − w̄

)
+

(
1

z̄ − w̄
− 1

z̄ − w

)
= 8 Im z Im w

Re(z − w)

|(z − w)(z − w̄)|2
shows that

Csum = 8MEM,
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where E is the integral operator

E[f ](z) :=

ˆ

C+

Re(z − w)

|(z − w)(z − w̄)|2 f(w) dA(w), z ∈ C+.

We read off from the mapping property of Csum that E acts boundedly (1 < p < +∞)

E : Lp
q−p(C+) → Lp

q(C+), 0 ≤ q ≤ p.

For p = 2 we even have that E : L2
q−2(C+) → L2

q(C+) is norm contraction for 0 ≤
q ≤ 2.

2. The Beurling transform for the hyperbolic plane

2.1. The Beurling-type operators. We introduce the Beurling-type operators

B↓[f ](z) := ∂C↓[f ](z) = pv
ˆ

C+

[
1

(z − w̄)2
− 1

(z − w)2

]
f(w) dA(w), z ∈ C+,

and

B↑[f ](z) := pv
ˆ

C+

[
1

(z̄ − w)2
− 1

(z − w)2

]
f(w) dA(w), z ∈ C+,

for functions f such that the above expressions make sense. With respect to the
inner product of L2(C+), we have the adjoint calculation formulas

(B↓)∗ = B̄↑, (B̄↓)∗ = B↑, (B↑)∗ = B̄↓, (B̄↓)∗ = B↑.

In analogy with (1.8), we have the operator identity

B↓ + B̄↓ = B↑ + B̄↓.

If we extend f to C by declaring it to vanish off C+, we have

B↓[f ](z) = B[f ](z)− B̄[f ](z̄), z ∈ C+,

and
B↑[f ](z) = B[f ](z)−B[f ](z̄), z ∈ C+.

In view of (1.2), we see that B↓ and B↑ act boundedly on Lp(C+) for 1 < p < +∞,
with norm bound

(2.1)
∥∥B↓[f ]

∥∥
Lp(C+)

≤ 2B(p) ‖f‖Lp(C+), f ∈ Lp(C+).

The analogous bound holds for B↑ as well.
We shall obtain a more interesting result. For 1 < p < +∞, B↓ acts boundedly

on Lp
p(C+), while B↑ acts boundedly on Lp

−p(C+). It should be pointed out here
that the functions in Lp

p(C+), extended to vanish on C \ C+, need not be locally
area-integrable near the real line, and therefore it is not clear how, e.g., the operator
B could be defined on Lp

p(C+). But B↓ is well-defined due to the cancellation in the
symbol.

The spaces Lp
p(C+) and Lp′

−p′(C+) are dual to one another with respect to the
inner product of L2(C+) (here p′ = p/(p−1) is the dual exponent). By interpolation
theory, then, it follows from the above that

B↓ : Lp
q(C+) → Lp

q(C+), B↑ : Lp
−q(C+) → Lp

−q(C+),

act boundedly for 0 ≤ q ≤ p. This range surely is not best possible, but an under-
standing of when the Beurling operator B is bounded in the weighted context (cf.,



The Beurling operator for the hyperbolic plane 9

e.g., [12]) combined with the approach presented here should lead to the optimal
range.

As will be explained later on, the operators B↑ and B↓ are modifications of the
Beurling operator B to the setting of the hyperbolic plane. So it is natural to ask to
what extent (1.2) has a hyperbolic analogue. A perhaps naive first try which comes
to mind is what are the best constants B↓

1(p), B↓
2(p) so that

(2.2) B↓
1(p) ‖f‖Lp

p(C+) ≤ ‖B↓[f ]‖Lp
p(C+) ≤ B↓

2(p) ‖f‖Lp
p(C+), f ∈ Lp

p(C+),

It turns out that
B↓[f ] = 0, f ∈ conj (Ap

p(C+)),

so that B↓
1(p) = 0 necessarily. While B↓

2(p) exists boundedly for all 1 < p < +∞, the
exact value appears to be unknown. For p = 2 (the Hilbert space case) the methods
of this paper give that B↓

2(2) ≤ 5, and they also supply a bound from below; cf.
Remark 5.2. If we want a non-trivial two-sided estimate, we need to compare the
norm of B↓[f ] with the norm of an expression which vanishes on conj (Ap

p(C+)). The
expression that will work is V[f ], where

V := f + 4iEM.

3. Commutator identities

3.1. The commutator of differentiation and multiplication. The commu-
tator of the differentiation operators ∂, ∂̄ and the multiplication operator Mn (n is
an integer) is given by

(3.1) [∂,Mn] = ∂Mn −Mn∂ = − in

2
Mn−1, ∂̄Mn −Mn∂̄ =

in

2
Mn−1.

These relations constitute a key step in the proof of the main theorem.

3.2. The commutators of hyperbolic Beurling operators. The various
commutators which can be formed using the operators B↑, B̄↑,B↓, B̄↓ can be reduced
to one of the following three:

[B↓,B↑], [B↓, B̄↑], [B↓, B̄↓].

We first consider the commutator

[B↓,B↑] = B↓B↑ −B↑B↓.

To simplify our work, we introduce the compressed Beurling operator B+, which acts
contractively on L2(C+). It is given by

B+[f ](z) := −pv
ˆ

C+

f(w)

(z − w)2
dA(w), z ∈ C+.

Moreover, we let P0 denote the orthogonal projection L2(C+) → A2(C+), which is
given explicitly by

P0[f ](z) := −
ˆ

C+

f(w)

(z − w̄)2
dA(w), z ∈ C+.

In terms of these operators, we have

B↑ = B+ − P̄0, B↓ = B+ −P0,
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and so

B↓B↑ = (B+ −P0)(B+ − P̄0) = B2
+ −B+P̄0 −P0B+ + P0P̄0,

while
B↑B↓ = (B+ − P̄0)(B+ −P0) = B2

+ −B+P0 − P̄0B+ + P̄0P0.

Next, A2(C+) and conj(A2(C+)) are orthogonal to one another in L2(C+), and there-
fore P0P̄0 = P̄0P0 = 0, where 0 stands for the zero operator. For perhaps less obvi-
ous reasons (cf. [5]), we also have P0B+ = B+P̄0 = 0. So, the commutator simplifies
significantly:

(3.2) [B↓,B↑] = B↓B↑ −B↑B↓ = B+P0 + P̄0B+.

Put Q1 := −2i∂P0, which is given explicitly by

Q1[f ](z) = −
ˆ

C+

4if(w)

(z − w̄)3
dA(w), z ∈ C+.

Then Q1M has an interpretation as the orthogonal projection to the holomorphic
functions in the L2 space over C+ with weight Im z. We also see that Q∗

1 = Q1.
Next, a calculation shows that

ˆ

C+

dA(ξ)

(ξ − w)(ξ − z̄)2
=

2i Im w

(z̄ − w)2
, z, w ∈ C+,

and differentiation with respect to w on both sides yields

pv

ˆ

C+

dA(ξ)

(ξ − w)2(ξ − z̄)2
= ∂w

{
2i Im w

(z̄ − w)2

}
=

1

(z̄ − w)2
+

4i Im w

(z̄ − w)3
, z, w ∈ C+.

This leads to the operator identities

(3.3) P̄0B+ = −P̄0 + Q̄1M, B+P0 = −P0 + MQ1,

and so

(3.4) [B↓,B↑] = −P0 − P̄0 + Q̄1M + MQ1.

The second commutator to be considered is

[B↓, B̄↑] = B↓B̄↑ − B̄↑B↓.

If we use (3.3) and follow along the lines of the preceding commutator calculation,
we find that

[B↓, B̄↑] = [B+, B̄+]−P0B̄+ −B+P0 = [B+, B̄+] + 2P0 −MQ1 −Q1M.

We readily find that

B̄+B+ = I−P̄0, B+B̄+ = I−P0,

where I is the identity operator, so that

[B+, B̄+] = P̄0 −P0,

and consequently

(3.5) [B↓, B̄↑] = P̄0 + P0 −MQ1 −Q1M.
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This commutator relation is interesting because it leads to the following norm iden-
tity:

∥∥B̄↑[f ]
∥∥2

L2(C+)
−

∥∥B↓[f ]
∥∥2

L2(C+)

= ‖P̄0[f ]‖2
L2(C+) +

∥∥(P0 −Q1M)[f ]
∥∥2

L2(C+)
−

∥∥Q1M[f ]
∥∥2

L2(C+)
.

The third commutator is

[B↓, B̄↓] = B↓B̄↓ − B̄↓B↓.

The method employed above yields that

(3.6) [B↓, B̄↓] = P̄0 −MQ1,

and, as a consequence, we may also derive that

(3.7) [B↑, B̄↑] = P̄0 −Q1M.

4. A hyperbolic Liouville-type theorem

4.1. A Liouville-type theorem for the hyperbolic plane. By Liouville’s
theorem, the only bounded harmonic functions in the complex plane are the con-
stants. If we ask the functions to be in Lp(C) as well, the only harmonic function
is the constant 0. A hyperbolic plane analogue of this statement is offered by the
following (see [8] for details).

Theorem 4.1. (Hedenmalm, Parissis, Saksman) Suppose a function f ∈ Lp
q(C+)

is harmonic in C+, where q is real and 1 ≤ p < +∞. If q ≤ −1, then f = 0. On the
other hand, if −1 < q, there are nontrivial harmonic functions f in Lp

q(C+).

Remark 4.2. (a) For 0 < p < 1 and q ≤ −2 the theorem follows from Suzuki
[13].

4.2. A biharmonic Liouville-type theorem for the hyperbolic plane. A
function f with ∆2f = 0 is said to be biharmonic. The biharmonic functions in C+

all have the form f = f1 + Mf2, where f1, f2 are both harmonic in C+.

Theorem 4.3. (Hedenmalm, Parissis, Saksman) Suppose a function f ∈ Lp
q(C+)

is biharmonic inC+, where−∞ < q ≤ −1 and 1 ≤ p < +∞. Then M−1f is harmonic
in C+.

5. Main results

5.1. The norm estimate of the hyperbolic plane Beurling transform.
We now state our main theorem.

Theorem 5.1. (1 < p < +∞) The operators

B↑ : Lp
−p(C+) → Lp

−p(C+), B↓ : Lp
p(C+) → Lp

p(C+),

are bounded. Indeed, in terms of the operator V = I+4iEM, we have the norm
estimate

B(p)−1
∥∥V[f ]

∥∥
Lp

p(C+)
≤ ‖B↓[f ]‖Lp

p(C+) ≤ B(p)
∥∥V[f ]

∥∥
Lp

p(C+)

for all f ∈ Lp
p(C+). Here, B(p) denotes the norm of the Beurling transform on Lp(C),

and the constants are best possible on both sides of the estimate.
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Proof. As we saw in Subsection 1.7, it is a consequence of the Hardy inequality
(1.6) that C↓[f ] and C̄↓[f ] are in Lp(C+) provided that f ∈ Lp

p(C+).
Next, we shall assume f ∈ Lp

p(C+) is of the form f = ∆F , for some F ∈ C∞
c (C+).

We first claim that the collection of such f is dense in Lp
p(C+). To this end, suppose

g ∈ Lp′(C+) (p′ = p/(p− 1) is the dual exponent) is such that
ˆ

C+

(Im z)∆F (z) ḡ(z) dA(z) = 0.

By Green’s formula, we get, in the sense of distribution theory,ˆ

C+

F (z)∆((Im z)ḡ(z)) dA(z) = 0,

for all F ∈ C∞
c (C+). It follows that

∆M[g] = 0,

so that M[g] ∈ Lp′
−p′(C+) is harmonic. By Theorem 4.1, we get g = 0, and the claim

follows.
In terms of the function F , we have

C↓[f ] = ∂F, C̄↓[f ] = ∂̄F.

This is so because of Havin’s lemma. We now see that the norm estimate of the
theorem follows once it has been established that

B(p)−1
∥∥M∆F + i

2
(∂F + ∂̄F )

∥∥
Lp(C+)

≤ ‖M∂2F‖Lp(C+) ≤ B(p)
∥∥M∆F + i

2
(∂F + ∂̄F )

∥∥
Lp(C+)

.
(5.1)

We know that for G ∈ C∞
c (C+),

(5.2)
1

B(p)
‖∂̄G‖Lp(C+) ≤ ‖∂G‖Lp(C+) ≤ B(p)‖∂̄G‖Lp(C)+ .

This is a consequence of (1.3), as G extends to a function in C∞
c (C) if we declare it

to vanish on C \C+. So we find ourselves looking for a G with ∂G = M∂2F . Now,
in view of the commutator identity (3.1),

M∂2 = ∂(M∂ + i
2
I),

so that
G := (M∂ + i

2
I)[F ] ∈ C∞

c (C+)

is the obvious candidate. We calculate that

∂̄G = ∂̄(M∂ + i
2
I)[F ] = (M∆ + i

2
∂ + i

2
∂̄)[F ]

if we use again (3.1) and recall that ∆ = ∂̄∂. The claim (5.1) is now an immediate
consequence of (5.2). The optimality of the constants will be discussed in Subsec-
tion 7.3. Except for that point, the proof is complete. ¤

Remark 5.2. For p = 2, we get a norm equality in Theorem 5.1. So, to analyze
the norm of B↓ on L2

2(C+), we might as well analyze the norm of V. By the triangle
inequality and Subsection 1.9, we get

‖V‖ ≤ ‖ I ‖+ 4‖EM‖ ≤ 5,
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where the norm is as an operator on L2
2(C+). Next, if f ∈ L2

2(C+) is real-valued,
then

‖V[f ]‖2
L2

2(C+) = ‖f‖2
L2

2(C+) + 16‖EM[f ]‖2
L2

2(C+),

so by optimizing over such real-valued functions, we obtain the reverse inequality

‖V‖ ≥
√

1 + 16‖EM‖2.

6. The analysis of two operators

6.1. The operators. In the context of Theorem 5.1, with p = 2, we would like
to study the operators

B↓ : L2
2(C+) → L2

2(C+)

and
V = I+4iEM : L2

2(C+) → L2
2(C+)

with respect to range and null space (I is the identity operator). It is a curious
fact that this problem—for the second operator—is intimately connected with the
classical Whittaker (or Kummer) ordinary differential equation (see, e.g., [1], [10], or
Wolfram MathWorld, Wikipedia). In view of Theorem 5.1, the null spaces of the two
operators coincide, which is why we only characterize the null space of the second
operator.

6.2. The range of the operator B↓. The range of MB↓ is a subspace of
L2(C+), and studying the range of MB↓ is equivalent to studying the range of B↓.
Let h ∈ L2

−2(C+) be such that M−1[h] ∈ L2(C+) is perpendicular to the range of
MB↓. From the proof of Theorem 5.1, we see that this is the same as requiring that

〈
M−1[h],M∂2F

〉
L2(C+)

= 0, F ∈ C∞
c (C+).

By dualizing, we see that this is the same as
〈
∂̄

2
h, F

〉
L2(C+)

= 0, F ∈ C∞
c (C+),

that is,
∂̄

2
h = 0.

This means that h is bi-analytic in C+, and hence of the form h = h1 + z̄h2, where
h1, h2 are analytic in C+. We rewrite this decomposition in the form h = h3 + Mh4,
where h3, h4 are analytic; simply put h3 := h1 + zh2 and h4 := −2ih2. In particular,
h is biharmonic, and since h ∈ L2

−2(C+), Theorem 4.3 gives that h3 = 0, so that
h = Mh4 where h4 ∈ A2(C+). We conclude that the L2(C+)-closure of the range
of MB↓ equals L2(C+) ª A2(C+), so that the L2

2(C+)-closure of the range of B↓ is
equal to

M−1[L2(C+)ª A2(C+)].

6.3. The range of the operator V. Let h ∈ L2
−2(C+) be such that M−1[h] ∈

L2(C+) is perpendicular to the range of the above operator. From the proof of
Theorem 5.1, we see that this is the same as requiring that

〈
M−1[h],M∆F + i

2
(∂ + ∂̄)F

〉
L2(C+)

= 0, F ∈ C∞
c (C+).

By dualizing we see that this is the same as
〈
∆h + i

2
(∂ + ∂̄)M−1[h], F

〉
L2(C+)

= 0, F ∈ C∞
c (C+),
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that is,

∆h +
i

2
(∂ + ∂̄)M−1[h] = 0.

Since
∂ + ∂̄ =

∂

∂x
,

this amounts to the differential equation

(6.1) y

(
∂2

∂x2
+

∂2

∂y2

)
h + 2i

∂

∂x
h = 0.

Lemma 6.1. A function h ∈ L2
−2(C+) solves the partial differential equation

(6.1) in C+ if and only if M−1[h] ∈ conj(A2(C+)).

Proof. Let

F1[h](ξ, y) =

ˆ +∞

−∞
e−ixξh(x, y) dx

denote the partial Fourier transform with respect to the x variable. Here, we use the
standard identification of C ∼= R2, so that h(x, y) = h(x + iy). An application of the
partial Fourier transform to the differential equation (6.1) yields

y

(
− ξ2 +

∂2

∂y2

)
F1[h](ξ, y)− 2ξF1[h](ξ, y) = 0,

that is,

(6.2)
∂2

∂y2
F1[h](ξ, y)−

(
ξ2 +

2ξ

y

)
F1[h](ξ, y) = 0.

Next, we put

H(ξ, t) := F1[h]

(
ξ,

t

2|ξ|
)

,

and see that (6.2) becomes

(6.3)
∂2

∂t2
H(ξ, t)−

(
1

4
+

sgn(ξ)

t

)
H(ξ, t) = 0.

The requirement that h ∈ L2
−2(C+) amounts to

(6.4)
ˆ +∞

0

ˆ +∞

−∞
|H(ξ, t)|2 |ξ| dξ dt

t2
< +∞.

The differential equation (6.3) is of Whittaker type. It is well-known that the general
solution to the ordinary differential equation

d2

∂t2
X(t)−

(
1

4
+

1

t

)
X(t) = 0

is of the form

X(t) = A1te
t/2 + B1 te−t/2

ˆ +∞

0

e−tθ θ

1 + θ
dθ,

where A1, B1 are constants, while the general solution to the ordinary differential
equation

d2

∂t2
Y (t)−

(
1

4
− 1

t

)
Y (t) = 0
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is of the form

Y (t) = A2e
−t/2

(
1− t log t− t

ˆ t

0

eθ − 1− θ

θ2
dθ

)
+ B2 te−t/2,

where A2, B2 are constants. It follows that H(ξ, t) must have form

H(ξ, t) = A1(ξ)te
t/2 + B1(ξ) te−t/2

ˆ +∞

0

e−tθ θ

1 + θ
dθ, ξ > 0,

and

H(ξ, t) = A2(ξ)e
−t/2

(
1− t log t− t

ˆ t

0

eθ − 1− θ

θ2
dθ

)
+ B2(ξ) te−t/2, ξ < 0.

A careful analysis of the behavior of these solutions as t → 0+ and t → +∞ shows
that (6.4) is impossible unless A1(ξ) = B1(ξ) = A2(ξ) = 0, in which case

H(ξ, t) = 0, ξ > 0,

and
H(ξ, t) = B2(ξ) te−t/2, ξ < 0.

The function B2(ξ) must then satisfy
ˆ 0

−∞
|ξ| |B2(ξ)|2 dξ < +∞,

and the partial Fourier transform ĥ takes the form

F1[h](ξ, y) = 2|ξ|yB2(ξ) eyξ 1]−∞,0](ξ),

so that
F1

[
M−1[h]

]
(ξ, y) = B3(ξ) eyξ 1]−∞,0](ξ),

where B3(ξ) := 2|ξ|B2(ξ). This form of ĥ is equivalent to the assertion that M−1[h] ∈
conj(A2(C+)). This follows from the following two observations: (i) the support of
its partial Fourier transform is contained in ]−∞, 0], and (ii) the exponential factor
e−y|ξ| is the Fourier transform of the Poisson kernel. ¤

We now obtain the closure of the range of the operator.

Proposition 6.2. The closure of the range of V = I+4iEM : L2
2(C+) → L2

2(C+)
equals

M
[
L2(C+)ª conj(A2(C+))

]
.

Remark 6.3. One can show that the range of the operator is closed.

The null space of the operator. We turn to the study of the null space of
the operator V, which is the same as the null space of B↓. So, given f ∈ L2

2(C+),
we want to know what the solutions to

(6.5) MV[f ] = M[f ] + 4iMEM[f ] = 0

look like. Let F ∈ L2
−2(C+) be the associated function

F = C̄↑C↓[f ] = C↑C̄↓[f ].

Then ∆F = f , and (6.5) takes the form

(6.6) M[∆F ] +
i

2
[∂F + ∂̄F ] = 0.
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By Lemma 6.1, we find that this happens if and only if M−1[F ] ∈ conj(A2(C+)).
From this, we quickly derive the following characterization of the null space.

Proposition 6.4. The null space of the operator V = I+4iEM : L2
2(C+) →

L2(C+) is equal to conj(A2
2(C+)).

7. Geometric interpretation of the main theorem

7.1. The hyperbolic plane and differential operators. Associated with
the half-plane model of the hyperbolic plane H, we have the geometrically induced
differential operators ∂↑, ∂̄↑:

∂↑ = M∂, ∂̄
↑

= M∂̄.

After all, the length scale on C+ should be modified to correspond to that of the hy-
perbolic plane. There are also the “dual” geometrically induced differential operators
∂↓, ∂̄↓:

∂↓ = M2∂M−1, ∂̄
↓

= M2∂̄M−1,

with the properties that

〈∂↑f, g〉L2(C+) = −〈f, ∂̄
↓
g〉L2(C+), 〈∂̄↑f, g〉L2(C+) = −〈f, ∂↓g〉L2(C+),

provided at least one of f, g is in the class C∞
c (C+) of compactly supported test

functions, and the other is, say, locally integrable on C+ (the partial derivatives
are interpreted in the sense of distribution theory when necessary). The hyperbolic
Laplacian ∆H is obtained as a combination of two such geometric differential oper-
ators:

∆H = ∂̄
↓
∂↑ = ∂↓∂̄↑ = M2∆.

7.2. Hyperbolic differential operators and the hyperbolic plane Beurl-
ing operators. In analogy with the planar Beurling transform B = ∂∂̄

−1, a natural
candidate for the “hyperbolic plane Beurling transform” is ∂↓(∂̄↓)−1. Like in the case
of the Euclidean plane, there is the matter of the choice of (∂̄

↓
)−1. In contrast with

the ∂̄-problem in the plane, given a function f ∈ L2(H) := L2
−2(C+), there always

exists a solution u ∈ L2(H) with ∂̄
↓
u = f , and

‖u‖L2(H) ≤ 4‖f‖L2(H).

This follows from the Hardy inequality in a manner which was explained in Sub-
sections 1.6 and 1.7. In particular, there always exists a unique solution u = uf of
minimal norm in L2

−2(C+). We write uf = [∂̄
↓
]−1
minf for this minimal solution, and

have thus defined the linear operator [∂̄
↓
]−1
min. In a similar manner, we may define the

operator [∂↓]−1
min. It is easy to see that

[∂̄
↓
]−1
min = MC↓M−2, [∂↓]−1

min = MC̄↓M−2,

and hence [∂↓]−1
min, [∂̄

↓
]−1
min both act boundedly on Lp

−p(C+) for 1 < p < +∞. Moreover,
since

∂↓[∂̄↓]−1
min = (M2∂M−1)(MC↓M−2) = M2∂C↓M−2 = M2B↓M−2,

we see that the operator B↓ is indeed a Beurling-type operator associated with the
hyperbolic plane. Theorem 5.1 may now be formulated in these geometric-differential
operator terms.
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Theorem 7.1. (1 < p < +∞) For p = 2, we have the norm identity
∥∥∥∂↓[∂̄↓]−1

minf
∥∥∥

L2
−2(C+)

=
∥∥∥f + i

2

(
[∂̄
↓
]−1
minf + [∂↓]−1

minf
)∥∥∥

L2
−2(C+)

, f ∈ L2
−2(C+),

while for general p, we have
1

B(p)

∥∥∥f + i
2

(
[∂̄
↓
]−1
minf + [∂↓]−1

minf
)∥∥∥

Lp
−p(C+)

≤
∥∥∥∂↓[∂̄↓]−1

minf
∥∥∥

Lp
−p(C+)

≤ B(p)
∥∥∥f + i

2

(
[∂̄
↓
]−1
minf + [∂↓]−1

minf
)∥∥∥

Lp
−p(C+)

, f ∈ Lp
−p(C+).

Here, B(p) is the norm of B : Lp(C) → Lp(C). The indicated constants are optimal.

7.3. Explanation of the sharpness of the constants. Let introduce, for
real α ≥ 0, the half-plane

Cα
+ =

{
z ∈ C : Im z > −α

}
,

supplied with the metric and area measure

dsα(z) =
(1 + α)| dz|
α + Im z

, dAα(z) =
(1 + α)2 dA(z)

(α + Im z)2
,

and write
Hα = 〈Cα

+, dsα〉
for this model of the hyperbolic plane. For α = 0 we get the standard model of
the hyperbolic plane, while as α → +∞ the model (locally) flattens out to give the
Euclidean plane in the limit. We consider the associated multiplication operator

Mα[f ](z) =
Im z + α

1 + α
f(z), z ∈ Cα

+,

and the differential operators

∂↑α = Mα∂, ∂̄
↑
α = Mα∂̄, ∂↓α = M2

α∂M−1
α , ∂̄

↓
α = M2

α∂̄M−1
α .

The estimate of Theorem 7.1 for general 1 < p < +∞ now takes the form (with
obvious notation)

1

B(p)

∥∥∥f + i
2(1+α)

(
[∂̄
↓
α]−1

minf + [∂↓α]−1
minf

)∥∥∥
Lp
−p(Cα

+)
≤

∥∥∥∂↓α[∂̄
↓
α]−1

minf
∥∥∥

Lp
−p(Cα

+)

≤ B(p)
∥∥∥f + i

2(1+α)

(
[∂̄
↓
α]−1

minf + [∂↓α]−1
minf

)∥∥∥
Lp
−p(Cα

+)
, f ∈ Lp

−p(Cα
+).

As α → +∞, the geometry becomes eventually Euclidean, and the estimate becomes
1

B(p)
‖f‖Lp(C) ≤

∥∥∂∂̄
−1

f
∥∥

Lp(C)
≤ B(p)‖f‖Lp(C), f ∈ Lp(C),

which we recognize as (1.2). For this reason, the constants cannot be improved.
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