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Abstract. We show that if nom-plane contains almost all of anm-rectifiable set E ⊂ Rn, then
there exists a single (m−1)-plane V such that the radial projection of E has positive m-dimensional
measure from every point outside V .

1. Introduction

The purpose of this note is to investigate the relation between rectifiability and
radial projections πx : Rn \ {x} → Sn−1, x ∈ Rn, defined by the expression πx(y) =
(y−x)/|y−x|. Motivated by the famous result of Besicovitch and Federer concerning
orthogonal projections (see [Mat95, Theorem 18.1]), one has reason to anticipate
that the radial projections πx(E) of m-rectifiable sets E ⊂ Rn with H m(E) > 0
ought to have positive H m measure for almost all parameters x ∈ Rn, whereas the
opposite behaviour should be manifest in the purely unrectifiable case. The problem
of verifying this intuition in the unrectifiable case appears to be rather involved, and
only partial results are available (see the discussion and references in section 5); this
note complements those results by settling the rectifiable case. We show that if no
m-plane contains almost all of an m-rectifiable set E ⊂ Rn with H m(E) > 0, then
H m almost all radial projections of E have positivem-dimensional measure. We also
provide an accurate ’worst case’ description of the geometry of the exceptional set
{x ∈ Rn : H m(πx(E)) = 0}. Our studies were initiated by a question on ’directions
of rectifiable sets’, raised by Iosevich, Mourgoglou and Senger in the recent preprint
[IMS10]: a positive answer to this question is acquired in Remark 4.1.

2. Preliminaries and the main result

An H m measurable set E ⊂ Rn with H m(E) > 0 is called m-rectifiable if there
are countably many C1-embeddings fi : Rm → Rn such that

H m
(
E \

⋃
i

fi(R
m)
)

= 0.

This definition is equivalent to the classical definition of rectifiability, where we
consider coverings by Lipschitz-images instead of C1-manifolds, see [Mat95, Theo-
rem 15.21]. We include the requirement H m(E) > 0 in the definition of rectifiability
merely to avoid repetition.
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We say that a set E ⊂ Rn ism-flat, if there exists anm-plane T such that E ⊂ T .
Relaxing this condition slightly, we say that E is essentially m-flat, if H m(E\T ) = 0.
Our main result is the following.

Theorem 2.1. Let E ⊂ Rn be an m-rectifiable set, which is not essentially m-
flat. Then H m(πx(E)) > 0 for H m almost every x ∈ Rn.1 Moreover, the exceptional
set is always (m− 1)-flat.

A 0-plane is, by definition, a singleton in Rn. Note that the result fails for any
essentially flat set E ⊂ Rn. Indeed, if E essentially m-flat, then we may find an
m-plane T such that H m(E \ T ) = 0. Write

πx(E) = πx(E \ T ) ∪ πx(E ∩ T ), x ∈ Rn.

The first set on the right is H m null, since H m(E \ T ) = 0. For every x ∈ T , the
second one is a subset of an (m− 1)-sphere. Hence H m(πx(E)) = 0 for every x ∈ T .

Furthermore, the exceptional set can be an (m− 1)-plane. For this just take any
two m-planes T1 and T2 such that T1 6= T2 but V := T1 ∩ T2 is non-empty. Now V is
an (m− 1)-plane. Define E := T1 ∪ T2. Then, for every x ∈ V , the radial projection
πx(E) consists of two (m− 1)-spheres. Hence, H m(πx(E)) = 0 for every x ∈ V .

3. The key lemma

The main result is a consequence of the following lemma, which concerns the
local bilipschitz-properties of the radial projection.

Lemma 3.1. Let f : Rm → Rn be a C1-embedding, and let z0 = f(x0) be a
point such that dim f ′(x0)R

m = m. Then, if x /∈ T := z0 + f ′(x0)R
m, there exists

δ > 0 such that πx|f(Rm)∩B(z0,δ) is bilipschitz.

Proof. We may and will assume that z0 = 0. Write M := f(Rm), and fix
y = f(y), z = f(z) ∈M . Since f is differentiable at z, say, we have

y − z = f(y)− f(z) = f ′(z)(y − z) + ε(y − z)|y − z|
= f ′(x0)(y − z) + [f ′(z)− f ′(x0)](y − z) + ε(y − z)|y − z|,

where ε : Rm → Rn is, as usual, some function with the property that ε(h) → 0 as
h → 0 in Rm. Denote the three vectors on the previous line by t, e1 and e2. Since
dim f ′(x0)R

m = m, we have the inequality |t| ≥ c|y − z| for some c > 0. On the
other hand, choosing y = f(y) and z = f(z) close to z0 = 0 ensures that y and z are
close to x0, since f is an embedding. It follows that

|e1| ≤ ε|y − z| and |e2| ≤ ε|y − z|,

as soon as y, z ∈ B(0, δ) ∩M . Above ε > 0 can be made arbitrarily small by taking
δ > 0 small. Here we also needed the fact that f is continuously differentiable.
Denote by PT the orthogonal projection onto T = f ′(x0)R

m. Since t ∈ T , we may

1Note that πx(E) is not, strictly speaking, well defined, if x ∈ E. Here, and in the rest of the
paper, the notation πx(E) should be interpreted as πx(E \ {x}).



Radial projections of rectifiable sets 679

estimate

|PT (y − z)| ≥ |t| − |PT (e1)| − |PT (e2)| ≥ |t| − |e1| − |e2|
≥ |t| − ε|y − z| − ε|y − z| ≥ |t|(1− 2ε/c)

= |t|(1 + 2ε/c)
1− 2ε/c

1 + 2ε/c
≥ (|t|+ ε|y − z|+ ε|y − z|)1− 2ε/c

1 + 2ε/c

≥ (|t|+ |e1|+ |e2|)
1− 2ε/c

1 + 2ε/c
≥ |y − z|1− 2ε/c

1 + 2ε/c
, y, z ∈ B(z0, δ) ∩M.

The factor of |y− z| tends to one as ε→ 0, so this may be re-written more neatly as

|PT (y − z)| ≥ (1− ε)|y − z|, y, z ∈ B(0, δ).

Next fix x /∈ T . By making δ yet smaller if necessary, we may assume that x− y /∈ T
for any y ∈ B̄(0, δ). Hence there exists τ < 1 such that |PT (x − y)| ≤ τ |x − y|
for y ∈ B(0, δ). Now we claim that there exists c > 0 (not necessarily the same as
before) such that

(3.2) γ(y, z) ≥ c|y − z|, y, z ∈ B(0, δ) ∩M,

where γ(y, z) is the angle formed by z−x and y−x. Assume the contrary and locate
y, z ∈ B(0, δ)∩M with sin γ(y, z) ≤ ε|y− z|. Denote by w the orthogonal projection
of z − x onto the line spanned by y − x.

Then, as the picture shows,

sin γ(y, z) =
|(z − x)− w|
|x− z|

.

Hence |(z − x) − w| ≤ ε|x − z||y − z| ≤ Cε|y − z|. Thus we have shown that
z − x = λ(y − x) + v for some λ ∈ R and |v| ≤ Cε|y − z|. This yields

z − y = x+ λ(y − x) + v − y = (1− λ)(x− y) + v.

Taking PT on both sides and estimating,

(1− ε)|y − z| ≤ |PT (z − y)| ≤ |(1− λ)||PT (x− y)|+ |v|
≤ |(1− λ)| · τ · |x− y|+ |v|
≤ τ |(1− λ)(x− y) + v|+ τ |v|+ |v|
≤ [Cε(1 + τ) + τ ]|y − z|.

Since ε > 0 could be chosen arbitrarily small and τ < 1, we have reached a contra-
diction. Thus (3.2) holds.

The angle formed by any points πx(y) and πx(z) on Sn−1 is precisely γ(y, z), and
this angle is of the same order of magnitude as |πx(y)− πx(z)|. Thus

|πx(y)− πx(z)| � |γ(y, z)| ≥ c|y − z|, y, z ∈ B(0, δ) ∩M.
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Hence πx restricted to B(0, δ) ∩M is bilipschitz. �

4. Proof of the main result

Proof of Theorem 2.1. Choose a C1-embedding f1 : Rm → Rn so that M1 :=
f1(R

m) intersects E in a set of positive H m measure. Next choose a point z1 =
f1(x1) ∈ E∩M1 such that dim f ′1(x1)R

m = m and z1 is a density point of E∩M1. All
this is possible by Sard’s theorem and the fact that H m almost every point of E∩M1

is a density point. Write T1 := z1 + f ′1(x1)R
m. By our assumption, H m(E \T1) > 0.

Now repeat the previous procedure: choose a C1-embedding f2 : Rm → Rn such that
M2 := f2(R

m) intersects E \ T1 in a set of positive H m measure. Also, pick a point
z2 = f2(x2) ∈ (E \ T1)∩M2 such that, again, dim f ′2(x2)R

m = m and z2 is a density
point of (E \ T1) ∩M2. Set T2 := z2 + f ′2(x2)R

m. Then T1 6= T2.

Let x ∈ Rn. If x /∈ T1. Then, by Lemma 3.1, there exists δ > 0 such that
πx|M1∩B(z1,δ) is bilipschitz. Since E∩M1∩B(z1, δ) has positive H m measure, so does
πx(E ∩M1 ∩ B(z1, δ)). Similarly, if x /∈ T2, we find δ > 0 such that πx([E \ T1] ∩
M2 ∩ B(z2, δ)) has positive H m measure. This implies that the set of all x ∈ Rn

with H m(πx(E)) = 0 is necessarily a subset of T1 ∩ T2, which is always contained in
an (m− 1)-plane. �

Remark 4.1. In [IMS10, Conjecture 1.12], Iosevich et al. asked the following: if
E is (n− 1)-rectifiable and not (n− 1)-flat, then does the set of directions

D(E) :=

{
y − x
|y − x|

: y, x ∈ E, y 6= x

}
always have positive H n−1 measure? Lemma 3.1 implies a positive answer: one
may even replace n − 1 by any integer 0 < m < n. In fact, slightly more is true: if
E ⊂ Rn is an m-rectifiable set, which is not m-flat, then there exists x ∈ E such that
H m(πx(E)) > 0. The proof of this is almost the same as that of Theorem 2.1—only
simpler. Choose a C1-embedding f : Rm → Rn, such that M := f(Rm) intersects E
in a set of positive H m measure. Then choose a point z0 = f(x0) ∈ E∩M such that
dim f ′(x0)R

m = m and z0 is a density point of E ∩M . Write T := z0 + f ′(x0)R
m.

By our assumption E 6⊂ T , so we may choose a point x ∈ E \ T . Now Lemma 3.1
yields δ > 0 such that πx|M∩B(z0,δ) is bilipschitz. Since E ∩M ∩B(z0, δ) has positive
H m measure, so does πx(E ∩M ∩B(z0, δ)).
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5. Radial projections of unrectifiable sets

In analogue with the Besicovitch-Federer projection theorem, it seems reasonable
to conjecture that the following converse for the result in this note is also true:
the radial projections πx(E) of every purely m-unrectifiable set E ⊂ Rn are H m

null for H m almost every x ∈ E. This was recently verified for self-similar sets
in R2 satisfying the open set condition by Simon and Solomyak in [SiSo06]. In
[Mar54, Mat81] Marstrand and Mattila also proved that H m(πx(E)) > 0 can only
happen for x in a set of dimension at mostm. In the plane, at least, this upper bound
cannot be improved: Marstrand exhibited an example of a purely 1-unrectifiable set
E ⊂ R2, which projects radially onto a set of positive length in a set of Hausdorff-
dimension exactly 1. A related phenomenon was discovered by Csörnyei and Preiss
in [CsPr07]: given a purely 1-unrectifiable set E ⊂ R2 with H 1(E) < ∞, there
exists a 1-rectifiable set F ⊂ R2 with H 1(F ) < ∞ such that for H 1 almost every
x ∈ E almost every line passing through x intersects F in an infinite set.
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