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Abstract. We consider an initial boundary value problem for Maxwell’s equations in the
space-time cylinder generated by the time interval [0, T ]. For this hyperbolic type system, we derive
guaranteed and computable upper bounds of the difference between the exact solution and any
pair of vector fields that belongs to the natural admissible energy class. Our analysis is based
upon transformations of the canonical integral relation and Gronwall’s inequality and generalizes
the method suggested in [22] for the wave equation to the case of the Maxwell’s equation.

1. Introduction

In this paper, we derive computable upper bounds of the distance between the
exact solution (E, H) of an initial boundary value problem for the hyperbolic Maxwell
system and any pair of vector fields (Ẽ, H̃) belonging to the admissible energy class
of the problem. As our techniques rely on second order methods and the Maxwell
system decouples in its second order version for the electric field E and the magnetic
field H, we focus on E in our analysis. The vector field Ẽ can be considered as an
approximation of E computed with the help of a numerical method. In other words,
we deduce nonnegative functionals M (also called error majorants or upper bounds)
that depend only on Ẽ and known data (coefficients, domain, right hand side and
boundary data) and satisfy the following properties:

(1) E(E − Ẽ) ≤M(Ẽ) for all admissible Ẽ;
(2) M(Ẽ) = 0 if and only if Ẽ = E;
(3) M(Ẽ) → 0 if E(E − Ẽ) → 0.

Here, E is a suitable measure associated with the system (typically it is a L2-energy
norm defined on the corresponding space-time cylinder Ωt).

FunctionalsM provide an explicit verification of the accuracy of approximations.
The requirements (1)–(3) are quite natural. Indeed, we see that if M(Ẽ) is small,
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then Ẽ belongs to a certain neighborhood of the exact solution. Moreover, M van-
ishes only at the exact solution E. The third property shows that the majorant
M possesses the continuity property with respect to all sequences converging in the
topology induced by the energy norm E .

Estimates of such a type (often called functional a posteriori estimates) can be
derived by at least two methods. The first method is based on variational techniques
and applicable for problems that admit a variational statement. By this method a
posteriori error estimates were derived in [16, 17] and many other publications (see
the book [8] for a systematic overview). Another method is based upon the analy-
sis of the integral identity (variational formulation) that defines the corresponding
generalized solution. This method was suggested in [18], where it was also shown
that for linear elliptic equations both methods (variational and nonvariational) lead
to the same estimates. Later the nonvariational method was also applied to non-
linear elliptic problems and to certain classes of nonlinear problems in continuum
mechanics (e.g., for variational inequalities [1, 3, 4, 20]) and to initial boundary
value problems associated with parabolic type equations [19]. A consequent exposi-
tion of the ’nonvariational’ a posteriori error estimation method is presented in the
book [21]. Analogous estimates have been recently derived for elliptic problems in
exterior domains [13].

In this paper, we are concerned with an initial boundary value problem for
Maxwell’s equations. For the stationary version of this problem, functional a pos-
teriori estimates have been derived earlier in [14] (the method presented there is
applicable for bounded and unbounded domains). However, the hyperbolic Maxwell
problem essentially differs from the stationary case and the estimates are derived
by a new technique. The derivation method is also based on the analysis of a basic
integral relation but uses a rather different modus operandi. The reason for this lies
in the specific properties of the respective differential operator involving second order
time and spatial derivatives with opposite signs. We overcome the difficulties arising
due to this fact with the help of a method suggested in [22] for the wave equation,
which is closely related, and deduce computable upper bounds for the distance to
the exact solution measured in a canonical L2-energy norm.

Our main results are presented in Section 3 by Theorems 2 and 3, which pro-
vide computable and guaranteed majorants for the error measures (3.2) and (3.3).
These first (and simplest) majorants are derived under stronger assumptions on the
regularity of Ẽ (which sometimes may be difficult to guarantee in many numerical
schemes). In Section 4 we prove corresponding results under weaker assumption on
the approximation Ẽ, which are free of these drawbacks, but have a more complicated
structure. Finally, in Section 5 we estimate the error of the approximation of the
magnetic field H as well and thus the error of the approximation of the full solution
(E,H).

We note that the respective functionals generate new variational problems, where
exact lower bounds vanish and are attained only on the exact solution. In applied
analysis, the functionals can be used for a posteriori control of errors of approximate
solutions obtained by various numerical methods.
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2. Basic problem

Let Ω be an open and connected set, i.e., a domain, in R3 with Lipschitz con-
tinuous boundary Γ := ∂Ω and corresponding outward unit normal vector by ν.
Furthermore, let T > 0 and I := (0, T ). By Ωt := (0, t)× Ω and Γt := (0, t)× Γ for
all t > 0 we denote the space-time cylinder and its lateral face, respectively.

We consider the classical initial boundary value problem for Maxwell’s equation:
Find vector fields E and H (electric and magnetic field), such that

∂t E − ε−1 curl H = F in ΩT ,(2.1)

∂t H + µ−1 curl E = G in ΩT ,(2.2)
ν × E|Γ = 0 on ΓT ,(2.3)

E(0) = E(0, · ) = E0 in Ω,(2.4)
H(0) = H(0, · ) = H0 in Ω.(2.5)

Here ε and µ denote time-independent, real, symmetric and positive definite matrices
with measurable, bounded coefficients that describe properties of the media (dielec-
tricity and permeability, respectively). For the sake of brevity, matrices (matrix-
valued functions) with such properties are called ‘admissible’. We note that the
corresponding inverse matrices are admissible as well.

We note that Ω may be bounded or unbounded. Contrary to the stationary cases
(i.e., static or time-harmonic equations) the Sobolev spaces used for the solution
theory of the Cauchy problem do not differ whether the domain is bounded or not.
For instance, in exterior domains one has to work with polynomially weighted Sobolev
spaces what naturally would lead to weighted error estimates as well (for a detailed
discussion see, e.g., [5, 9, 10, 11, 12]).

By L2(Ω) we denote the usual scalar L2-Hilbert space of square integrable func-
tions on Ω and by H k(Ω), k ∈ N, the usual Sobolev spaces. H (Ω) denotes the
Hilbert space of real-valued L2-vector fields, i.e., L2(Ω,R3). In this paper, we re-
strict our analysis to the case of real-valued functions and vector fields. However, the
generalization of our method to complex-valued spaces is straight forward.

We define the spaces

H (curl, Ω) :=
{

Φ ∈ H (Ω) | curl Φ ∈ H (Ω)
}

, H (curl◦, Ω) :=
◦
C∞(Ω),

where the closure is taken in the natural graph-norm of H (curl, Ω). The homogeneous
tangential boundary condition (2.3) is generalized in H (curl◦, Ω) by Gauß’ theorem.
Equipped with their natural scalar products all these spaces are Hilbert spaces.

To formulate and obtain a proper Hilbert space solution theory for the latter
Cauchy problem, we need some more suitable Hilbert spaces. We set

H(Ω) := H (Ω)× H (Ω)

as a set and equip this space with the weighted scalar product

〈(E, H), (Φ, Ψ)〉H(Ω) := 〈Λ(E, H), (Φ, Ψ)〉H (Ω)×H (Ω) = 〈εE, Φ〉H (Ω) + 〈µH, Ψ〉H (Ω) ,

where

Λ :=

[
ε 0
0 µ

]
.
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To simplify the notation, we will write

|| · ||Ξ := || · ||L2(Ξ,R`) , 〈 · , · 〉Ξ := 〈 · , · 〉L2(Ξ,R`) , Ξ ⊂ RN ,

and for admissible matrices A

|| · ||A,Ξ :=
∣∣∣∣A1/2 ·

∣∣∣∣
Ξ

= 〈A · , · 〉1/2
Ξ .

Furthermore, we introduce the linear operator

CΛ : D(CΛ) ⊂ H(Ω) → H(Ω), (Φ, Ψ) 7→ i Λ−1 Curl(Φ, Ψ),

putting

D(CΛ) := H (curl◦, Ω)× H (curl, Ω), Curl :=

[
0 − curl

curl 0

]
.

Then, a solution of (2.1)–(2.5) is to be understood as a solution of the Cauchy
problem

(∂t− i CΛ)(E, H) = (F, G),(2.6)
(E, H)(0) = (E0, H0).(2.7)

Utilizing a slight and obvious modification (variation of constant formula) of [7,
Theorem 8.5], the Cauchy problem (2.6)–(2.7) has unique solution for all T (we may
also replace the interval I by R) by spectral theory since CΛ is self-adjoint. The
spectral theorem suggests

(E, H)(t) = exp(i tCΛ)(E0, H0) +

ˆ t

0

exp(i(t− s)CΛ)(F,G)(s) ds, t ∈ I,

as solution. We get:

Theorem 1. Let (F, G) ∈ L1(I,H(Ω)) and (E0, H0) ∈ H(Ω). Then, the Cauchy
problem (2.6)–(2.7) is uniquely solvable in

(i) C 0(I,H(Ω));
(ii) C 0(I,D(CΛ)) ∩ C 1(I,H(Ω)), if additionally

(F, G) ∈ L1(I,D(CΛ)) ∩ C 0(I,H(Ω)) and (E0, H0) ∈ D(CΛ);
(iii) C 0(I,D(C2

Λ)) ∩ C 1(I,D(CΛ)) ∩ C 2(I,H(Ω)), if additionally
(F, G) ∈ L1(I,D(C2

Λ)) ∩ C 0(I,D(CΛ)) ∩ C 1(I,H(Ω)) and (E0, H0) ∈ D(C2
Λ).

Here, (E, H) ∈ D(C2
Λ), if and only if (E,H) and (ε−1 curl H,µ−1 curl E) belong

to
D(CΛ) = H (curl◦, Ω)× H (curl, Ω).

Remark 1. (i) Theorem 1 holds if we replace the spaces C ` by spaces of vector
fields having such regularity only piecewise, i.e., C `

p, where Φ ∈ C `
p, if and only if

Φ ∈ C `−1 and Φ is piecewise C `.
(ii) To obtain the second order regularity in Theorem 1 (iii) and in view of numer-

ical applications it is sufficient to assume that (E0, H0) has H 2(Ω)-components and
that (F, G) and ε, µ have C 2(ΩT )- and C 1(ΩT )-components with bounded derivatives,
respectively.
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If (E, H) admits the second order regularity of Theorem 1 (iii), then we can apply
∂t + i CΛ to (2.6) and obtain

(∂2
t +C2

Λ)(E, H) = Λ−1(F̂ , Ĝ),

where (F̂ , Ĝ) := Λ(∂t + i CΛ)(F, G). Equivalently, we have

(∂t Λ ∂t−Curl Λ−1 Curl)(E, H) = (F̂ , Ĝ).

Since

−Curl Λ−1 Curl =

[
curl µ−1 curl 0

0 curl ε−1 curl

]

the latter equation decouples for the electric field E and magnetic field H. Below
we discuss the second order system for the electric field E, which reads in classical
terms

(∂t ε ∂t + curl µ−1 curl)E = F̂ in ΩT ,(2.8)
ν × E|Γ = 0 on ΓT ,(2.9)

E(0) = E0 in Ω,(2.10)

∂t E(0) = E ′
0 := ε−1 curl H0 + F (0) in Ω.(2.11)

Henceforth, we assume that for our data (F, G), (E0, H0) and ε, µ the assumptions
of Theorem 1 (iii) or Remark 1 (ii) hold, which guarantee the second order regularity
of Theorem 1.

Remark 2. Let us impose proper regularity assumptions on the data. We have
seen that a solution of the first order problem (2.1)–(2.5) solves also the second order
problem (2.8)–(2.11). On the other hand, a solution of the second order problem
(2.8)–(2.11) provides also a solution of the original first order problem (2.1)–(2.5).
Hence, these two problems are equivalent and uniquely solvable since (2.1)–(2.5) is
uniquely solvable. To prove the latter fact it suffices to set

H(t) :=

ˆ t

0

(G(s)− µ−1 curl E(s)) ds + H0.

Then, (2.3) and (2.4) hold and (2.2) and (2.5) follow directly. Furthermore, to prove
(2.1) we use (2.8) and the above definition of H and obtain

∂t E(t) =

ˆ t

0

∂2
s E(s) ds + E ′

0 = −ε−1 curl

ˆ t

0

µ−1 curl E(s) ds +

ˆ t

0

ε−1F̂ (s) ds + E ′
0

= ε−1 curl H(t) +

ˆ t

0

(ε−1F̂ (s)− ε−1 curl G(s)︸ ︷︷ ︸
=∂s F (s)

) ds + E ′
0 − ε−1 curl H0︸ ︷︷ ︸

=F (0)

.

3. First form of the deviation majorant

Let Ẽ be an approximation of E. In this section, we assume that

Ẽ ∈ C 1
p(I,H (curl, Ω)) ∩ C 2

p(I,H (Ω)).(3.1)

Our goal is to find a computable upper bound for the error

e := E − Ẽ



666 Dirk Pauly, Sergey Repin and Tuomo Rossi

associated with Ẽ. For all t ∈ I and ρ ∈ (0, 1) we define two nonnegative functions

nΦ,ρ(t) := ||Φ||2ε,µ−1,ρ,Ω (t) := ||∂t Φ||2ε,Ω (t) + ρ ||curl Φ||2µ−1,Ω (t),(3.2)

NΦ,ρ(t) := ||Φ||2ε,µ−1,ρ,Ωt
:= ||∂t Φ||2ε,Ωt

+ ρ ||curl Φ||2µ−1,Ωt
,(3.3)

which generate natural energy norms for the accuracy evaluation. These functions
depend only on t. Henceforth, we also use a simplified notation and write nΦ,ρ instead
of nΦ,ρ(t). In view of Fubini’s theorem these quantities are joined by the relations

N ′
Φ,ρ = nΦ,ρ, NΦ,ρ(t) =

ˆ t

0

nΦ,ρ(s) ds.

Let Y be a vector field in C 1
p(I,H (curl, Ω)). We introduce the quantities

F(Ẽ, Y ) := ε ∂2
t Ẽ + curl Y − F̂ , G(Ẽ, Y ) := µ−1 curl Ẽ − Y,

and the weighted sum of their norms

gρ,γ(Ẽ, Y ; t) := γ−1
∣∣∣
∣∣∣F(Ẽ, Y )

∣∣∣
∣∣∣
2

ε−1,Ωt

+ (γρ)−1
∣∣∣
∣∣∣∂t G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ωt

+ (1− ρ)−1
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t),

where γ is a positive constant.
Upper bounds of ne,ρ and Ne,ρ can be presented in different forms. Below we

derive the simplest form of the majorant.

3.1. Basic form of the error majorant.

Theorem 2. Let Ẽ be an approximation satisfying (3.1) and ∂t Ẽ ∈ H (curl◦, Ω)
for all t ∈ I. Then:

(i) For all t ∈ I

ne,ρ(t) ≤ inf
Y,γ

mρ,γ(Ẽ, Y ; t), Ne,ρ(t) ≤ inf
Y,γ

Mρ,γ(Ẽ, Y ; t),(3.4)

where

mρ,γ(Ẽ, Y ; t) := γeγt

ˆ t

0

e−γsfρ,γ(Ẽ, Y ; s) ds + fρ,γ(Ẽ, Y ; t),

Mρ,γ(Ẽ, Y ; t) := eγt

ˆ t

0

e−γsfρ,γ(Ẽ, Y ; s) ds,

fρ,γ(Ẽ, Y ; t) := gρ,γ(Ẽ, Y ; t) + z+(e, Ẽ, Y ; 0),

z+(e, Ẽ, Y ; t) := ne,1(t) + 2
∣∣∣
〈
G(Ẽ, Y ), curl e

〉
Ω

∣∣∣ (t),

and the infima are taken over γ ∈ R+ and Y ∈ C 1
p(I,H (curl, Ω)).

(ii) If Ẽ(0) = E0, then for any positive γ, the majorants mρ,γ(Ẽ, Y ; · ) and
Mρ,γ(Ẽ, Y ; · ) vanish if and only if Ẽ coincides with the exact solution E
and Y coincides with µ−1 curl E.

Remark 3. (i) We outline that the functionals fρ,γ(Ẽ, Y ; · ) and mρ,γ(Ẽ, Y ; · ),
Mρ,γ(Ẽ, Y ; · ) depend only on known data, the approximation Ẽ, the free variable Y
and the free parameters ρ, γ, and do not involve the unknown exact solution E.
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(ii) The quantities F(Ẽ, Y ) and G(Ẽ, Y ) represent errors in two basic relations
that jointly form (2.8).

(iii) The term z+(e, Ẽ, Y ; 0) represents the error in the initial conditions, i.e.,
the error at t = 0. It can be replaced by the weaker (maybe even negative) term
z(e, Ẽ, Y ; 0), where

z(e, Ẽ, Y ; t) := ne,1(t) + 2
〈
G(Ẽ, Y ), curl e

〉
Ω

(t)

= ||∂t e||2ε,Ω (t) + ||curl e||2µ−1,Ω (t) + 2
〈
G(Ẽ, Y ), curl e

〉
Ω

(t).

But, then Theorem 2 (ii) might not hold. We note that z+(e, Ẽ, Y ; 0) = 0 if and only
if ∂t e(0) = 0 and curl e(0) = 0, but z(e, Ẽ, Y ; 0) = 0 if ∂t e(0) = 0 and curl e(0) = 0.

(iv) The free variable Y may be chosen even from the larger space L2(I,H (curl, Ω))

∩C 1
p(I,H (Ω)).
All these quantities are explicitly computable once the approximate solution Ẽ

has been constructed.

Proof of Theorem 2. We start with deriving first order ordinary differential
inequalities, which, then lead to the estimates by Gronwall’s lemma (see Appendix).
Since ∂t e belongs to H (curl◦, Ω) for all t ∈ I, we have

∂t ne,1(t) = 2
〈
ε ∂2

t e, ∂t e
〉

Ω
(t) + 2

〈
µ−1 curl e, curl ∂t e

〉
Ω

(t)

= 2
〈
F̂ − ε ∂2

t Ẽ, ∂t e
〉

Ω
(t)− 2

〈
µ−1 curl Ẽ − Y + Y, curl ∂t e

〉
Ω

(t)

= −2
〈
F(Ẽ, Y ), ∂t e

〉
Ω

(t)− 2 ∂t

〈
G(Ẽ, Y ), curl e

〉
Ω

(t)

+ 2
〈
∂t G(Ẽ, Y ), curl e

〉
Ω

(t).

Thus, by integration

ne,1(t) = z(e, Ẽ, Y ; 0)− 2
(〈
G(Ẽ, Y ), curl e

〉
Ω

(t)
︸ ︷︷ ︸

=:S1(t)

−
〈
∂t G(Ẽ, Y ), curl e

〉
Ωt︸ ︷︷ ︸

=:S2(t)

+
〈
F(Ẽ, Y ), ∂t e

〉
Ωt︸ ︷︷ ︸

=:S3(t)

)
.

(3.5)

We estimate the terms S1, S2 and S3 as follows:

2|S1(t)| ≤ α ||curl e||2µ−1,Ω (t) + α−1
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t),

2|S2(t)| ≤ β ||curl e||2µ−1,Ωt
+ β−1

∣∣∣
∣∣∣∂t G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ωt

,

2|S3(t)| ≤ γ ||∂t e||2ε,Ωt
+ γ−1

∣∣∣
∣∣∣F(Ẽ, Y )

∣∣∣
∣∣∣
2

ε−1,Ωt

.

(3.6)

Here, α, β and γ are arbitrary nonnegative constants. Let α := 1−ρ. Since ρ ∈ (0, 1),
we see that α ∈ (0, 1). Next, we set β := γρ ∈ R+. Inserting (3.6) into (3.5), we
obtain

ne,ρ ≤ γNe,ρ + fρ,γ(Ẽ, Y ; · ).
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This relation has two equivalent forms, namely

ne,ρ(t) ≤ γ

ˆ t

0

ne,ρ(s) ds + fρ,γ(Ẽ, Y ; t)

and
N ′

e,ρ(t) ≤ γNe,ρ(t) + fρ,γ(Ẽ, Y ; t).

We apply Gronwall’s inequalities, Lemma 1 and 2 of the appendix, and obtain (3.4).
It remains to prove the second part (ii). Substitute Ẽ = E and Y = µ−1 curl E

into the majorants. It is trivial that, then

F(Ẽ, Y ) = G(Ẽ, Y ) = 0, gρ,γ(Ẽ, Y ; · ) = ne,1(0) = z+(e, Ẽ, Y ; 0) = 0,

fρ,γ(Ẽ, Y ; · ) = 0,

so mρ,γ(Ẽ, Y ; · ) = 0 and Mρ,γ(Ẽ, Y ; · ) = 0. Assume that mρ,γ(Ẽ, Y ; · ) = 0 or
Mρ,γ(Ẽ, Y ; · ) = 0. Then,

fρ,γ(Ẽ, Y ; · ) = gρ,γ(Ẽ, Y ; · ) = z+(e, Ẽ, Y ; 0) = ne,1(0) = 0.

In particular, ∂t e = 0, which imlies e = e(0) = 0. Therefore, Ẽ = E and Y =
µ−1 curl E since gρ,γ(Ẽ, Y ; · ) = 0 implies G(Ẽ, Y ) = 0. ¤

Remark 4. Theorem 2 implies new variational formulations for the second order
problem (2.8)–(2.11). Indeed, for any nonnegative γ the functional mρ,γ(Ẽ, Y ; · )
attains its minimal value (which is equal to zero) if and only if the vector fields Ẽ
and µY coincide with the exact solution and its curl. All other vector fields (from
the above defined functional classes) give larger values to mρ,γ(Ẽ, Y ; · ). In view of
Remark 2, this assertion also holds for the original first order problem (2.1)–(2.5).
Of course, these remarks hold also for the functionals Mρ,γ(Ẽ, Y ; · ).

3.2. Refinement of the estimates. We can derive sharper estimates if ρ and
γ in Theorem 2 are allowed to depend on time, i.e., ρ : I → (0, 1) and γ : I → R+.
Then, we replace nΦ,ρ(t) and NΦ,ρ(t) by

ñΦ,ρ(t) := ||∂t Φ||2ε,Ω (t) + ρ(t) ||curl Φ||2µ−1,Ω (t),

ÑΦ,ρ,γ(t) :=

ˆ t

0

γ(s)ñΦ,ρ(s) ds =

ˆ t

0

γ(s)
( ||∂t Φ||2ε,Ω (s) + ρ(s) ||curl Φ||2µ−1,Ω (s)

)
ds,

respectively. In this case, Ñ ′
Φ,ρ,γ = γñΦ,ρ and we modify (3.6) as follows:

2|S1(t)| ≤ α(t) ||curl e||2µ−1,Ω (t) + α−1(t)
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t),

2|S2(t)| ≤
ˆ t

0

β(s) ||curl e||2µ−1,Ω (s) ds +

ˆ t

0

β−1(s)
∣∣∣
∣∣∣∂t G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(s) ds,

2|S3(t)| ≤
ˆ t

0

γ(s) ||∂t e||2ε,Ω (s) ds +

ˆ t

0

γ−1(s)
∣∣∣
∣∣∣F(Ẽ, Y )

∣∣∣
∣∣∣
2

ε−1,Ω
(s) ds.

(3.7)

By (3.5) and (3.7) we find that

ñe,ρ(t) ≤
ˆ t

0

γ(s)ñe,ρ(s) ds + f̃ρ,γ(Ẽ, Y ; t),

Ñ ′
e,ρ,γ(t) ≤ γ(t)Ñe,ρ,γ(t) + γ(t)f̃ρ,γ(Ẽ, Y ; t),
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where

f̃ρ,γ(Ẽ, Y ; t) := g̃ρ,γ(Ẽ, Y ; t) +

{
z(e, Ẽ, Y ; 0) or
z+(e, Ẽ, Y ; 0)

with

g̃ρ,γ(Ẽ, Y ; t) := (1− ρ)−1(t)
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t) +

ˆ t

0

γ−1(s)
∣∣∣
∣∣∣F(Ẽ, Y )

∣∣∣
∣∣∣
2

ε−1,Ω
(s) ds

+

ˆ t

0

(γρ)−1(s)
∣∣∣
∣∣∣∂t G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(s) ds.

We apply Lemma 1 and 2 of the appendix, respectively, and arrive at the following
result:

Theorem 3. Let (3.1) hold and ∂t Ẽ ∈ H (curl◦, Ω) for all t ∈ I. Then, for all
t ∈ I

ñe,ρ(t) ≤ inf
Y,γ

m̃ρ,γ(Ẽ, Y ; t), Ñe,ρ,γ(t) ≤ inf
Y,γ

M̃ρ,γ(Ẽ, Y ; t),(3.8)

where

m̃ρ,γ(Ẽ, Y ; t) := eΓ(t)

ˆ t

0

e−Γ(s)γ(s)f̃ρ,γ(Ẽ, Y ; s) ds + f̃ρ,γ(Ẽ, Y ; t),

M̃ρ,γ(Ẽ, Y ; t) := eΓ(t)

ˆ t

0

e−Γ(s)γ(s)f̃ρ,γ(Ẽ, Y ; s) ds, Γ(t) :=

ˆ t

0

γ(s) ds,

and the infima are taken over γ : I → R+ and Y ∈ C 1
p(I,H (curl, Ω)).

Remark 5. It is not difficult to prove that the assertion (ii) of Theorem 2 also
holds for the majorants m̃ and M̃ if we use z+(e, Ẽ, Y ; 0). If γ and ρ are constants,
then

m̃ρ,γ(Ẽ, Y ; t) = γeγt

ˆ t

0

e−γsf̃ρ,γ(Ẽ, Y ; s) ds + f̃ρ,γ(Ẽ, Y ; t),

M̃ρ,γ(Ẽ, Y ; t) = γeγt

ˆ t

0

e−γsf̃ρ,γ(Ẽ, Y ; s) ds.

In this case Ñe,ρ,γ = γÑe,ρ,1 and we arrive at the same estimates as in Theorem 2. It
is clear that Remarks 3 and 4 hold as well.

4. Second form of the deviation majorant

The estimates presented in Theorems 2 and 3 are derived for the approximations
Ẽ having second order time derivatives. Sometimes, this requirement may be difficult
to satisfy. For example standard numerical methods for second order problems often
provide approximate solutions having only first order time derivatives (understood in
the classical sense). In this section, we derive estimates applicable for approximations
of such a type.

As above, Ẽ is an approximation of E, but now we also introduce a vector field
Ẽt considered as an approximation of ∂t E. Hence, we define both the error and the
error of the time derivative separately by

e := E − Ẽ, et := ∂t E − Ẽt.
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We note that in general Ẽt 6= ∂t Ẽ and therefore et 6= ∂t e. Henceforth, we assume
that

e, et ∈ C 1
p(I,H (curl, Ω)), et ∈ H (curl◦, Ω) for all t ∈ I,

which is equivalent to

Ẽ, Ẽt ∈ C 1
p(I,H (curl, Ω)), Ẽt ∈ H (curl◦, Ω) for all t ∈ I.(4.1)

(We note that the regularity Ẽt ∈ C 1
p(I,H (Ω)) ∩ L2(I,H (curl, Ω)) would be enough

for Ẽt.) With two nonnegative, real functions ρ : I → (0, 1) and γ : I → R+ we define
two energy norms

nΦ,Ψ,ρ(t) := ||Φ||2ε,Ω (t) + ρ(t) ||curl Ψ||2µ−1,Ω (t),

NΦ,Ψ,ρ,γ(t) :=

ˆ t

0

γ(s)nΦ,Ψ,ρ(s) ds =

ˆ t

0

γ(s)
( ||Φ||2ε,Ω (s) + ρ(s) ||Ψ||2µ−1,Ω (s)

)
ds.

Then, N ′
Φ,Ψ,ρ,γ = γnΦ,Ψ,ρ.

Theorem 4. Assume that (4.1) holds. Then, for all t ∈ I

net,e,ρ(t) ≤ inf
Y,γ

mρ,γ(Ẽ, Ẽt, Y ; t), Net,e,ρ,γ(t) ≤ inf
Y,γ

Mρ,γ(Ẽ, Ẽt, Y ; t),(4.2)

where

mρ,γ(Ẽ, Ẽt, Y ; t) := eΓ(t)

ˆ t

0

e−Γ(s)γ(s)fρ,γ(Ẽ, Ẽt, Y ; s) ds + fρ,γ(Ẽ, Ẽt, Y ; t),

Mρ,γ(Ẽ, Ẽt, Y ; t) := eΓ(t)

ˆ t

0

e−Γ(s)γ(s)fρ,γ(Ẽ, Ẽt, Y ; s) ds, Γ(t) :=

ˆ t

0

γ(s) ds,

and the infima are taken over γ : I → R+ and Y ∈ C 1
p(I,H (curl, Ω)). Here,

fρ,γ(Ẽ, Ẽt, Y ; t) := gρ,γ(Ẽ, Ẽt, Y ; t) + z(e, et, Ẽ, Y ; 0),

gρ,γ(Ẽ, Ẽt, Y ; t) := (1− ρ)−1(t)
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t) + 2

〈
G(Ẽ, Y ), curl(Ẽt − ∂t Ẽ)

〉
Ωt

+

ˆ t

0

γ−1(s)
∣∣∣
∣∣∣F̂(Ẽt, Y )

∣∣∣
∣∣∣
2

ε−1,Ω
(s) ds

+

ˆ t

0

(γρ)−1(s)
∣∣∣
∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣
∣∣∣
2

µ,Ω
(s) ds,

z(e, et, Ẽ, Y ; t) := net,e,1(t) + 2
〈
G(Ẽ, Y ), curl e

〉
Ω

(t),

where F̂(Ẽt, Y ) := ε ∂t Ẽt + curl Y − F̂ .

Remark 6. If Ẽt = ∂t Ẽ, then the estimates coincide with those of Theorem 3.
Furthermore, Remark 3 holds in a similar way. Particularly, Y may be chosen from
the larger space

L2(I,H (curl, Ω)) ∩ C 1
p(I,H (Ω)).

If γ > 0 is constant, then

Net,e,ρ,γ(t) = γNet,e,ρ,1(t) = γ

ˆ t

0

net,e,ρ(s) ds, Γ(t) = γt,
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and the upper bounds simplyfy, i.e.,

mρ,γ(Ẽ, Ẽt, Y ; t) = γeγt

ˆ t

0

e−γsfρ,γ(Ẽ, Ẽt, Y ; s) ds + fρ,γ(Ẽ, Ẽt, Y ; t),

Mρ,γ(Ẽ, Ẽt, Y ; t) = γeγt

ˆ t

0

e−γsfρ,γ(Ẽ, Ẽt, Y ; s) ds.

If both γ and ρ are constants, then we have

NΦ,Ψ,ρ,γ = γNΦ,Ψ,ρ, NΦ,Ψ,ρ := NΦ,Ψ,ρ,1.

In this case,

nΦ,Ψ,ρ(t) = ||Φ||2ε,Ω (t) + ρ ||curl Ψ||2µ−1,Ω (t),

NΦ,Ψ,ρ(t) = ||Φ||2ε,Ωt
+ ρ ||curl Ψ||2µ−1,Ωt

,

and

nΦ,Ψ,ρ = N ′
Φ,Ψ,ρ, NΦ,Ψ,ρ(t) =

ˆ t

0

nΦ,Ψ,ρ(s) ds.

We arrive at a simplified form of the error majorant.

Theorem 5. Let ρ ∈ (0, 1) and Ẽ be an approximation satisfying (4.1). Then,
for all t ∈ I

net,e,ρ(t) ≤ inf
Y,γ

m̂ρ,γ(Ẽ, Ẽt, Y ; t), Net,e,ρ(t) ≤ inf
Y,γ

M̂ρ,γ(Ẽ, Ẽt, Y ; t),(4.3)

where

m̂ρ,γ(Ẽ, Ẽt, Y ; t) := γeγt

ˆ t

0

e−γsfρ,γ(Ẽ, Ẽt, Y ; s) ds + fρ,γ(Ẽ, Ẽt, Y ; t),

M̂ρ,γ(Ẽ, Ẽt, Y ; t) := eγt

ˆ t

0

e−γsfρ,γ(Ẽ, Ẽt, Y ; s) ds,

and the infima are taken over γ ∈ R+ and Y ∈ C 1
p(I,H (curl, Ω)). Here,

fρ,γ(Ẽ, Ẽt, Y ; t) := gρ,γ(Ẽ, Ẽt, Y ; t) + z(e, et, Ẽ, Y ; 0),

gρ,γ(Ẽ, Ẽt, Y ; t) := (1− ρ)−1
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t) + 2

〈
G(Ẽ, Y ), curl(Ẽt − ∂t Ẽ)

〉
Ωt

+ γ−1
∣∣∣
∣∣∣F̂(Ẽt, Y )

∣∣∣
∣∣∣
2

ε−1,Ωt

+ (γρ)−1
∣∣∣
∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣
∣∣∣
2

µ,Ωt

.

Remark 7. If Ẽt = ∂t Ẽ, then the estimates coincide with those of Theorem 2.
Again, Remark 3 holds in a similar way. In particular, Y can be chosen from

L2(I,H (curl, Ω)) ∩ C 1
p(I,H (Ω)).

Remark 8. There are different ‘zero terms’ possible. The (maybe negative)
term

z(e, et, Ẽ, Y ; 0) = net,e,1(0) + 2
〈
G(Ẽ, Y ), curl e

〉
Ω

(0)

can be replaced by the nonnegative term

z+(e, et, Ẽ, Y ; 0) := net,e,1(0) + 2
∣∣∣
〈
G(Ẽ, Y ), curl e

〉
Ω

∣∣∣ (0)

= ||et||2ε,Ω (0) + ||curl e||2µ−1,Ω (0) + 2
∣∣∣
〈
G(Ẽ, Y ), curl e

〉
Ω

∣∣∣ (0)
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or even by

ẑ+(e, et, Ẽ, Y ; 0) := ||et||2ε,Ω (0) + 2 ||curl e||2µ−1,Ω (0) +
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(0),

which are easily computable. We have

|z(e, et, Ẽ, Y ; 0)| ≤ z+(e, et, Ẽ, Y ; 0) ≤ ẑ+(e, et, Ẽ, Y ; 0).

Similar manipulations can be done with the term 2
〈
G(Ẽ, Y ), curl(Ẽt − ∂t Ẽ)

〉
Ωt

,

taking, e.g., it’s absolute value, which leads to some nonnegative g̃ρ,γ(Ẽ, Ẽt, Y ; t).
Moreover,

(i) z(e, et, Ẽ, Y ; 0) = 0 if et(0) = 0 and curl e(0) = 0,
(ii) z+(e, et, Ẽ, Y ; 0) = 0 if any only if et(0) = 0 and curl e(0) = 0,
(iii) ẑ+(e, et, Ẽ, Y ; 0) = 0 if any only if et(0) = 0 and curl e(0) = 0 and µY (0) =

curl Ẽ(0),
(iv) g̃ρ,γ(Ẽ, Ẽt, Y ; · ) = 0 if and only if µY = curl Ẽ and ∂t µY = curl Ẽt and

curl Y = F̂ − ε ∂t Ẽt.
Therefore, choosing the functional fρ,γ(Ẽ, Ẽt, Y ; · ) with the quantities z+(e, et, Ẽ, Y ;

0) or ẑ+(e, et, Ẽ, Y ; 0) and g̃ρ,γ(Ẽ, Ẽt, Y ; · ) we see that the functional mρ,γ(Ẽ, Ẽt, Y ; · )
vanishes, if and only if

Ẽt(0) = E ′
0, curl Ẽ(0) = curl E0,(4.4)

µY = curl Ẽ, ∂t µY = curl Ẽt, curl Y = F̂ − ε ∂t Ẽt.(4.5)

Thus, et and curl e vanish, if and only if net,e,ρ = 0, which is implied by

mρ,γ(Ẽ, Ẽt, Y ; · ) = 0.

The latter constraint is equivalent to (4.4) and (4.5). The same holds true for the
energy norms Net,e,ρ, Net,e,ρ,γ and the functionals Mρ,γ(Ẽ, Ẽt, Y ; · ), m̂ρ,γ(Ẽ, Ẽt, Y ; · )
and M̂ρ,γ(Ẽ, Ẽt, Y ; · ).

Proof of Theorem 4. We follow in close lines the proofs of Theorems 2 and 3.
Since et ∈ H (curl◦, Ω) and ∂t e = et + Ẽt − ∂t Ẽ, we have

∂t net,e,1(t) = 2 〈ε ∂t et, et〉Ω (t) + 2
〈
µ−1 curl e− Y + Y, curl et

〉
Ω

(t)

+ 2
〈
µ−1 curl e, curl(Ẽt − ∂t Ẽ)

〉
Ω

(t)

= 2
〈
F̂ − curl Y − ε ∂t Ẽt, et

〉
Ω

(t)− 2
〈
G(Ẽ, Y ), curl et

〉
Ω

(t)

+ 2
〈
curl(Ẽt − ∂t Ẽ), µ−1 curl e

〉
Ω

(t)

= −2
〈
F̂(Ẽt, Y ), et

〉
Ω

(t)− 2 ∂t

〈
G(Ẽ, Y ), curl e

〉
Ω

(t)

+ 2
〈
G(Ẽ, Y ), curl(Ẽt − ∂t Ẽ)

〉
Ω

(t)

+ 2

〈
µ−1 curl(Ẽt − ∂t Ẽ) + ∂t G(Ẽ, Y )︸ ︷︷ ︸

=µ−1 curl Ẽt−∂t Y

, curl e

〉

Ω

(t).
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Thus, by integration

net,e,1(t) = z(e, et, Ẽ, Y ; 0) + 2
〈
G(Ẽ, Y ), curl(Ẽt − ∂t Ẽ)

〉
Ωt

− 2
( 〈
G(Ẽ, Y ), curl e

〉
Ω

(t)
︸ ︷︷ ︸

=:S1(t)

−
〈
µ−1 curl Ẽt − ∂t Y, curl e

〉
Ωt︸ ︷︷ ︸

=:S2(t)

+
〈
F̂(Ẽt, Y ), et

〉
Ωt︸ ︷︷ ︸

=:S3(t)

)
.

(4.6)

If Ẽt = ∂t Ẽ, then (4.6) coincides with (3.5). As before, we choose α := 1 − ρ and
β := γρ and estimate the scalar products S` as follows:

2|S1(t)| ≤ α(t) ||curl e||2µ−1,Ω (t) + α−1(t)
∣∣∣
∣∣∣G(Ẽ, Y )

∣∣∣
∣∣∣
2

µ,Ω
(t),

2|S2(t)| ≤
ˆ t

0

β(s) ||curl e||2µ−1,Ω (s) ds

+

ˆ t

0

β−1(s)
∣∣∣
∣∣∣µ−1 curl Ẽt − ∂t Y

∣∣∣
∣∣∣
2

µ,Ω
(s) ds,

2|S3(t)| ≤
ˆ t

0

γ(s) ||et||2ε,Ω (s) ds +

ˆ t

0

γ−1(s)
∣∣∣
∣∣∣F̂(Ẽt, Y )

∣∣∣
∣∣∣
2

ε−1,Ω
(s) ds.

(4.7)

Inserting (4.7) into (4.6) yields

net,e,ρ(t) ≤
ˆ t

0

γ(s)net,e,ρ(s) ds + fρ,γ(Ẽ, Ẽt, Y ; t),

N ′
et,e,ρ,γ(t) ≤ γ(t)Net,e,ρ,γ(t) + γ(t)fρ,γ(Ẽ, Ẽt, Y ; t).

Finally, we apply Gronwall’s inequalities, Lemma 1 and 2 of the appendix, and
complete the proof. ¤

Theorem 6. Let approximations Ẽ, Ẽt and Y as in Theorem 4 or Theorem 5
be given. Moreover, let all the functionals be defined with the variants using the
nonnegative terms. Then, the following two statements are equivalent:

(i) Ẽ(0) = E0 and Ẽt = ∂t Ẽ and mρ,γ(Ẽ, Ẽt, Y ; · ) = 0.
(ii) Ẽ = E and Ẽt = ∂t E and µY = curl E.

The proof follows from the fact that et = 0 implies the relation

e(t) =

ˆ t

0

(Ẽt − ∂t Ẽ)(s) ds + e(0).

Theorem 6 has a clear meaning. It shows that if the approximations Ẽ, Ẽt sat-
isfy Ẽt = ∂t Ẽ and the first initial condition Ẽ(0) = E0 exactly, then the functional
mρ,γ(Ẽ, Ẽt, Y ; · ) vanishes if and only if the approximation Ẽ equals E and µY equals
curl E. The assertions of the latter theorem remain valid if we replace the functional
mρ,γ(Ẽ, Ẽt, Y ) by Mρ,γ(Ẽ, Ẽt, Y ; · ), m̂ρ,γ(Ẽ, Ẽt, Y ; · ) or M̂ρ,γ(Ẽ, Ẽt, Y ; · ). Further-
more, we get again new variational formulations for our problems.
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5. Estimates for the approximation of the whole solution

By (2.6) (or the basic equations (2.1), (2.2)) we also get estimates for the errors
h, ht of the magnetic fields H, ∂t H and their approximations H̃, H̃t. E.g., by adding
−(Ẽt, H̃t) + i CΛ(Ẽ, H̃) to (2.6) we obtain

(et, ht)− i CΛ(e, h) = (F̌ , Ǧ) := (F,G)− (Ẽt, H̃t) + i CΛ(Ẽ, H̃),

which reads explicitly

et − ε−1 curl h = F̌ = F − Ẽt + ε−1 curl H̃,

ht + µ−1 curl e = Ǧ = G− H̃t − µ−1 curl Ẽ.

Therefore, we can estimate

n̂ρ[ht, h](t) := ρ(t) ||ht||2µ,Ω (t) + ||curl h||2ε−1,Ω (t)

≤ 2net,e,ρ(t) + 2
∣∣∣∣F̌

∣∣∣∣2
ε,Ω

(t) + 2
∣∣∣∣Ǧ

∣∣∣∣2
µ,Ω

(t)

≤ 2 inf
Y,γ

mρ,γ(Ẽ, Ẽt, Y ; t) + 2
∣∣∣∣F̌

∣∣∣∣2
ε,Ω

(t) + 2
∣∣∣∣Ǧ

∣∣∣∣2
µ,Ω

(t),

which yields

net,e,ρ(t) + n̂ρ[ht, h](t)

= ||et||2ε,Ω (t) + ρ(t) ||curl e||2µ−1,Ω (t) + ρ(t) ||ht||2µ,Ω (t) + ||curl h||2ε−1,Ω (t)

≤ 3 inf
Y,γ

mρ,γ(Ẽ, Ẽt, Y ; t) + 2
∣∣∣∣F̌

∣∣∣∣2
ε,Ω

(t) + 2
∣∣∣∣Ǧ

∣∣∣∣2
µ,Ω

(t).

Of course, similar estimates hold for the other norms and functionals and the esti-
mates simplify in an obvious way if ρ or γ are positive constants. The vector fields
(F̌ , Ǧ) measure the error in the original first order equation (2.6). Moreover, (et, ht)
may be replaced by ∂t(e, h) if for the approximations sufficient regularity is available.
In this case, the error in the first order equation is

(F̌ , Ǧ) = (F,G)− (∂t− i CΛ)(Ẽ, H̃) = (∂t− i CΛ)(e, h).

Appendix A. Gronwall inequalities

Gronwall’s inequalities (in the differential and integral forms) are widely used in
the theory of ordinary differential equations. For the convenience of the reader, we
present below two forms of these estimates, which are convenient for our analysis.
Since these estimates slightly differ from commonly known forms (as, e.g., in [2]), we
supply two lemmas.

Lemma 1. (Differential form) Let u ∈ C 1
p(I) := C 1

p(I,R) and ϕ, ψ ∈ C 0(I) :=

C 0(I,R) with ϕ ≥ 0. If the inequality

u′ ≤ ϕu + ψ

holds in I, then

u(t) ≤ exp(Φ(t))
(
u(0) +

ˆ t

0

exp(−Φ(s))ψ(s) ds
)
, Φ(t) :=

ˆ t

0

ϕ(s) ds,

holds for all t ∈ I.
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If ϕ is a nonnegative constant, then for all t ∈ I

u(t) ≤ exp(ϕt)
(
u(0) +

ˆ t

0

exp(−ϕs)ψ(s) ds
)
.

If ψ ≤ c ∈ R, then for all t ∈ I we have

u(t) ≤ (u(0) + ct) exp(Φ(t)).

Lemma 2. (Integral form) Let u, ϕ, ψ ∈ C 0(I) with ϕ ≥ 0. If for all t ∈ I

u(t) ≤
ˆ t

0

ϕ(s)u(s) ds + ψ(t),

then for all t ∈ I

u(t) ≤ exp(Φ(t))

ˆ t

0

exp(−Φ(s))ϕ(s)ψ(s) ds + ψ(t).

If ϕ is a nonnegative constant, then for all t ∈ I

u(t) ≤ ϕ exp(ϕt)

ˆ t

0

exp(−ϕs)ψ(s) ds + ψ(t).

If ψ ≤ c ∈ R, then for all t ∈ I

u(t) ≤ c exp(Φ(t)).
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