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Abstract. Let © C R2 be a domain. Suppose that f € #5'(Q;R?) is a homeomorphism.

loc
Then the components z(w), y(w) of the inverse f=! = (z,y): ' —  have total variations given

by
At
vil@) = [ |3

1. Introduction

Let 2 C R? and ' C R? be domains. Recently, homeomorphisms f = (u,v):

Q) which are a.e. differentiable together with their inverses f~! = (x,y): & ontg
Q2 have been intensively studied (see [9], [11]).

onto

A homeomorphism f: Q — €' which belongs to the Sobolev space 7/15(’:1(@; R?)
is called a #1''-homeomorphism. If also f~!is a #1''-homeomorphism, we say that f
is a bi-Sobolev map (see [13]). We recall that a #1''-homeomorphism is differentiable
a.e. thanks to the well known Gehring-Lehto Theorem (see [6], Theorem 2).

If we adopt the following notations:

f(y) = (u(z,y), v(z,y)) for (z,y) €,
FHu,v) = (2(u,0), y(u,v))  for (u,v) €
then the bi-Sobolev condition for f and f~! can be precisely expressed by

of
dz, |Vz|( :/ ’ dz.
vl @) = [ |2

onto
—

(1.1) Ug, Uy, Vg, Uy € Ly ()
and
(].2) xuwleyluyv E Llloc(Q,)’

The following result derives from [3],[9] and [13].
Theorem 1.1. If f: Q 28 ) is a bi-Sobolev map, then

(1.3) /Q|Df|dz:/9/|Df_1|dw.
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If f is an a.e. differentiable homeomorphism, then the Jacobian determinant J;
satisfies either the inequality J; > 0 or J; < 0 a.e. ([2], [12]). For simplicity let us
assume J¢(z) > 0 for a.e. z € Q.

Let us point out that if the Jacobians J; of f and Jy-1 of f~! are strictly positive
a.e., it is possible to prove (1.3) by mean of the area formula (see Sections 2 and 3).
On the other hand, bi-Sobolev mappings do not enjoy such a property; it may happen
that their Jacobian vanishes on a set of positive measure ([19], [20], [14]).

The bi-Sobolev assumption rules out the Lipschitz homeomorphism

(14) fO: (072) X (07 1) - (07 1) X (07 1)7 fO(xay) = (h(x)7y>7

where h™1(t) = t + ¢(t) and c: (0,1) — (0,1) is the usual Cantor ternary function
because f; ' does not belong to 7/1;;1. On the contrary, our first results deal with
# 11 -homeomorphisms which include fy as well (Theorem 1.3). Another interesting
property of a bi-Sobolev map f = (u,v) in the plane is that u and v have the same
critical points ([13], [17]).

onto

Theorem 1.2. Let f: Q@ — Q' be a bi-Sobolev map f = (u,v) . Then u and v
have the same critical points:

(1.5) {z€Q: |Vu(2)| =0} ={z € Q: |Vu(z)| =0} ae

The same result holds also for the inverse f~!. The analogue of this Theorem is

not valid in more than two dimensions (see [13]).
Let us point out that we only assume that f and f~! are in 7/1;(';1. In the cate-

gory of #'P-bi-Sobolev maps, that is, f belongs to 7/ 7(Q; R?) and f~! belongs to

loc

WPV R?), the case 1 < p < 2 (see [20]) is critical with respect to the so-called

loc
N property of Lusin, i.e., that a function maps every set of measure zero to a set of

measure zero. Let us mention that for % 2-bi-Sobolev mappings the statement of
Theorem 1.2 is obviously satisfied. In fact (see [16], p. 150), for homeomorphisms in
V/I;f we have the N property. Clearly

{z€Q: |[Vu(z)| =0} C{z€Q: Ji(z) =0} ae.

We can decompose the set {J; = 0} into a null set Z and countably many sets on
which we can use the Sard’s Lemma (see [4], Theorem 3.1.8). It follows that

If ({Jr = 0}\ Z)| =0 and hence |f({Vu=0}\ Z)|=0.

Since f~! satisfies the N property, we obtain [{Vu =0} = 0 and analogously

{Vv =0} =0 as well.
We observe that the following identity
= 0} a.e.
= u2(2) + v3(2), is true for bi-Sobolev

{zeQ: of :O}:{zeQ: ‘Z—‘;(z)

%(Z)

2
where |%(z)‘2 = u2(z) + v2(z) and %(z)
maps and parallels (1.5). This is a consequence of the following characteristic prop-
erty of a bi-Sobolev map which was proved in [3], [13], [9]:

(1.6) Ji(z) =0 = |Df(2)|=0 ae.

Our first result is the following, in which we give some identities for # !
homeomorphism. Notice that the symbol |Vp[(€2) denotes the total variation of




Anisotropic Sobolev homeomorphisms 595

the real function ¢ belonging to the space BV () of functions of bounded variation
on € (see Section 2).

Theorem 1.3. Let f = (u,v): @ € R2 25 (' ¢ R? be a homeomorphism
whose inverse is f~' = (z,y). If we assume u,v € #,'(Q), then z,y € BViye(Q)
and

(17) Ty (@) = / O (o) a
(1.8) |V:B|(Q’):/Q %(z) dz.

In [11] it was proved that if f: Q ¢ R? 23 ' ¢ R2 has bounded variation,
€ BVioe(Q;R?), then f~! € BV.(2;R?) and both f and f~! are differentiable
a.e. We notice that our identities (1.7) and (1.8) represent an improvement of such
a result when f is #b'-homeomorphism; in particular the following estimate

[DFH (@) < 2/9 [Df]dz

holds (Corollary 3.4). A %;ép -homeomorphism in the plane, 1 < p < 2 whose
Jacobian vanishes a.e., has been recently constructed by Hencl [8]; such a mapping
satisfies the assumptions of Theorem 1.3. If in Theorem 1.3 we add the hypothesis
Jr > 0 a.e., we obtain the identities (1.7) and (1.8) using the area formula (see
Sections 2 and 3).

Condition (1.6) makes it possible, for a given bi-Sobolev mapping f, to consider
the distortion quotient

[Df(2)|”
Jr(2)
Hereafter the undetermined ratio % is understood to be equal to 1 for z in the zero

set of the Jacobian. The Borel function

IDf(2)[*
(1.10) K¢(z) == J(2)

1 otherwise,

(1.9) for a.e. z € QL.

if Jf(Z) > 0,

is the distortion function of f and has relevant properties: it is the smallest function
K(z) greater or equal to 1 for which the distortion inequality:

(1.11) IDf(2)]> < K(2)Js(z) ae. z€Q

holds true. Moreover, there are interesting interplay between the integrability of the
distortions Ky and K;-1 and the regularity of f and f~' (see [13], Theorem 5).

In our general context of # “'-homeomorphisms there are different distortion
functions which play a significant role (see Section 4). We obtain conditions under
which one of these functions is finite a.e. or integrable.

2. Preliminaries

We denote by |A| the Lebesgue measure of a set A C R?. We say that two sets
A, B C R? satisfy A = B a.e. if their symmetrical difference has measure zero, i.e.,

(AN B)U(B\ A)| =0.
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A homeomorphic mapping f: Q ¢ R? 22 ( ¢ R? is said to satisfy the N property
of Lusin on the domain € if for every A C €2 such that |A| = 0 we have |f(A)| = 0.
A function u € £*(Q) is of bounded variation, u € BV(Q) if the distributional
partial derivatives of u are measures with finite total variation in €2: there exist
Radon signed measures Dyu, Dyu in €2 such that for i = 1,2, |D;u|(£2) < oo and

/QUD,-(;S(Z) dz = —/qu(z) dDwu(z) Yo € C3(Q).

The gradient of u is then a vector-valued measure with finite total variation

|Vu| (©) = sup {/ u divp(2) dz: o € Ca (S, R?), [|¢]le < 1} < 0.
Q

By |Vu| we denote the total variation of the signed measure Du.

The Sobolev space #11(Q) is contained in BV(Q); indeed for any u € #1()
the total variation is given by [, |Vu| = |Vu|(Q). We say that f = (u,v) €
Z1(Q; R?) belongs to BV(Q; R?) if u, v € BV(Q). Finally we say that f € BV},.(Q; R?)
if f € BV(4;R?) for every open A CC . In the following, for f € BV, (€2; R?) we
will denote the total variation of f by:

|IDfI(Q)= sup{/udivcpl(z) dz+/vdivg02(z) dz:@; € Cé(Q;RQ), ||g0i||oo§1,i:1,2}.
Q Q

We will need the definition of sets of finite perimeter (see [1]).

Definition 2.1. Let E be a Lebesgue measurable subset of R2. For any open
set  C R? the perimeter of E in ), denoted by P(E, (), is the total variation of xp
in €, ie.,

PE.9) =sw{ [ divpds: € AR, ol <1},
E

We say that F is a set of finite perimeter in Q if P(E, Q) < occ.
We say that f = (u,v) € #P(Q;R?), 1 < p < oo, if for each open A cC Q, f

loc
belongs to the Sobolev space #'17(A;R?), i.e., if u € ZP(A) and v € £P(A) have
distributional derivatives in .Z7(A).
We are interested in the area formula for a homeomorphism f € %' (Q; R?)

loc
with Q C R2. In this case we have

(2.) [t de < [ tw)de
Q R?
for any non negative Borel function  on R2. This follows from the area formula
for Lipschitz mappings (see [4], Theorem 3.2.3), and from a general property of a.e.
differentiable functions (see [4], Theorem 3.1.8), namely that Q can be exhausted up
to a set of measure zero by sets the restriction to which of f is Lipschitz continuous.
Moreover, the area formula

2.2 [ Iz = [ nwdu

holds on each set E C €2 on which the N property of Lusin is satisfied.
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3. The identities for #!'-homeomorphisms

Before proving Theorem 1.3 in its full generality we give now a partial proof
under the following additional assumptions:

(3.1) {w: Jp-1(w) =0} ={w: |Vy(w)| =0} a.e,
of , | _ }
= =0 a.e.,

3.2 J =0} = :

(52) Gt =0y ={a | oo

where J;-1 denotes the determinant of the absolutely continuous part of D f~!; more-
over, we suppose f ! differentiable a.e. in the classical sense. Therefore, we have

Vyw)ldw = [ V()] du.
o A
where A’ is a Borel subset of the set E' where f~! is differentiable with J;-1 > 0

such that |A’'| = |E|.
Applying (2.1), (3.1) and basic linear algebra, we arrive at:

v, iy,
vl de = ey () S/f-w TG ¢

Here we are using the identity D adj D = I detD and the fact that J;(2)J;-1(f(2)) =
1 at the points of differentiability with nonzero Jacobian. We have used as well the

expression of the inverse matrix to the differential 2 x 2 matrix Df = (Zx Zy) in
x Uy

Ty Ty
Yu Yo

Yu(f(2)) = =02 (2) T2 (£(2)), 9o(£(2)) = ua(2) T2 (£ (2)) V2 € f7HA),
and the identity

IVy(FD = [02(2)* + ua(2)?] Tp-1(f(2))? V2 € f7HA).

The opposite inequality follows by a symmetric procedure which relies on (3.2).
Notice that (3.1) and (3.2) are certainly satisfied if J; > 0 a.e. and Jy-1 > 0
a.e. We observe that Theorem 1.1 can be proved using the same technique under the
additional assumptions that J; > 0 and J;1 > 0 a.e. In the general case the proof of
Theorem 1.3 is completely different; to prove the Theorem we need some preliminary
results. The next Lemma is known as Coarea Formula (see [1|, Theorem 3.40):

(Q') we have

terms of Df~1 = < ), namely

Lemma 3.1. For any open set ' C R? and y € £}

loc

+00
(3.3) V] () / P{we: ylw) >}, Q) dt.
We understand the left-hand side of (3.3) to be infinity if y ¢ BV.
The following Lemma is the main step towards the equality in the area formula
(see Theorem 1.3 of [3] and also [13], where the case f ACL, i.e., absolutely continuous
on lines, is treated).
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Lemma 3.2. Let f € #;'((—1,1)%; R?) be a homeomorphism. Then for almost

loc

every t € (—1,1) the mapping f|(—11)x satisfies the N property of Lusin, i.e., for
every A C (—1,1) x {t}, #'(A) = 0 implies 7" (f(A)) = 0.

Proof of Theorem 1.3. Without loss of generality we take 2 = (—1,1) x (=1, 1).
Let us apply Lemma 3.2 to the homeomorphism f. Then, the mapping

fet):xe(=1,1)— (u(z,t),v(z,t) € Y

belongs to # 1((—1,1), R?) for a.e. t and satisfies the N property. In particular, the
area formula holds for f (-, ¢) on (—1,1):

(3.4) /_ 11 of

z,t
2 (z,1)
Integrating with respect to ¢ we obtain:

(3.5) /Q

Since it is clear that

do =" (f ((-1,1) x {t})).

@) de= [ AL x (1) dr

FU(=L1) x {t}) ={w e Q' y(w) =1},
then
of

|z

As y is continuous, then the set {w € Q': y(w) = t} is the boundary of the level set
{w e Q: y(w) > t}. By assumptions we know that for a.e. t, ' ({w € Q': y(w) =
t}) < oo and from [1] (p. 209) we have

A {weQ:yw)=t}) =P{weQ:ylw) >t},Q) ae tec(-1,1).

dz:/lﬁl {w e Q' y(w) =t})dt.

Using Coarea Formula from Lemma 3.1, we obtain

af

Vi) = [ 55| d:
and we deduce that y € BV),.(€2').
The equality (1.8) is proved using the same technique. |
Remark 3.3. From the above proof it is clear that if f is a homeomorphism in
BVi.(Q; R?) such that % € Z1(Q;R?), then (1.7) holds true.

Since the total variation of a map is less or equal than the sum of total variation
of the components, by Theorem 1.3 we immediately get

Corollary 3.4. Let f = (u,v): Q@ € R2 2% ¢ R? be a homeomorphism

whose inverse is f~1 = (z,y). If we assume u,v € #;.;' (), then

(36) pr@) <2 [ 101,
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4. The distortions of anisotropic Sobolev maps

In Section 1 we have already mentioned the known fact that, if f: Q C R? ontg
Y Cc R? is bi-Sobolev , then we have

{z: Jp(2) =0} ={z: |Df(2)| =0} ae.
and this makes it possible to consider the distortion function
|Df(2)|*

(4.1) Ki(z) = ¢ Jp(2)
1 otherwise.

if Jf(Z) > 0,

Moreover, the distortion inequality
IDf(2) < Kj(2)J5(2)

holds for a.e. z € 2. According to a well established terminology, we say that f has
finite distortion K.

For a Sobolev homeomorphism, under suitable assumptions, it is possible to in-
troduce different distortion functions (see [21]). Namely, if f = (u,v) satisfies the
condition

{z: Jp(2) =0} = {z: |Vu(z)| =0} ae,

then we are allowed to define the Borel function
Vau(z)[*
(4.2) EP ) =1 Jiz)
1 otherwise.

if Jp(2) > 0,

Similarly, if f = (u,v) satisfies the condition
{z: Jp(2) =0} = {2: |Vu(2)| =0} ae,
then the Borel function

Vo(2)|”
(4.3) EP() =4 J(2)
1 otherwise,

if Jf(Z) > 0,

is well defined. On the other hand, if f = (u,v) satisfies the condition

{2: Jf(z):O}:{z: '%(z)‘:O} ae.,

then we can define the Borel function

%@‘2 if J;(2) >0
(4.4) HY(2) =8 gz DA
1 otherwise.

Finally, for f satisfying

{z: Jf(z)zo}:{z: ‘%@)':o} a.e.
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we define
2
(2) %(2)‘ i
(4.5) H{ () = " 1.03) if Jy(z) >0,
1 otherwise.

In the following, given a % ''-homeomorphism f, we establish conditions which guar-
antee that one of its distortions is finite a.e. or . Let us begin with the following

Theorem 4.1. Let f = (u,v): Q C R2 23 (' ¢ R2 be a #/*!- homeomorphism
whose inverse is f~' = (z,y). If v € #3' (') and v, # 0 on a positive measure set
P C Q, then

= O} a.e.

and the distortion H](?) (2) is finite a.e. Moreover, we have the following identities

(4.6) {ze€eP: Jp(z) =0} = {ZGPZ ‘g_;f(z)

= a—f z Z
(A7) [ Vatw) dw_/Q )| d
(45) vyl @) = [ |5 )] d

Proof. By contradiction we suppose that there exists a set A C P with positive
Lebesgue measure such that f is differentiable in A and

Jp(z) =0 and >0 VzeA

of
a—y(2>
We can assume that f is Lipschitz on A and use the area formula (2.2) to get

[F(A) =0 since /Jf(z) dz = 0.
A
We denote by
po: (x1,29) € R?> - H, = {x eR?: 2y = O}
the orthogonal projection and by
p?P: (x1,25) e R? > 2, € R

the second coordinate function.
We observe that

(we:zw) =t} = (po f) {0} VieR.
By assumptions we know that
A {w € f(A): z(w) =t}) <
and from [1] (p. 209)
A {w e f(A): z(w) =t}) = P{w € f(A): z(w) >t},Q).
By Lemma 3.1 and the assumption that x belongs to 7' (Q'), we have

loc

/Rji”l {w e f(A): z(w) =t}) = /f(A) |Vz(w)|dw = 0.



Anisotropic Sobolev homeomorphisms 601

Thus the curve {w € f(A): z(w) =t} has zero one dimensional measure for a.e.
t € R and in particular its second projection to the axis have zero one-dimensional
measure as well:

(4.9) A (p® ({w e f(A): z(w)=1t})) =0 ae.teR.

On the other hand, using Fubini Theorem, we have

|A| = / ‘A ﬂpgl{(t,O)}‘ dt > 0.
R
Hence, there exists ty € R such that
A (Anpy{(t,0)}) > 0.

Applying the area formula to the differentiable function v(tg,-): 7 € p®(A) —
v(tg, 7), we have

0</ oyt A7) /NvAﬁp2 (to), o) do
(4.10) Anp, (fo)

/ N<U7Amp2_1(t0)7o-) dO',
P (f(A)N(p20f~1) " (o))

where N (v, AN p;'(tg),o) is the number of preimages of o under v in A N py*(to).
The last integral is zero by (4.9) and this is a contradiction. O

The following result shows that if the distortion K ) is £ , then f~! has better
Sobolev regularity.

Theorem 4.2. Let f = (u,v): Q € R2 23 Q' € R? be a #"!-homeomorphism
and denote by f~! = (x,y) its inverse. If we assume
of !
I =0},

(4.12) {z€Q: Jp(2) =0} = {2z € Q: |Vuv(z)| =0}
and K* € ", then

(4.11) {we@: J1(w) =0} = {w e

(4.13) ‘8§u1 e 22(Q)
and
(4.14) /, ag;(w) de/QK}Q)(z) dz.

Proof. Let A’ be the Borel subset of the set £’ where f~! is differentiable with
Jg-1 > 0, such that |A’| = |E’|. Applying the area formula, we obtain

I oo [ oo [ B

Pf <f<z>>( T Vo) P
Pow ¥ gL = Tpep OEN
S/f-w 70 " /f-w e

af

af! 1

8u
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2
= / Mo dz < K}Q)(z) dz. O
F1An) Jf(Z) Q
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