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Abstract. This paper investigates positive harmonic functions on a domain which contains
an infinite cylinder, and whose boundary is contained in the union of parallel hyperplanes. (In the
plane its boundary consists of two sets of vertical semi-infinite lines.) It characterizes, in terms
of the spacing between the hyperplanes, those domains for which there exist minimal harmonic
functions with a certain exponential growth.

1. Introduction

The subtle relationship between the structure of positive harmonic functions on
a domain Q in RY (N > 2) and boundary geometry has been much studied. One
avenue of investigation has been to examine the effect of modifying the boundary of a
familiar domain such as a half-space, cone or cylinder. Thus many authors have been
led to investigate the case of Denjoy domains 2, where the complement RY \ 2 is
contained in a hyperplane, say R¥ = x {0} (see [6, 11, 14, 1, 24, 25, 8, 10, 2, 21]). For
example, Benedicks [6] has established a harmonic measure criterion that describes
when the cone of positive harmonic functions on 2 that vanish on the boundary 052
is generated by two linearly independent minimal harmonic functions. (We recall
that a positive harmonic function h on a domain 2 is called minimal if any non-
negative harmonic minorant of A on 2 is proportional to h.) Benedicks’ criterion
is also equivalent to the existence of a harmonic function u on €2 vanishing on 0f2
and satisfying u(x) > |zy| on , and thus describes when a Denjoy domain behaves
like the union of two half-spaces from the point of view of potential theory. Related
results, based on sectors, cones or cylinders, may be found in [12, 21, 18]. The
purpose of this paper is to describe what happens in the case of another relative
of the infinite cylinder. More precisely, let (a,) be a strictly increasing sequence of
non-negative numbers such that a,, — +o0 and a, .1 —a, — 0 as n — oo, and let B’
be the unit ball in RV~!. We define

E=J®R""\B) x{a,}

neN

and investigate when the domain = R \ E inherits the potential theoretic char-
acter of the cylinder U = B’ x R; that is, when the set E imitates OU in terms of
its effect on the asymptotic behaviour of positive harmonic functions on 2. We call
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such domains €2 comb-like because they are a generalization of comb domains in the
plane.

Let * = (2/,xy) denote a typical point of Euclidean space RY = RY~! x R.
It is known (see [15], for example) that the cone of positive harmonic functions on
U that vanish on OU is generated by two minimal harmonic functions hy(z',zy) =
eFoeN ¢ (z'), where « is the square root of the first eigenvalue of the operator —A =
— Zjvz_ll 02/ 83:? on B’ and ¢ is the corresponding eigenfunction, normalized by ¢(0) =
1. We describe below when a comb-like domain admits a minimal harmonic function
u that vanishes on 0f2 and satisfies u > hy on U.

Theorem 1.1. Let v > 1. Assume that (a,) satisfies the following condition

1 apy1—a
(1.1) S LT TR o
14 Ajp1 — Q5

whenever |a, — a;j| < 4. The following statements are equivalent:

(a) there exists a positive harmonic function u on ) that satisfies u > hy on U
and u vanishes continuously on F;

(b> Zq(;o:1(an+1 - Cbn>2 < 4o00.
Moreover, if (b) holds, then u can be chosen to be minimal in part (a).

We will prove Theorem 1.1 by combining methods from [14], [12] and [18] with
some new ideas. It is known (see |7, 9, 16]) that the behaviour of minimal harmonic
functions on simply connected domains is intimately related to the classical angular
derivative problem. We note that when N = 2, condition (b) of Theorem 1.1 is
necessary and sufficient for the comb domain €2 to have an angular derivative at +oo
(see [22, 23, 20]).

2. Notation and preliminary results

We use 9D to denote the boundary of a domain D in compactified space R U
{oo}. Let B,(z) denote the open ball in RY of centre z and radius p > 0. We
write B, (resp. B,) for the open ball in RV~! (resp. R") of centre 0 and radius p,
and V(p) = 0B, x R. If p = 1, we write B’ instead of B;. For 0 < p; < py let

A(pr,p2) = (B, \ B),) x R. We denote by x2 the harmonic measure for an open

set D C RY evaluated at x € D. If f is a function defined on D, we use F? to
denote the upper Perron—-Wiener—Brelot solution to the Dirichlet problem on D and
H ]’? for the PWB solution of the Dirichlet problem on D when it exists. We denote
by Pp(-,y) the Poisson kernel for D with pole y € 9D, where 0D is smooth enough
for it to be deﬁAned. If W C D and wu is a superharmonic function on D, we denote
by RY (resp. R!) the reduced function (resp. the regularized reduced function) of
u relative to W in D. We denote surface area measure on a given surface by o. We
use C'(a,b,...) to denote a constant depending at most on a, b, . . ., the value of which
may change from line to line.

For the remainder of the paper, we fix 0 < r < 1 < R and for x € QU we define
F,=0B x [xy —1,zy + 1] and

sz (B&\E) X (.’L’N—l,ﬂfN+1).
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We note that the first eigenfunction ¢ of —A in B’ is comparable with the distance
to 0B’, that is

(2.1) C1(N)(1 —[2']) < ¢(a') < Co(N)(1 = [2']) (2" € B).

A simple proof of (2.1) can be found in [17, pp. 419-420]. The following estimate
for the Poisson kernel (see [18, Section 2.1|, for example) will prove useful. For
7| =s<1, zy € R, y €U

(2.2) C1(N, s)e= vl < Py(z,y) < Cy(N, s)e vl

If 0 < ry < s <y, similar estimates hold for Py, ,,) with a replaced by the square

root of the first eigenvalue of —A in B;Q\B_?C1 and constants C,Cy depending on
N,ry,r9 and s.

Proposition 2.1. Assume there exists a positive harmonic function u on €2 such
that w > h, on U and u vanishes on E. Then

o0

(2.3) Z(a”“ —a,)? < +o0.

Proof. By (2.2) we have

+m>wm>/ u(y) P (0, y) do(y)

Z/ u(y)e” “Ndo(y).
OB’ x(an an+1)

We use Harnack’s inequalities and (2.1) to see that for y € U with

(2.4)

YN € (an + (&nJrl - Cln)/4, Ap41 — (anJrl - an)/4)
the following holds

u(y) =2 C(N)u((1 = (ans1 — an)/8)y', yn)

C(N)eN¢ (1 = (ans1 — an)/8)y)

C(N)e™™ (ant1 — an).

We deduce from (2.4) and (2.5) that (2.3) holds. O

Assume now that Y 7 (an4+1 — a,)? < +00. Let J € N be large enough so that
Apy1 — ap < 1/2 for n > J. For ease of exposition we rename the sequence (a,)S ;
as (b,)22 ;. We also define p, = (b,41 — b,,)/2 for n € N. We introduce by = b; — 1
and py = 1/2. For technical reasons, we will work with

(2.5)

(AVARAVAR V]

E" =) R\ B) x {b,} and E' = (2B x (—o0,bi])UE",

n=1
and at the end we will dispense with these additional requirements.

Lemma 2.1. There exists a positive constant c¢,, depending on N, R and r, such
that for any x € OU we have

(2.6) e (F) < gt P OT) < o gt (B
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Proof. Let x € OU. The left hand inequality in (2.6) is obvious since F, C 0T.
Let h = H;’;x on T, and h = xpg, on 0T,. In order to establish the right hand
inequality, it is enough to prove that

(2.7) h <h(z) on E"NT,.

We will borrow an argument from [18, Lemma 2.1]. Using reflection in RNt x{zn+

1} to extend h to (B \B,.) % [xy—1, xx+3], and translation, for y € 0B'x (zn,zn+1)

we obtain

h(y) = H}?x‘F(O/ayN—IITN)(y)

= ul* (OB, x [xx — 1,225 + 1 —yn]) — 27 (OB, x 225 + 1 — yn,on + 1])
< pg" (F) = h(z).

By symmetry, h(y) < h(z) for y € 0B’ x (zy — 1,25 + 1). Since

h(y) =0 < h(zx) for y € [0BR x (xy —1,xy + 1)]JU[(BR\ B') x {zn — 1,25 + 1}],

using the maximum principle, we see that h < h(z) on (Bj \ B') x (zx — 1,25 + 1),
which proves (2.7). O

We note that Lemma 2.1 holds in a more general context when E” is a closed
subset of RV \ U.
To prove Theorem 1.1 we shall need the following estimate.

Lemma 2.2. Let v > 1. Assume that (b,) satisfies

(2.8) Lo =be

V" b — b

whenever |b, — bj| < 4. Then there exists a constant ¢z, depending only on N, r and
v, such that

M;{z\E”(Fx) < 02(bn+1 - bn)
whenever © € 0B’ x (b, b,41) and n € N.

Proof. We suppose that x € B x (bp, byy1) for some n € N. We define w =
(Br\ B.) % (bjy, bk, ), where jo = max{j: b; < xnx—1} and kg = min{j: b; > xy+1}.
Let g = H;éﬂ on w\ E” and define g = xv(,) elsewhere. Let m = supy; g. We note
that

e\ (Fy) < p M (V(r)) < m

T

We will obtain an upper bound for m in terms of p,. To do this, we define an open
set Z as follows

Zzw\kL_JO [U ]{ZGFQX{p}:S=(1—7’)(Ip—(bk+pk)|—pk)+1}-

We estimate g on 07 in terms of m and p,. Since g = 0 on 07 \ U, we estimate g
on 0Z N U, noting that, for y € wN U, we have

(29) o) = 17 w) = B )+ [ g
Nw
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Let g1(y) = HY (y) and g2(y) = [y, 9 dus"™Y for y € wNU. Using the function

XV (r)

PN -1 (N =4)

fnly) = —logly| (N =3)
1—ly| (N =2)
and the maximum principle, we find that for y € 02 NU
(2.10) 91(v) < )/ fn(re) < Ci(N,r) (1 = |y]) < Co(N,7,v)pn.
We now wish to show that there exists a constant Co(N,v) € (0, 1) such that
(2.11) g2 < Co(N,v)m on 0ZNU.

Let I = (1 — r) minj <g<ko—1 pr and let ¢ = (1,0,...,0,tx) with ty € {by : k =
Jo+1,...,ko—1}. By [5, Lemma 8.5.1], for x € By/(1+1,0,...,0,ty) we have g(z) <
C(N)(g9(p+)+g(p-)), where po = (141,0,...,0,ty £1/2). Using a Harnack chain to
cover the longer arc joining p, and p_ along the circle 9B, sz »(t) N (R X {0}V 2xR),
we deduce that g < C5(/N)m on that circle. By the invariance of g under rotations
around the xy-axis and the maximum principle, this inequality holds on a torus-
shaped set enclosing the edge of (RY~!\ B’) x {tx}; more precisely on every closed
ball centred at a point of 9B’ x {ty} and having radius v/5//2. When ty = b;
or ty = by, this inequality follows directly from |5, Lemma 8.5.1|, with a perhaps
different constant, C;(N) say. In particular, for y € B\ E*, where B = B\/gl/z(t),
E'=[1,400) x RN"2 x {ty} and ty € {by: k = jo, ..., ko}, we have

(212)  g(y) < HV(y) =/ gdpl " < max{Cs(N),C4(N)ymHZ \¥ (y).
oBt
Since t is a regular boundary point for B*\ E*, there exists 6 = §(N) > 0 such that

BI\E 1
(2.13) HXa;t ) = 2max{C3(N), Cs(N)} W

Let Kg = U, {y € 0U: |yx — bi| < 61}. In view of (2.12) and (2.13), and the
invariance of g under rotations around the xy-axis, we conclude that ¢ < m/2 on
Ky

Hence, for y € 0Z NU, we have

€ Bs(t) \ EY).

1
(2.14)  gao(y) < / gduy < %/’LyU(K(;Z) +mp QU \ Kz) <m (1 - élqu<K6l)) :
ou

We now show that there exists a constant C5(N,v) € (0,1) such that p(Ks) >
C5(N,v) for y € 0ZNU. We first estimate ) (Ks) on some ball centred at ¢ and
then join other points of 9Z NU by a Harnack chain.

Let Wy = B’ x (ty — 0l,ty + 0l). We use a dilation ¢(y) =t + (y — t)/(6]) and
note that, by continuity, there exists an absolute positive constant + such that for
y € Y(Ws) N B, (t) the following inequalities hold

HWe (¢—1(y)) _ H¢(W6l) (y) > H(—oo,l)xRN*2><(tN—1,tN+1)<y) > 1/2'

XKg Xo(Kgp) T X3RN =2x [ty —1,t 1]
Hence
py (Kst) > 1, (Kst) > 1/2 (y € Bya(t) N U),
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and by Harnack’s inequalities
ug(Kgl) > C5(N,v) forall yedZnU.

Let Co(N,v) =1 — C5(N,v)/2. Then (2.11) holds in view of (2.14), and by (2.9)
and (2.10) we have

g < Cy(N,r,v)p, + Co(N,v)m on 0Z.
By the maximum principle this inequality holds on Z and implies that
Ci(N,r,v)
I
This finishes the proof of lemma. U
We define g (z) to be the harmonic measure of 97}, in T\ E’ evaluated at . If

x € E', then fp/(x) is interpreted as 0. We observe that, if (b,) satisfies the ratio
condition (2.8), then, in view of Lemmas 2.1 and 2.2, we have

/ B (y) do(y) < e / WINE(F,) do(y)
8B’><(b1,+oo)

OB’ X (b1,+00)
(2.15) -

o0
< c1c0N—1 Z(bn-H - bn)27

n=1

where on_; denotes the surface measure of 9B’ in RV~
Henceforth let (b,) satisfy (2.8) and let

A= (a1 — by)* < +00.
n=1
Before we prove the next lemma, we collect together some facts about certain Bessel
functions (see [4, Section 4|). Let K = K(n_g)/2: (0,00) — (0,00) denote the Bessel
function of the third kind, of order (N — 3)/2. Then the function

(2.16) ho(z', zn) = |2/ |32 K (z|2)) sin(rxy)

is positive and superharmonic on the strip RV~ x (0, 1), harmonic on (RY=1\{0'}) x
(0,1) and vanishes on RN~ x {0, 1}\{(0,0), (0, 1)}. Moreover, there exists ¢(N) > 1
such that

(2.17) c(N)™' < (2t/m)V2el K(t) < ¢(N) for t € [1,400).

We also recall a result of Domar (|13, Theorem 2|). Suppose that D is a domain in
RY and F: D — [0, +00] is a given upper semicontinuous function on D. Let F be
the collection of all subharmonic functions u, such that « < F on D. Domar’s result
says that if

(2.18) /D[logJr F(2)|N " da < oo,

for some ¢ > 0, then the function M (z) = sup,cyu(z) is bounded on every compact
subset of D.

Let 0 < 7' < min{r,1/2}. Define V = A(r',00) \ E' and U, = (RV"!1\ B’) x
(bp, bpy1) for n € N.
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Lemma 2.3. There exists a positive constant cs, depending on N, R, r and r’,
such that, for any positive harmonic function v on V that is bounded on each U,
and vanishes on E’,

u(y) < cau(ra’, o) HEN (y) (v € OUy € Ty \ E).

Xor,
In particular,
w2, xn) < e3fp(x)u(rd’,xy) (x € OU).

Proof. Let x € OU, 1l = (1+1")/3 and L = 2R. Define A, = {y: | < |¢/| <
L,|lzny —yn| < 2}. We will show that

u(y)
C(N,r,r"u(rz’, zy)

=Y Y #
F(y)_ "o

(2.19)

< F(y) (yeA),

where

Step 1. Let (v',yn) € A, NU. Harnack’s inequalities yield that
u(y) < C(N,r ' )ulra’,an) (1= |y ).

Step 2. If y € A, NU, and |y/| — 1 < min{yy — by, byr1 — yn}, then there is a
Harnack chain of fixed length joining (v/,yx) with ((2 — |y /1V|,yn) € Az N U.
By Step 1, we have

u(y) < C(N)u((2 =Dy /1y, un) < C(N,r, " Yu(ra’,an)(|y'] — 1)1
Step 3. It y € A,NU, and p, > |y/| — 1 > min{yy — by, b1 — yn}, we apply [5,
Lemma 8.5.1] and Harnack’s inequalities to see that
uly) < CN)uly, ),
where yy is such that |[yy —yn| < |bn+pn—yn| and || —1 = min{yn — by, bpy1 —Yn }-
By Step 2,
u(y) < C(N, 7' Yu(ra’,zn)(ly'] — 1),

Step 4. If y € A, NU, and |[¢| > 1+ pp, let V,, = {(Z,2n): 14+ pn < |Z/], 28 €

(bp, bpyi1)}. For z € U, we define a function

~ ho((2', 28 — bn)/(200)) (14 pn (N-3)/2
hn(2) = K (n(14 pn)/(2pn)) < 2pn )

which is harmonic on U,, and vanishes on dU,, \ OU. Applying [5, Lemma 8.5.1| and
Harnack’s inequalities to v and h,,, by Step 3, we get

u(z) < O(N,r, 7" u(ra’,zn)pr N ha(2) for z € 0V,
Since u is bounded on V,, and oo has zero harmonic measure for V,,,
(2.20) u(y) < C(N,r, " u(ra’, on)pt ™ ha(y).
Furthermore, by (2.16) and (2.17)

N-3

o= (58) 0 () (52

N-2

T (1 14+p,\ 2 . N1\
gC@WﬁmW—D<j%%) SC@WWMW_”SCMOCyl ) |
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Hence we see from (2.20) that
u(y) < C(N, " )ulra!,an) (ly'] = 1)

We conclude that (2.19) follows from Steps 1-4. Since
| o™ F)¥ay < cv. )
Ag

Domar’s result and Harnack’s inequalities (if r < 1) yield

u(y) < C(N,R,r,r"u(ra',xn) (y € Ty).
Therefore

u(y) = HE\' (y) < C(N, Ryr, v Yu(re, on) H\ (y) (y € T, \ ).

XoTy

In particular,
w(@) < C(N, R, r,r")u(ra’, zn)Bp (). =

Lemma 2.4. Let v: RV U{oco} — [0, +00] be a Borel measurable function such
that v(x) < e~ xyn(z) on RY. There exist positive constants c4 and cs, depending
on N, R,r and r', such that, if A < c,, then H) exists and

HY (z) < H:‘(’J’l)(x) + csNe®™  (|2| = 7).
Proof. Let h,, = H" on V and h, = min{v,n} on 0V, and let

min{v,n}
m, = sup{e " “Nh, (', xn): || =1, xny > —n}.
Then

— A(T/71) — A(Tlvl) A(Tlvl) : /
(2.21) ho=H, =~ =H, + thXvw) in A(r',1).
Let o, > 0 denote the square root of the first eigenvalue of —A in B’ \ B/,. Then
a < oy because the complement of B'\ B!, in B’ is non-polar (see [19, Section 1.3.2]).
Since duf(r D = Pagr1y(2,-) do on OU, the Poisson kernel estimates yield, for [2'| = r,
that

e N HATD (1) < C(N, v, 1) ooN / ha(y)e= oy =l do (y)

hnXBU U
< O(N,r,r') / ()™ do(y).
oU

Noting that h, satisfies the hypotheses of Lemma 2.3, we see from (2.15) that, when
|2’| = r we have

TN H ) (@) < C(N, R, 1, 1Y) / e (ry' s y) B (y) do(y)
(2.22) ou

S ClmnA7

where C is a constant depending on N, R, r, r’ and v.
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Moreover, for |2'| = r we have

B s e [ emaD

(2.23) < C’(N’ T, 7«’) / ea(yN_mN)e—OéT/‘yN—$N|d0-(y)
V(r")
400
SO [ ey < Go(N. )

By (2.21)-(2.23) we obtain

—Qx —Qx A T‘l71 —Qx A T‘l,l
e Ny () = e H oV () + e Nth(XV()M(x) < CymaA+Cy (|2 = 7).

Taking ¢ = max{C4, Cy} we arrive at
mp < c(14+m,A).
We choose ¢y = (2¢)~! and suppose that A < ¢4. Then
My < ¢+ myecy = ¢+ my/2,
which implies that m,, < 2ec.
It follows from (2.21) and (2.22) that for |2'| = r we have

—ax —ax A(r',1
(2.24) e N by, (7) < 2¢°A + ¢ Nthxwf.,)(af)-

We choose c5 = 2¢* and let n — oco. By (2.23) the limit of the latter term on the
right hand side of (2.24) is finite and so H) exists and satisfies

HY () < cshe™™N + Hf(’”/’l)(m) (|2'| =r). O
Lemma 2.5. Let w: 0°U — [0, +00) be a Borel measurable function such that
(2.25) w(y) < Be(y)e™™ (ye€dU) and w(oo) =0.

Then, there exists a positive constant cg, depending on N, R,r and v, such that
HY (2 2n) < cge®™ A (|2] = 7).
Proof. Using (2.2), in view of (2.25) and (2.15), for |2/| = r we have

HY(a! ) < C(N.7) / (e doty)

< C(N,r)e™™ | Br(y)do(y) < C(N, R, r,v)e" ™ A. 0
ou

We extend h, to be 0 outside U and recall that V' stands for A(r’, 00) \ E'. We
define inductively a sequence (s) as follows

S22 =851~ 07 S0 = h—i—a

—V —U
_ H, onV, _ HS%H +hy onU,
S2k+1 N S2k+2 N
Sok on RM\V, Soki1 on RV \ U.

We put s(00) = 0 for all k.

Lemma 2.6. There is a positive constant ¢y, depending on N, R, r, r' and v,
such that, if A < ¢z for some X € (0, 1), then:

(a) (sy) is an increasing sequence of continuous functions on RY;
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(b) each sy, is bounded on R¥~1 x (—o0,b,) for each n € N;
(c) for all k =0,1,... we have

(59 — Sop_2)(x) < AFe®™v 2| =1

Proof. We will use ideas from [18, Lemma 3.1]. Suppose that A < ¢; A, where
c7 is to be determined later. Assume that sp < s; < ... < sop on RY for some
k > 0, that all the functions s; are continuous on R for 0 < k¥’ < 2k, and that for
0<Kk <k

(226) (82]9’ — 32k’—2)(l”, I’N) S )\kleaJJN (|.ZC/| = 7”>‘

We also fix n € N and assume that sy, is bounded on RY™! x (—o00,b,). Once
the terms of (s;) are seen to be finite, it is clear that the upper PWB solutions
appearing in their definitions are actually well defined PWB solutions. The induction
hypotheses clearly hold for £ = 0. We split the proof of Lemma 2.6 into three steps.

Step 1. We show that so 1 is a finite-valued continuous function on RY which is
bounded on RN~ x (—00,b,). Harnack’s inequalities and (2.26) yield the existence
of a constant cg = cg(N,r,7") > 0 such that

(2.27) (21 — s2-2)(y) < csA'e™ (|| =1").

Now, for |2'| = r, by (2.27) and Lemma 2.4 we have
—=V =V

(82k+1 - SQk_l)('r) S HSQk_SQk_2($) = H(SQk_SQk—Q)XV(T’) (x)
kA ax A(r',1)
< 5N\ Ae™N + H(S%_S%_Q)XWT,)(x).

Since Sg — Sor—1 = 0 on QU and So — Sor_1 = So, — Sop_2 on V(17), it follows that
A(r',1)

(sak _32k72)Xv(r’) . Hence

Sor — Sor—1 belongs to the upper class for H

(s2k41 — S2r—1)(7) < Cscs NP AN + (S2 — s26-1)(),
and so
(2.28) (sar41 — 521) () < 5NN (2’| = 7).

This proves finiteness of sor1.

A result of Armitage concerning a strong type of regularity for the PWB solution
of the Dirichlet problem (see [3, Theorem 2|) implies that sg1 is continuous at
points of OV \ U2, (0B’ x {b,}). Applying Lemma 2.3 to v; = Xin{s%j} and
z € J 2, (0B x {b,}) we obtain

vi(y) < eav(ra an) Hz P (y) (v € T\ ).

XoTy

Letting 7 — oo we notice that the same inequality holds for ss;,1, and hence the
regularity of x for T, \ E’ implies that so,y1 vanishes at z. We conclude that sgpq
is continuous on RY. .

We also have sopy1 = H;g,l[l} Sl on VN [RN=1 x (—o00,b,)]. Further,
since sg41 is continuous on B’ x {b,}, vanishes on E and is bounded on (RN \
V)N[RN"! x (—o00,b,)] in view of the induction hypothesis, we deduce that sgp; is
bounded above on R¥~! x (—o0,b,).

Step 2. We now prove that sy, < Sopi1 < Sorge on RY. We note that sy, =

H;zirl’l) on A(r’,1) (for a simple proof see Step 2 in the proof of [18, Lemma 3.1]).
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It follows immediately from the induction hypothesis, that

v v
Sopy1 = Hg, > Hg, =Sy on V.

In particular, this gives sopy1 > sor, on RN \ U. Hence, sop11 > sop on OU U V.
Using [5, Theorem 6.3.6], we obtain

soe1 = HY, HACD > Hsé(;/’l) =59 on A(r')1).

2k T S2k+1

Therefore, o411 > s, on RY. We now deduce that
—U

Sop+o = Hg, . +hy > HSU;]H 4+ hy = s, = Sop41 on RV \ V.
. —=A(r, .
We finally note that, if so1o belongs to the upper class for H 52(:+21), we obtain
> ﬁA(rlvl) > HA(T/,l) _ A / 1
82k+2 - Sok+2  — Sok4+1 82k+1 on (T ) )7

and S0 Sopio > Sope1 on RY. To verify that sy o belongs to the upper class for
_A(lel)

H,, it is enough to check that liminf,_, Sokr2() > Sorua(y) for y € OU. This is

clear from regularity and the continuity of soxi1, as if sgop9 # +00, then for y € U
we have

lim inf S5 1 o(z) = lim inf HSU% () > liminf sopi1(2) = Sops1(y) = Sopr2(y).
T—Y T—Y +1 r—y,x€0U

Step 3. In the final step we will prove that
(2.29) (Sgpy2 — Sop)(x) < AHe™™ (2| = 7).
Then, using [3, Theorem 2|, we can conclude that sy 9 is continuous on RY. Further,

UN[RN=1x(~c0,b, _ .
Sokta —hy = H, = S%L_MX( TonUn [RN~1 x (—o00,b,)]. By continuity,

Sok42 is bounded on B’ x {b,}. On RN \ U we have so;49 = Sap41, which is bounded
on (RM\ U)N[RN~1 x (—=00,b,)] by Step 1. Hence so,2 is bounded on the whole
of RV=1 x (—o0,by,).
To prove the desired inequality (2.29), we first recall that
Un = RN\ B) X (b, bny1) (m € N).
Noting that

_ gV _ gUm _ gUm
S2k+1 - HSQk - H82k+1 - H82k+1XBB’><(bm,bm+1) on Um)

and that, by continuity, sox1 is bounded on OB’ X (by,, by y1), we see that sopi1—Sor_1
satisfies the hypotheses of Lemma 2.3. Hence, for x € 9U, we have

(52041 — S26-1)(2) < c3Bpr (@) (S2rt1 — S2r—1) (12, Tnv)
= 30 (@) [(S2041 — Sok) (10", o) 4 (S2 — S2p—1) (1, ry))
< 38 (%) [(S2641 — s2k) (r2’, wn) + (821 — S2-2) (12, 2N)]-
It follows from (2.28) and our induction hypothesis that
(sops1 — Sar_1)(x) < ezlescsA + )N B (x)  (x € OU).
Assuming that ¢; < 1 and letting c¢g = c3(cscs + 1) we obtain

(Sop41 — So-1)(2) < coA¥e™™N Bpi(x)  (x € OU).
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By Lemma 2.5, for |2'| = r, we have

—U
(Sor12 — Sop) () < H32k+1—52k_1($) < o\ egNe®™N = coercg \FTLeOTN

Taking ¢; = min{1, (cgco) '} we find that (2.29) holds, and the proof is complete. [

3. Proof of Theorem 1.1

Proposition 2.1 gives the implication (a) = (b). To prove that (b) = (a) we first
observe that taking J large enough when setting b; = aj, we can ensure that A < c; A
for some A € (0,1). Let Q' = RN \ F' and v/ = klim sk. By Lemma 2.6, for |2/| =r
we obtain

k k 1
sok(x) = Z(SQj — 82j-2)(7) < z;)\jeaw <1 )\6MN.
]:

Jj=0

Hence u’ # +00. As a limit of an increasing sequence (sg;) of harmonic functions on
U, the function «' is harmonic on U. Since v’ is the limit of an increasing sequence
(s2k+1) of harmonic functions on V| it is also harmonic on V. Hence «' is harmonic
in . Tt follows from the monotonicity of (s;) that «' > hy on U.

For x € E' we have v/(z) = 0. By the monotone convergence theorem applied
to the equation sory1 = H,, we obtain «/ = H}, on V. We can follow the reasoning
from the second last paragraph of Step 1 in the proof of Lemma 2.6 to see that u’
vanishes continuously on FE’.

We next prove that «’ is minimal on ' using an argument from [18, Theorem 1.1].

As a consequence of the monotone convergence theorem we find that
(3.1) u'(x) = Hy(2) + hi(z) (z e ).

Let Ay denote the minimal Martin boundary of €2’ and let M be the Martin kernel
of Q' relative to the origin. By the Martin representation theorem (see [5, Theo-
rem 8.4.1]) we have

(3.2) u'(z) = A M(z,2)dvy(z) (x € ),

where v,/ is uniquely determined by u'.
We define T'= {z € A;: Q'\U is minimally thin at z} so that

(3.3) Ryl =M(-2) (2 € A\T).

Changing the order of integration, and using (3.1)—(3.3) and |5, Theorem 6.9.1|, we
obtain

heto) = [ (M2 [ Mt i) doete
_ /A | (M, 2) = B (@) donw(2)
_ /T (M, 2) = R3(@)) dva(z) (2 € U),
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We now claim that v,|r is concentrated at a single point. For the sake of contra-
diction suppose that there are two distinct points yi, 2 € Ay Nsupp(vw|r) and let
N7, Ny be disjoint neigbourhoods of y; and y, respectively. We define

o) = [ (M)~ B @) dvaly) (e 5 =1.2),

and note that h; < hy on U. Minimality of A4 on U implies that
We now define

vj(z) = M(z,y) dvw(y) (z€Q,j=12).
N;NT

Then h; < v; < u' on €, and by (3.4), v;/h;(0) > hy on ' (j = 1,2). In view of
the definition of s, we have v;/h;(0) > s;, on (¥ for all £ € N and so v;/h;(0) > o/
on ' (j = 1,2). It follows that hy(0)vy < vy on €. This implies that vy|ran, is
minorized by a multiple of v,/|rny,, which contradicts the fact that Ny N Ny = 0.
Hence vy/|r = ¢dy for some ¢ € T and ¢ > 0. Furthermore, the minimal harmonic
function v = ¢M (-, t") on ' satisfies v/ > v on Q" and v > hy on U. We observe that
v > s, on £ for all K € N, and so v > «'. Hence v = v’ and we conclude that v’ is
minimal on €.

Let Q" = RN\ E”. We define g = H}

;ZN\Q/ and g = xono on 9°€. By
[5, Theorem 6.9.1] we have g = R?H\Q/ on Q" (reductions with respect to non-
negative superharmonic functions on 2”). Since 2”7\’ is non-thin at each constituent
point, it follows from [5, Theorem 7.3.1(i)] that R?H\Q/ = ﬁ?”\w on Q" and so g is
superharmonic there. Let h be a non-negative harmonic minorant of g on ©”. Then
h is bounded on 2" and vanishes quasi-everywhere on 0€2”. Since a polar subset
of Q" and {oo} are both negligible for Q" (see |5, Theorems 6.5.5 and 7.6.5]), we
deduce that A = 0. Hence g is a potential on 2”.

Let W = [RV! x (—00,b,)] N for some n > 1. Since 1 — g is positive and
continuous on B’ x {b, }, it follows that 1 — g is bounded below by a positive constant
on this set while u’ is bounded from above there. Hence there exists a positive
constant ¢ such that ¢(1 —g) > ' on B’ x {b,}, and thus on OW. By Lemma 2.6(b)
each s is bounded on W and so it belongs to the lower class for H ;/1[: . These facts
combined with monotonicity of (s;) lead to the observation that

sp <HY < H)Y <cH" =c(l—g) on W.

Therefore, v’ < ¢(1—g) on W. Since ¢(1—g)—u' is a non-negative harmonic function
on W which vanishes on Q" \ €', we conclude that ¢(1 — g) — «’ is subharmonic on
", so that v’ + ¢g is superharmonic on Q”.

By the Riesz decomposition,

(3.5) u+cg=u"+Ggu on Q'

where u” is the greatest harmonic minorant of v’ + c¢g on Q" and G is the Green
potential of the Riesz measure u associated with u' + c¢g. Hence u” vanishes on
E"\ (0B’ x {b;}) and for each n € N it is bounded on R¥~! x (—o0,b,). It follows
from a removable singularity result (see |5, Theorem 5.2.1|) that u” extends to a
subharmonic function on RY. This together with the non-thinness of E” at points
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of OB’ x {b;} implies that «” vanishes also on 9B’ x {b;}. Since h, is a subharmonic
minorant of v’ 4+ cg on Q”, we deduce that h, < u” on Q".

It remains to show that «” is minimal. Let A be a positive harmonic minorant of
u” on ©". We notice that h is bounded on Q" \ €' and vanishes on 9Q". Hence the
greatest harmonic minorant of RSH\Q/ on 2" is bounded and vanishes on 02", and
we see that RSH\Q/ is a potential on Q”. Since the upper-bounded harmonic function
h — R,?H\Q/ — o' on ) satisfies

lim sup(h — RS/I\Q/ —u)(z) <0 for ye€ I,

r—Y

and {oo} has zero harmonic measure for ', it follows that

h — RSH\Q/ —u' <0 on .
Q//\Q/

Now, since h — R, is a positive harmonic minorant of the minimal function
v on €, we conclude that h — Ri} Y — qu/ for some a € (0,1]. Substituting this

into (3.5) we obtain
h+acg = au” + aGorp+ R on Q.

Taking the greatest harmonic minorant in 2” of both sides we get h = au”, which
means that «” is minimal.

Let u = u" — HS,. Since u” — hy > 0 is superharmonic on " and equals u” on
"\ Q, we have

Q//Q Q//Q
w=u" — REN — o — RV > h,.

U u' —h4
Since the points of OS2 are regular for €2 and u” is continuous, it follows that u vanishes
on 0. Further, [5, Theorem 9.5.5] shows that w is minimal.

Remark. The proof of the implication (a) = (b) in Theorem 1.1 does not rely
on condition (1.1). It is in the proof of the converse that our methods rely on such a
condition. However, it is enough to assume merely that €2 is contained in a comb-like
domain Qg for which (1.1) holds. To see this, suppose that (b) holds. Theorem 1.1
applied to g yields the existence of a minimal harmonic function ug on €2y which
vanishes on 0€)y and satisfies ug > h,. Let u = ug — Hq?o on (). The argument from
the previous paragraph shows that u is as stated in (a).
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