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Abstract. This paper investigates positive harmonic functions on a domain which contains
an infinite cylinder, and whose boundary is contained in the union of parallel hyperplanes. (In the
plane its boundary consists of two sets of vertical semi-infinite lines.) It characterizes, in terms
of the spacing between the hyperplanes, those domains for which there exist minimal harmonic
functions with a certain exponential growth.

1. Introduction

The subtle relationship between the structure of positive harmonic functions on
a domain Ω in RN (N ≥ 2) and boundary geometry has been much studied. One
avenue of investigation has been to examine the effect of modifying the boundary of a
familiar domain such as a half-space, cone or cylinder. Thus many authors have been
led to investigate the case of Denjoy domains Ω, where the complement RN \ Ω is
contained in a hyperplane, say RN−1×{0} (see [6, 11, 14, 1, 24, 25, 8, 10, 2, 21]). For
example, Benedicks [6] has established a harmonic measure criterion that describes
when the cone of positive harmonic functions on Ω that vanish on the boundary ∂Ω
is generated by two linearly independent minimal harmonic functions. (We recall
that a positive harmonic function h on a domain Ω is called minimal if any non-
negative harmonic minorant of h on Ω is proportional to h.) Benedicks’ criterion
is also equivalent to the existence of a harmonic function u on Ω vanishing on ∂Ω
and satisfying u(x) ≥ |xN | on Ω, and thus describes when a Denjoy domain behaves
like the union of two half-spaces from the point of view of potential theory. Related
results, based on sectors, cones or cylinders, may be found in [12, 21, 18]. The
purpose of this paper is to describe what happens in the case of another relative
of the infinite cylinder. More precisely, let (an) be a strictly increasing sequence of
non-negative numbers such that an → +∞ and an+1− an → 0 as n →∞, and let B′

be the unit ball in RN−1. We define

E =
⋃
n∈N

(RN−1 \B′)× {an}

and investigate when the domain Ω = RN \ E inherits the potential theoretic char-
acter of the cylinder U = B′ ×R; that is, when the set E imitates ∂U in terms of
its effect on the asymptotic behaviour of positive harmonic functions on Ω. We call
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such domains Ω comb-like because they are a generalization of comb domains in the
plane.

Let x = (x′, xN) denote a typical point of Euclidean space RN = RN−1 × R.
It is known (see [15], for example) that the cone of positive harmonic functions on
U that vanish on ∂U is generated by two minimal harmonic functions h±(x′, xN) =
e±αxN φ(x′), where α is the square root of the first eigenvalue of the operator −∆ =

−∑N−1
j=1 ∂2/∂x2

j on B′ and φ is the corresponding eigenfunction, normalized by φ(0) =
1. We describe below when a comb-like domain admits a minimal harmonic function
u that vanishes on ∂Ω and satisfies u ≥ h+ on U .

Theorem 1.1. Let ν > 1. Assume that (an) satisfies the following condition

(1.1)
1

ν
≤ ak+1 − ak

aj+1 − aj

≤ ν

whenever |ak − aj| < 4. The following statements are equivalent:

(a) there exists a positive harmonic function u on Ω that satisfies u ≥ h+ on U
and u vanishes continuously on E;

(b)
∑∞

n=1(an+1 − an)2 < +∞.

Moreover, if (b) holds, then u can be chosen to be minimal in part (a).

We will prove Theorem 1.1 by combining methods from [14], [12] and [18] with
some new ideas. It is known (see [7, 9, 16]) that the behaviour of minimal harmonic
functions on simply connected domains is intimately related to the classical angular
derivative problem. We note that when N = 2, condition (b) of Theorem 1.1 is
necessary and sufficient for the comb domain Ω to have an angular derivative at +∞
(see [22, 23, 20]).

2. Notation and preliminary results

We use ∂∞D to denote the boundary of a domain D in compactified space RN ∪
{∞}. Let Bρ(x) denote the open ball in RN of centre x and radius ρ > 0. We
write B′

ρ (resp. Bρ) for the open ball in RN−1 (resp. RN) of centre 0 and radius ρ,
and V (ρ) = ∂B′

ρ × R. If ρ = 1, we write B′ instead of B′
1. For 0 < ρ1 < ρ2 let

A(ρ1, ρ2) =
(
B′

ρ2
\B′

ρ1

) × R. We denote by µD
x the harmonic measure for an open

set D ⊂ RN evaluated at x ∈ D. If f is a function defined on ∂∞D, we use H
D

f to
denote the upper Perron–Wiener–Brelot solution to the Dirichlet problem on D and
HD

f for the PWB solution of the Dirichlet problem on D when it exists. We denote
by PD(·, y) the Poisson kernel for D with pole y ∈ ∂D, where ∂D is smooth enough
for it to be defined. If W ⊆ D and u is a superharmonic function on D, we denote
by RW

u (resp. R̂W
u ) the reduced function (resp. the regularized reduced function) of

u relative to W in D. We denote surface area measure on a given surface by σ. We
use C(a, b, . . .) to denote a constant depending at most on a, b, . . ., the value of which
may change from line to line.

For the remainder of the paper, we fix 0 < r < 1 < R and for x ∈ ∂U we define
Fx = ∂B′

r × [xN − 1, xN + 1] and

Tx = (B′
R \B′

r)× (xN − 1, xN + 1).
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We note that the first eigenfunction φ of−∆ in B′ is comparable with the distance
to ∂B′, that is

(2.1) C1(N)(1− |x′|) ≤ φ(x′) ≤ C2(N)(1− |x′|) (x′ ∈ B′).

A simple proof of (2.1) can be found in [17, pp. 419–420]. The following estimate
for the Poisson kernel (see [18, Section 2.1], for example) will prove useful. For
|x′| = s < 1, xN ∈ R, y ∈ ∂U

(2.2) C1(N, s)e−α|xN−yN | ≤ PU(x, y) ≤ C2(N, s)e−α|xN−yN |.

If 0 < r1 < s < r2, similar estimates hold for PA(r1,r2) with α replaced by the square
root of the first eigenvalue of −∆ in B′

r2
\B′

r1
and constants C1, C2 depending on

N, r1, r2 and s.

Proposition 2.1. Assume there exists a positive harmonic function u on Ω such
that u ≥ h+ on U and u vanishes on E. Then

(2.3)
∞∑

n=1

(an+1 − an)2 < +∞.

Proof. By (2.2) we have

+∞ > u(0) ≥
ˆ

∂U

u(y)PU(0, y) dσ(y)

≥ C(N)
∞∑

n=1

ˆ

∂B′×(an,an+1)

u(y)e−αyN dσ(y).

(2.4)

We use Harnack’s inequalities and (2.1) to see that for y ∈ ∂U with

yN ∈ (
an + (an+1 − an)/4, an+1 − (an+1 − an)/4

)

the following holds

u(y) ≥ C(N)u ((1− (an+1 − an)/8)y′, yN)

≥ C(N)eαyN φ ((1− (an+1 − an)/8)y′)

≥ C(N)eαyN (an+1 − an).

(2.5)

We deduce from (2.4) and (2.5) that (2.3) holds. ¤
Assume now that

∑∞
n=1(an+1 − an)2 < +∞. Let J ∈ N be large enough so that

an+1 − an ≤ 1/2 for n ≥ J . For ease of exposition we rename the sequence (an)∞n=J

as (bn)∞n=1. We also define ρn = (bn+1 − bn)/2 for n ∈ N. We introduce b0 = b1 − 1
and ρ0 = 1/2. For technical reasons, we will work with

E ′′ =
∞⋃

n=1

(
RN−1 \B′)× {bn} and E ′ = (∂B′ × (−∞, b1]) ∪ E ′′,

and at the end we will dispense with these additional requirements.

Lemma 2.1. There exists a positive constant c1, depending on N , R and r, such
that for any x ∈ ∂U we have

(2.6) µTx\E′′
x (Fx) ≤ µTx\E′′

x (∂Tx) ≤ c1 µTx\E′′
x (Fx).
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Proof. Let x ∈ ∂U . The left hand inequality in (2.6) is obvious since Fx ⊂ ∂Tx.
Let h = HTx

χFx
on Tx and h = χFx on ∂Tx. In order to establish the right hand

inequality, it is enough to prove that

(2.7) h ≤ h(x) on E ′′ ∩ Tx.

We will borrow an argument from [18, Lemma 2.1]. Using reflection in RN−1×{xN +
1} to extend h to (B′

R\B′
r)×[xN−1, xN+3], and translation, for y ∈ ∂B′×(xN , xN+1)

we obtain

h(y) = H
Tx+(0′,yN−xN )
h (y)

= µTx
x (∂B′

r × [xN − 1, 2xN + 1− yN ])− µTx
x (∂B′

r × [2xN + 1− yN , xN + 1])

≤ µTx
x (Fx) = h(x).

By symmetry, h(y) ≤ h(x) for y ∈ ∂B′ × (xN − 1, xN + 1). Since

h(y) = 0 ≤ h(x) for y ∈ [∂B′
R × (xN − 1, xN + 1)] ∪ [(B′

R \B′)× {xN − 1, xN + 1}],
using the maximum principle, we see that h ≤ h(x) on (B′

R \B′)× (xN − 1, xN + 1),
which proves (2.7). ¤

We note that Lemma 2.1 holds in a more general context when E ′′ is a closed
subset of RN \ U .

To prove Theorem 1.1 we shall need the following estimate.

Lemma 2.2. Let ν > 1. Assume that (bn) satisfies

(2.8)
1

ν
≤ bk+1 − bk

bj+1 − bj

≤ ν

whenever |bk − bj| < 4. Then there exists a constant c2, depending only on N , r and
ν, such that

µTx\E′′
x (Fx) ≤ c2(bn+1 − bn)

whenever x ∈ ∂B′ × (bn, bn+1) and n ∈ N.

Proof. We suppose that x ∈ ∂B′ × (bn, bn+1) for some n ∈ N. We define ω =
(B′

R \B′
r)×(bj0 , bk0), where j0 = max{j : bj ≤ xN−1} and k0 = min{j : bj ≥ xN +1}.

Let g = H
ω\E′′
χV (r) on ω \E ′′ and define g = χV (r) elsewhere. Let m = sup∂U g. We note

that
µTx\E′′

x (Fx) ≤ µω\E′′
x (V (r)) ≤ m.

We will obtain an upper bound for m in terms of ρn. To do this, we define an open
set Z as follows

Z = ω \
∞⋃

k=0

⋃

p∈[bk,bk+1]

{z ∈ B′
s × {p} : s = (1− r)(|p− (bk + ρk)| − ρk) + 1}.

We estimate g on ∂Z in terms of m and ρn. Since g = 0 on ∂Z \ U , we estimate g
on ∂Z ∩ U , noting that, for y ∈ ω ∩ U , we have

(2.9) g(y) = Hω∩U
g (y) = Hω∩U

χV (r)
(y) +

ˆ

∂U∩ω

g dµω∩U
y .
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Let g1(y) = Hω∩U
χV (r)

(y) and g2(y) =
´

∂U∩ω
g dµω∩U

y for y ∈ ω ∩ U . Using the function

fN(y) =





|y′|3−N − 1 (N ≥ 4)

− log |y′| (N = 3)

1− |y′| (N = 2)

and the maximum principle, we find that for y ∈ ∂Z ∩ U

(2.10) g1(y) ≤ fN(y)/fN(rx) ≤ C1(N, r)(1− |y′|) ≤ C1(N, r, ν)ρn.

We now wish to show that there exists a constant C2(N, ν) ∈ (0, 1) such that

(2.11) g2 ≤ C2(N, ν)m on ∂Z ∩ U.

Let l = (1 − r) minj0≤k≤k0−1 ρk and let t = (1, 0, . . . , 0, tN) with tN ∈ {bk : k =
j0+1, . . . , k0−1}. By [5, Lemma 8.5.1], for x ∈ Bl/2(1+l, 0, . . . , 0, tN) we have g(x) ≤
C(N)(g(p+)+g(p−)), where p± = (1+ l, 0, . . . , 0, tN± l/2). Using a Harnack chain to
cover the longer arc joining p+ and p− along the circle ∂B√

5l/2(t)∩(R×{0}N−2×R),
we deduce that g ≤ C3(N)m on that circle. By the invariance of g under rotations
around the xN -axis and the maximum principle, this inequality holds on a torus-
shaped set enclosing the edge of (RN−1 \B′)× {tN}; more precisely on every closed
ball centred at a point of ∂B′ × {tN} and having radius

√
5l/2. When tN = bj0

or tN = bk0 , this inequality follows directly from [5, Lemma 8.5.1], with a perhaps
different constant, C4(N) say. In particular, for y ∈ Bt \ Et, where Bt = B√

5l/2(t),
Et = [1, +∞)×RN−2 × {tN} and tN ∈ {bk : k = j0, . . . , k0}, we have

(2.12) g(y) ≤ HBt\Et

g (y) =

ˆ

∂Bt

g dµBt\Et

y ≤ max{C3(N), C4(N)}mHBt\Et

χ∂Bt
(y).

Since t is a regular boundary point for Bt \ Et, there exists δ = δ(N) > 0 such that

(2.13) HBt\Et

χ∂Bt
(y) ≤ 1

2 max{C3(N), C4(N)} (y ∈ Bδl(t) \ Et).

Let Kδl =
⋃k0

k=j0
{y ∈ ∂U : |yN − bk| < δl}. In view of (2.12) and (2.13), and the

invariance of g under rotations around the xN -axis, we conclude that g ≤ m/2 on
Kδl.

Hence, for y ∈ ∂Z ∩ U , we have

(2.14) g2(y) ≤
ˆ

∂U

g dµU
y ≤

m

2
µU

y (Kδl) + mµU
y (∂U \Kδl) ≤ m

(
1− 1

2
µU

y (Kδl)

)
.

We now show that there exists a constant C5(N, ν) ∈ (0, 1) such that µU
y (Kδl) ≥

C5(N, ν) for y ∈ ∂Z ∩ U . We first estimate µU
y (Kδl) on some ball centred at t and

then join other points of ∂Z ∩ U by a Harnack chain.
Let Wδl = B′ × (tN − δl, tN + δl). We use a dilation ψ(y) = t + (y − t)/(δl) and

note that, by continuity, there exists an absolute positive constant γ such that for
y ∈ ψ(Wδl) ∩Bγ(t) the following inequalities hold

HWδl
χKδl

(ψ−1(y)) = Hψ(Wδl)
χψ(Kδl)

(y) ≥ H(−∞,1)×RN−2×(tN−1,tN+1)
χ{1}×RN−2×[tN−1,tN +1]

(y) ≥ 1/2.

Hence
µU

y (Kδl) ≥ µWδl
y (Kδl) ≥ 1/2 (y ∈ Bγδl(t) ∩ U),
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and by Harnack’s inequalities

µU
y (Kδl) ≥ C5(N, ν) for all y ∈ ∂Z ∩ U.

Let C2(N, ν) = 1 − C5(N, ν)/2. Then (2.11) holds in view of (2.14), and by (2.9)
and (2.10) we have

g ≤ C1(N, r, ν)ρn + C2(N, ν)m on ∂Z.

By the maximum principle this inequality holds on Z and implies that

m ≤ C1(N, r, ν)

1− C2(N, ν)
ρn.

This finishes the proof of lemma. ¤
We define βE′(x) to be the harmonic measure of ∂Tx in Tx\E ′ evaluated at x. If

x ∈ E ′, then βE′(x) is interpreted as 0. We observe that, if (bn) satisfies the ratio
condition (2.8), then, in view of Lemmas 2.1 and 2.2, we have

ˆ

∂B′×(b1,+∞)

βE′(y) dσ(y) ≤ c1

ˆ

∂B′×(b1,+∞)

µTy\E′′
y (Fy) dσ(y)

≤ c1c2σN−1

∞∑
n=1

(bn+1 − bn)2,

(2.15)

where σN−1 denotes the surface measure of ∂B′ in RN−1.
Henceforth let (bn) satisfy (2.8) and let

Λ =
∞∑

n=1

(bn+1 − bn)2 < +∞.

Before we prove the next lemma, we collect together some facts about certain Bessel
functions (see [4, Section 4]). Let K = K(N−3)/2 : (0,∞) → (0,∞) denote the Bessel
function of the third kind, of order (N − 3)/2. Then the function

(2.16) h0(x
′, xN) = |x′|(3−N)/2K(π|x′|) sin(πxN)

is positive and superharmonic on the strip RN−1×(0, 1), harmonic on (RN−1\{0′})×
(0, 1) and vanishes on RN−1×{0, 1}\{(0′, 0), (0′, 1)}. Moreover, there exists c(N) ≥ 1
such that

(2.17) c(N)−1 ≤ (2t/π)1/2etK(t) ≤ c(N) for t ∈ [1, +∞).

We also recall a result of Domar ([13, Theorem 2]). Suppose that D is a domain in
RN and F : D → [0, +∞] is a given upper semicontinuous function on D. Let F be
the collection of all subharmonic functions u, such that u ≤ F on D. Domar’s result
says that if

(2.18)
ˆ

D

[log+ F (x)]N−1+εdx < ∞,

for some ε > 0, then the function M(x) = supu∈F u(x) is bounded on every compact
subset of D.

Let 0 < r′ < min{r, 1/2}. Define V = A(r′,∞) \ E ′ and Un = (RN−1 \ B′) ×
(bn, bn+1) for n ∈ N.
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Lemma 2.3. There exists a positive constant c3, depending on N , R, r and r′,
such that, for any positive harmonic function u on V that is bounded on each Un

and vanishes on E ′,

u(y) ≤ c3u(rx′, xN)HTx\E′
χ∂Tx

(y) (x ∈ ∂U, y ∈ Tx \ E ′).

In particular,
u(x′, xN) ≤ c3βE′(x)u(rx′, xN) (x ∈ ∂U).

Proof. Let x ∈ ∂U , l = (1 + r′)/3 and L = 2R. Define Ax = {y : l < |y′| <
L, |xN − yN | < 2}. We will show that

(2.19)
u(y)

C(N, r, r′)u(rx′, xN)
≤ F (y) (y ∈ Ax),

where

F (y) =

{
|1− |y′||1−N , |y′| 6= 1,

+∞, |y′| = 1.

Step 1. Let (y′, yN) ∈ Ax ∩ U . Harnack’s inequalities yield that

u(y) ≤ C(N, r, r′)u(rx′, xN)(1− |y′|)1−N .

Step 2. If y ∈ Ax ∩ Un and |y′| − 1 ≤ min{yN − bn, bn+1 − yN}, then there is a
Harnack chain of fixed length joining (y′, yN) with ((2 − |y′|)y′/|y′|, yN) ∈ Ax ∩ U .
By Step 1, we have

u(y) ≤ C(N)u((2− |y′|)y′/|y′|, yN) ≤ C(N, r, r′)u(rx′, xN)(|y′| − 1)1−N .

Step 3. If y ∈ Ax ∩Un and ρn ≥ |y′| − 1 > min{yN − bn, bn+1− yN}, we apply [5,
Lemma 8.5.1] and Harnack’s inequalities to see that

u(y) ≤ C(N)u(y′, ỹN),

where ỹN is such that |ỹN−yN | < |bn+ρn−yN | and |y′|−1 = min{ỹN−bn, bn+1−ỹN}.
By Step 2,

u(y) ≤ C(N, r, r′)u(rx′, xN)(|y′| − 1)1−N .

Step 4. If y ∈ Ax ∩ Un and |y′| ≥ 1 + ρn, let Vn = {(z′, zN) : 1 + ρn < |z′|, zN ∈
(bn, bn+1)}. For z ∈ Un we define a function

hn(z) =
h0((z

′, zN − bn)/(2ρn))

K (π(1 + ρn)/(2ρn))

(
1 + ρn

2ρn

)(N−3)/2

which is harmonic on Un and vanishes on ∂Un \ ∂U . Applying [5, Lemma 8.5.1] and
Harnack’s inequalities to u and hn, by Step 3, we get

u(z) ≤ C(N, r, r′)u(rx′, xN)ρ1−N
n hn(z) for z ∈ ∂Vn.

Since u is bounded on Vn and ∞ has zero harmonic measure for Vn,

(2.20) u(y) ≤ C(N, r, r′)u(rx′, xN)ρ1−N
n hn(y).

Furthermore, by (2.16) and (2.17)

hn(y) ≤
(

1 + ρn

|y′|
)N−3

2

K

(
π|y′|
2ρn

)(
K

(
π(1 + ρn)

2ρn

))−1

≤ C(N)e−
π

2ρn
(|y′|−1)

(
1 + ρn

|y′|
)N−2

2

≤ C(N)e−
π

2ρn
(|y′|−1) ≤ C(N)

( |y′| − 1

ρn

)1−N

.
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Hence we see from (2.20) that

u(y) ≤ C(N, r, r′)u(rx′, xN)(|y′| − 1)1−N .

We conclude that (2.19) follows from Steps 1–4. Since
ˆ

Ax

(log+ F (y))Ndy ≤ C(N, R),

Domar’s result and Harnack’s inequalities (if r < l) yield

u(y) ≤ C(N,R, r, r′)u(rx′, xN) (y ∈ Tx).

Therefore

u(y) = HTx\E′
u (y) ≤ C(N,R, r, r′)u(rx′, xN)HTx\E′

χ∂Tx
(y) (y ∈ Tx \ E ′).

In particular,

u(x) ≤ C(N, R, r, r′)u(rx′, xN)βE′(x). ¤
Lemma 2.4. Let v : RN ∪ {∞} → [0, +∞] be a Borel measurable function such

that v(x) ≤ eαxN χV (r′)(x) on RN . There exist positive constants c4 and c5, depending
on N, R, r and r′, such that, if Λ ≤ c4, then HV

v exists and

HV
v (x) ≤ HA(r′,1)

v (x) + c5ΛeαxN (|x′| = r).

Proof. Let hn = HV
min{v,n} on V and hn = min{v, n} on ∂∞V , and let

mn = sup{e−αxN hn(x′, xN) : |x′| = r, xN > −n}.
Then

(2.21) hn = H
A(r′,1)
hn

= H
A(r′,1)
hnχ∂U

+ H
A(r′,1)
hnχV (r′)

in A(r′, 1).

Let αr′ > 0 denote the square root of the first eigenvalue of −∆ in B′ \ B′
r′ . Then

α < αr′ because the complement of B′\B′
r′ in B′ is non-polar (see [19, Section 1.3.2]).

Since dµ
A(r′,1)
x = PA(r′,1)(x, ·) dσ on ∂U , the Poisson kernel estimates yield, for |x′| = r,

that

e−αxN H
A(r′,1)
hnχ∂U

(x) ≤ C(N, r, r′)e−αxN

ˆ

∂U

hn(y)e−αr′ |xN−yN |dσ(y)

≤ C(N, r, r′)
ˆ

∂U

hn(y)e−αyN dσ(y).

Noting that hn satisfies the hypotheses of Lemma 2.3, we see from (2.15) that, when
|x′| = r we have

e−αxN H
A(r′,1)
hnχ∂U

(x) ≤ C(N,R, r, r′)
ˆ

∂U

e−αyN hn(ry′, yN)βE′(y) dσ(y)

≤ C1mnΛ,
(2.22)

where C1 is a constant depending on N, R, r, r′ and ν.
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Moreover, for |x′| = r we have

e−αxN H
A(r′,1)
hnχV (r′)

(x) ≤ e−αxN

ˆ

V (r′)
eαyN dµA(r′,1)

x (y)

≤ C(N, r, r′)
ˆ

V (r′)
eα(yN−xN )e−αr′ |yN−xN |dσ(y)

≤ C(N, r, r′)
ˆ +∞

−∞
e(α−αr′ )|yN−xN |dyN ≤ C2(N, r, r′).

(2.23)

By (2.21)–(2.23) we obtain

e−αxN hn(x) = e−αxN H
A(r′,1)
hnχ∂U

(x) + e−αxN H
A(r′,1)
hnχV (r′)

(x) ≤ C1mnΛ + C2 (|x′| = r).

Taking c = max{C1, C2} we arrive at

mn ≤ c(1 + mnΛ).

We choose c4 = (2c)−1 and suppose that Λ ≤ c4. Then

mn ≤ c + mncc4 = c + mn/2,

which implies that mn ≤ 2c.
It follows from (2.21) and (2.22) that for |x′| = r we have

(2.24) e−αxN hn(x) ≤ 2c2Λ + e−αxN H
A(r′,1)
hnχV (r′)

(x).

We choose c5 = 2c2 and let n → ∞. By (2.23) the limit of the latter term on the
right hand side of (2.24) is finite and so HV

v exists and satisfies

HV
v (x) ≤ c5ΛeαxN + HA(r′,1)

v (x) (|x′| = r). ¤
Lemma 2.5. Let w : ∂∞U → [0, +∞) be a Borel measurable function such that

(2.25) w(y) ≤ βE′(y)eαyN (y ∈ ∂U) and w(∞) = 0.

Then, there exists a positive constant c6, depending on N,R, r and ν, such that

HU
w (x′, xN) ≤ c6e

αxN Λ (|x′| = r).

Proof. Using (2.2), in view of (2.25) and (2.15), for |x′| = r we have

HU
w (x′, xN) ≤ C(N, r)

ˆ

∂U

w(y)e−α|yN−xN |dσ(y)

≤ C(N, r)eαxN

ˆ

∂U

βE′(y) dσ(y) ≤ C(N, R, r, ν)eαxN Λ. ¤

We extend h+ to be 0 outside U and recall that V stands for A(r′,∞) \ E ′. We
define inductively a sequence (sk) as follows

s−2 = s−1 = 0, s0 = h+,

s2k+1 =

{
H

V

s2k
on V,

s2k on RN\V,
s2k+2 =

{
H

U

s2k+1
+ h+ on U,

s2k+1 on RN \ U.

We put sk(∞) = 0 for all k.

Lemma 2.6. There is a positive constant c7, depending on N, R, r, r′ and ν,
such that, if Λ ≤ c7λ for some λ ∈ (0, 1), then:

(a) (sk) is an increasing sequence of continuous functions on RN ;
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(b) each sk is bounded on RN−1 × (−∞, bn) for each n ∈ N;
(c) for all k = 0, 1, . . . we have

(s2k − s2k−2)(x) ≤ λkeαxN , |x′| = r.

Proof. We will use ideas from [18, Lemma 3.1]. Suppose that Λ ≤ c7λ, where
c7 is to be determined later. Assume that s0 ≤ s1 ≤ . . . ≤ s2k on RN for some
k ≥ 0, that all the functions sk′ are continuous on RN for 0 ≤ k′ ≤ 2k, and that for
0 ≤ k′ ≤ k

(2.26) (s2k′ − s2k′−2)(x
′, xN) ≤ λk′eαxN (|x′| = r).

We also fix n ∈ N and assume that s2k is bounded on RN−1 × (−∞, bn). Once
the terms of (sk) are seen to be finite, it is clear that the upper PWB solutions
appearing in their definitions are actually well defined PWB solutions. The induction
hypotheses clearly hold for k = 0. We split the proof of Lemma 2.6 into three steps.

Step 1. We show that s2k+1 is a finite-valued continuous function on RN which is
bounded on RN−1 × (−∞, bn). Harnack’s inequalities and (2.26) yield the existence
of a constant c8 = c8(N, r, r′) > 0 such that

(2.27) (s2k − s2k−2)(y) ≤ c8λ
keαyN (|y′| = r′).

Now, for |x′| = r, by (2.27) and Lemma 2.4 we have

(s2k+1 − s2k−1)(x) ≤ H
V

s2k−s2k−2
(x) = H

V

(s2k−s2k−2)χV (r′)
(x)

≤ c5c8λ
kΛeαxN + H

A(r′,1)
(s2k−s2k−2)χV (r′)

(x).

Since s2k − s2k−1 = 0 on ∂U and s2k − s2k−1 = s2k − s2k−2 on V (r′), it follows that
s2k − s2k−1 belongs to the upper class for H

A(r′,1)
(s2k−s2k−2)χV (r′)

. Hence

(s2k+1 − s2k−1)(x) ≤ c5c8λ
kΛeαxN + (s2k − s2k−1)(x),

and so

(2.28) (s2k+1 − s2k)(x) ≤ c5c8λ
kΛeαxN (|x′| = r).

This proves finiteness of s2k+1.
A result of Armitage concerning a strong type of regularity for the PWB solution

of the Dirichlet problem (see [3, Theorem 2]) implies that s2k+1 is continuous at
points of ∂V \ ⋃∞

n=1(∂B′ × {bn}). Applying Lemma 2.3 to vj = HV
min{s2k,j} and

x ∈ ⋃∞
n=1(∂B′ × {bn}) we obtain

vj(y) ≤ c3vj(rx
′, xN)HTx\E′

χ∂Tx
(y) (y ∈ Tx \ E ′).

Letting j → ∞ we notice that the same inequality holds for s2k+1, and hence the
regularity of x for Tx \ E ′ implies that s2k+1 vanishes at x. We conclude that s2k+1

is continuous on RN .
We also have s2k+1 = H

V ∩[RN−1×(−∞,bn)]
s2k+1 on V ∩ [RN−1 × (−∞, bn)]. Further,

since s2k+1 is continuous on B′ × {bn}, vanishes on E and is bounded on (RN \
V )∩ [RN−1× (−∞, bn)] in view of the induction hypothesis, we deduce that s2k+1 is
bounded above on RN−1 × (−∞, bn).

Step 2. We now prove that s2k ≤ s2k+1 ≤ s2k+2 on RN . We note that s2k =

H
A(r′,1)
s2k on A(r′, 1) (for a simple proof see Step 2 in the proof of [18, Lemma 3.1]).
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It follows immediately from the induction hypothesis, that

s2k+1 = HV
s2k
≥ HV

s2k−2
= s2k−1 on V.

In particular, this gives s2k+1 ≥ s2k on RN \ U . Hence, s2k+1 ≥ s2k on ∂U ∪ ∂V .
Using [5, Theorem 6.3.6], we obtain

s2k+1 = HV
s2k

= HA(r′,1)
s2k+1

≥ HA(r′,1)
s2k

= s2k on A(r′, 1).

Therefore, s2k+1 ≥ s2k on RN . We now deduce that

s2k+2 = H
U

s2k+1
+ h+ ≥ HU

s2k−1
+ h+ = s2k = s2k+1 on RN \ V.

We finally note that, if s2k+2 belongs to the upper class for H
A(r′,1)

s2k+2
, we obtain

s2k+2 ≥ H
A(r′,1)

s2k+2
≥ HA(r′,1)

s2k+1
= s2k+1 on A(r′, 1),

and so s2k+2 ≥ s2k+1 on RN . To verify that s2k+2 belongs to the upper class for
H

A(r′,1)

s2k+2
it is enough to check that lim infx→y s2k+2(x) ≥ s2k+2(y) for y ∈ ∂U . This is

clear from regularity and the continuity of s2k+1, as if s2k+2 6≡ +∞, then for y ∈ ∂U
we have

lim inf
x→y

s2k+2(x) = lim inf
x→y

HU
s2k+1

(x) ≥ lim inf
x→y,x∈∂U

s2k+1(x) = s2k+1(y) = s2k+2(y).

Step 3. In the final step we will prove that

(2.29) (s2k+2 − s2k)(x) ≤ λk+1eαxN (|x′| = r).

Then, using [3, Theorem 2], we can conclude that s2k+2 is continuous on RN . Further,
s2k+2 − h+ = HU

s2k+1
= H

U∩[RN−1×(−∞,bn)]
s2k+2−h+

on U ∩ [RN−1 × (−∞, bn)]. By continuity,
s2k+2 is bounded on B′ ×{bn}. On RN \U we have s2k+2 = s2k+1, which is bounded
on (RN \ U) ∩ [RN−1 × (−∞, bn)] by Step 1. Hence s2k+2 is bounded on the whole
of RN−1 × (−∞, bn).

To prove the desired inequality (2.29), we first recall that

Um = (RN−1 \B′)× (bm, bm+1) (m ∈ N).

Noting that

s2k+1 = HV
s2k

= HUm
s2k+1

= HUm
s2k+1χ∂B′×(bm,bm+1)

on Um,

and that, by continuity, s2k+1 is bounded on ∂B′×(bm, bm+1), we see that s2k+1−s2k−1

satisfies the hypotheses of Lemma 2.3. Hence, for x ∈ ∂U , we have

(s2k+1 − s2k−1)(x) ≤ c3βE′(x)(s2k+1 − s2k−1)(rx
′, xN)

= c3βE′(x)[(s2k+1 − s2k)(rx
′, xN) + (s2k − s2k−1)(rx

′, xN)]

≤ c3βE′(x)[(s2k+1 − s2k)(rx
′, xN) + (s2k − s2k−2)(rx

′, xN)].

It follows from (2.28) and our induction hypothesis that

(s2k+1 − s2k−1)(x) ≤ c3(c5c8Λ + 1)λkeαxN βE′(x) (x ∈ ∂U).

Assuming that c7 ≤ 1 and letting c9 = c3(c5c8 + 1) we obtain

(s2k+1 − s2k−1)(x) ≤ c9λ
keαxN βE′(x) (x ∈ ∂U).
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By Lemma 2.5, for |x′| = r, we have

(s2k+2 − s2k)(x) ≤ H
U

s2k+1−s2k−1
(x) ≤ c9λ

kc6ΛeαxN = c6c7c9λ
k+1eαxN .

Taking c7 = min{1, (c6c9)
−1} we find that (2.29) holds, and the proof is complete. ¤

3. Proof of Theorem 1.1

Proposition 2.1 gives the implication (a) ⇒ (b). To prove that (b) ⇒ (a) we first
observe that taking J large enough when setting b1 = aJ , we can ensure that Λ ≤ c7λ
for some λ ∈ (0, 1). Let Ω′ = RN \ E ′ and u′ = lim

k→∞
sk. By Lemma 2.6, for |x′| = r

we obtain

s2k(x) =
k∑

j=0

(s2j − s2j−2)(x) ≤
k∑

j=0

λjeαxN ≤ 1

1− λ
eαxN .

Hence u′ 6≡ +∞. As a limit of an increasing sequence (s2k) of harmonic functions on
U , the function u′ is harmonic on U . Since u′ is the limit of an increasing sequence
(s2k+1) of harmonic functions on V , it is also harmonic on V . Hence u′ is harmonic
in Ω′. It follows from the monotonicity of (sk) that u′ ≥ h+ on U .

For x ∈ E ′ we have u′(x) = 0. By the monotone convergence theorem applied
to the equation s2k+1 = HV

s2k
we obtain u′ = HV

u′ on V . We can follow the reasoning
from the second last paragraph of Step 1 in the proof of Lemma 2.6 to see that u′

vanishes continuously on E ′.
We next prove that u′ is minimal on Ω′ using an argument from [18, Theorem 1.1].

As a consequence of the monotone convergence theorem we find that

(3.1) u′(x) = HU
u′(x) + h+(x) (x ∈ U).

Let ∆1 denote the minimal Martin boundary of Ω′ and let M be the Martin kernel
of Ω′ relative to the origin. By the Martin representation theorem (see [5, Theo-
rem 8.4.1]) we have

(3.2) u′(x) =

ˆ

∆1

M(x, z) dνu′(z) (x ∈ Ω′),

where νu′ is uniquely determined by u′.
We define T = {z ∈ ∆1 : Ω′\U is minimally thin at z} so that

(3.3) R
Ω′\U
M(·,z) = M(·, z) (z ∈ ∆1 \ T ).

Changing the order of integration, and using (3.1)–(3.3) and [5, Theorem 6.9.1], we
obtain

h+(x) =

ˆ

∆1

(
M(x, z)−

ˆ

∂U

M(y, z) dµU
x (y)

)
dνu′(z)

=

ˆ

∆1

(
M(x, z)−R

Ω′\U
M(·,z)(x)

)
dνu′(z)

=

ˆ

T

(
M(x, z)−R

Ω′\U
M(·,z)(x)

)
dνu′(z) (x ∈ U).
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We now claim that νu′|T is concentrated at a single point. For the sake of contra-
diction suppose that there are two distinct points y1, y2 ∈ ∆1 ∩ supp(νu′ |T ) and let
N1, N2 be disjoint neigbourhoods of y1 and y2 respectively. We define

hj(x) =

ˆ

Nj∩T

(
M(x, y)−R

Ω′\U
M(·,y)(x)

)
dνu′(y) (x ∈ Ω′, j = 1, 2),

and note that hj ≤ h+ on U . Minimality of h+ on U implies that

(3.4) hj/hj(0) = h+ on U (j = 1, 2).

We now define

vj(x) =

ˆ

Nj∩T

M(x, y) dνu′(y) (x ∈ Ω′, j = 1, 2).

Then hj ≤ vj ≤ u′ on Ω′, and by (3.4), vj/hj(0) ≥ h+ on Ω′ (j = 1, 2). In view of
the definition of sk we have vj/hj(0) ≥ sk on Ω′ for all k ∈ N and so vj/hj(0) ≥ u′

on Ω′ (j = 1, 2). It follows that h1(0)v2 ≤ v1 on Ω′. This implies that νu′|T∩N1 is
minorized by a multiple of νu′|T∩N2 , which contradicts the fact that N1 ∩ N2 = ∅.
Hence νu′|T = cδt′ for some t′ ∈ T and c > 0. Furthermore, the minimal harmonic
function v = cM(·, t′) on Ω′ satisfies u′ ≥ v on Ω′ and v ≥ h+ on U . We observe that
v ≥ sk on Ω′ for all k ∈ N, and so v ≥ u′. Hence v ≡ u′ and we conclude that u′ is
minimal on Ω′.

Let Ω′′ = RN \ E ′′. We define g = HΩ′
χΩ′′\Ω′

and g = χΩ′′\Ω′ on ∂∞Ω′. By

[5, Theorem 6.9.1] we have g = R
Ω′′\Ω′
1 on Ω′′ (reductions with respect to non-

negative superharmonic functions on Ω′′). Since Ω′′\Ω′ is non-thin at each constituent
point, it follows from [5, Theorem 7.3.1(i)] that R

Ω′′\Ω′
1 = R̂

Ω′′\Ω′
1 on Ω′′ and so g is

superharmonic there. Let h be a non-negative harmonic minorant of g on Ω′′. Then
h is bounded on Ω′′ and vanishes quasi-everywhere on ∂Ω′′. Since a polar subset
of ∂Ω′′ and {∞} are both negligible for Ω′′ (see [5, Theorems 6.5.5 and 7.6.5]), we
deduce that h ≡ 0. Hence g is a potential on Ω′′.

Let W = [RN−1 × (−∞, bn)] ∩ Ω′ for some n > 1. Since 1 − g is positive and
continuous on B′×{bn}, it follows that 1−g is bounded below by a positive constant
on this set while u′ is bounded from above there. Hence there exists a positive
constant c such that c(1− g) ≥ u′ on B′×{bn}, and thus on ∂W . By Lemma 2.6(b)
each sk is bounded on W and so it belongs to the lower class for HW

sk
. These facts

combined with monotonicity of (sk) lead to the observation that

sk ≤ HW
sk
≤ HW

u′ ≤ cHW
1−g = c(1− g) on W.

Therefore, u′ ≤ c(1−g) on W . Since c(1−g)−u′ is a non-negative harmonic function
on W which vanishes on Ω′′ \ Ω′, we conclude that c(1 − g) − u′ is subharmonic on
Ω′′, so that u′ + cg is superharmonic on Ω′′.

By the Riesz decomposition,

(3.5) u′ + cg = u′′ + GΩ′′µ on Ω′′,

where u′′ is the greatest harmonic minorant of u′ + cg on Ω′′ and GΩ′′µ is the Green
potential of the Riesz measure µ associated with u′ + cg. Hence u′′ vanishes on
E ′′ \ (∂B′ × {b1}) and for each n ∈ N it is bounded on RN−1 × (−∞, bn). It follows
from a removable singularity result (see [5, Theorem 5.2.1]) that u′′ extends to a
subharmonic function on RN . This together with the non-thinness of E ′′ at points
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of ∂B′×{b1} implies that u′′ vanishes also on ∂B′×{b1}. Since h+ is a subharmonic
minorant of u′ + cg on Ω′′, we deduce that h+ ≤ u′′ on Ω′′.

It remains to show that u′′ is minimal. Let h be a positive harmonic minorant of
u′′ on Ω′′. We notice that h is bounded on Ω′′ \ Ω′ and vanishes on ∂Ω′′. Hence the
greatest harmonic minorant of R

Ω′′\Ω′
h on Ω′′ is bounded and vanishes on ∂Ω′′, and

we see that R
Ω′′\Ω′
h is a potential on Ω′′. Since the upper-bounded harmonic function

h−R
Ω′′\Ω′
h − u′ on Ω′ satisfies

lim sup
x→y

(h−R
Ω′′\Ω′
h − u′)(x) ≤ 0 for y ∈ ∂Ω′,

and {∞} has zero harmonic measure for Ω′, it follows that

h−R
Ω′′\Ω′
h − u′ ≤ 0 on Ω′.

Now, since h − R
Ω′′\Ω′
h is a positive harmonic minorant of the minimal function

u′ on Ω′, we conclude that h − R
Ω′′\Ω′
h = au′ for some a ∈ (0, 1]. Substituting this

into (3.5) we obtain

h + acg = au′′ + aGΩ′′µ + R
Ω′′\Ω′
h on Ω′′.

Taking the greatest harmonic minorant in Ω′′ of both sides we get h = au′′, which
means that u′′ is minimal.

Let u = u′′ −HΩ
u′′ . Since u′′ − h+ ≥ 0 is superharmonic on Ω′′ and equals u′′ on

Ω′′ \ Ω, we have
u = u′′ −R

Ω′′\Ω
u′′ = u′′ −R

Ω′′\Ω
u′′−h+

≥ h+.

Since the points of ∂Ω are regular for Ω and u′′ is continuous, it follows that u vanishes
on ∂Ω. Further, [5, Theorem 9.5.5] shows that u is minimal.

Remark. The proof of the implication (a) ⇒ (b) in Theorem 1.1 does not rely
on condition (1.1). It is in the proof of the converse that our methods rely on such a
condition. However, it is enough to assume merely that Ω is contained in a comb-like
domain Ω0 for which (1.1) holds. To see this, suppose that (b) holds. Theorem 1.1
applied to Ω0 yields the existence of a minimal harmonic function u0 on Ω0 which
vanishes on ∂Ω0 and satisfies u0 ≥ h+. Let u = u0 −HΩ

u0
on Ω. The argument from

the previous paragraph shows that u is as stated in (a).
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