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Abstract. Let X be an RD-space, namely, a metric space enjoying both doubling and reverse
doubling properties. In this paper, for all s ∈ [−1, 1] and p, q ∈ (0,∞], the authors introduce the
grand Besov spaces A Ḃs

p,q(X ) and grand Triebel–Lizorkin spaces A Ḟ s
p,q(X ), and prove that when

ε ∈ (0, 1), |s| < ε and p ∈ (max{n/(n + ε), n/(n + ε + s)},∞], A Ḃs
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ = Ḃs
p,q(X )

with q ∈ (0,∞] and A Ḟ s
p,q(X )∩ (G̊ ε

0 (β, γ))′ = Ḟ s
p,q(X ) with q ∈ (max{n/(n+ ε), n/(n+ ε+s)},∞]

for all admissible β and γ, where G̊ ε
0 (β, γ) is the space of test functions. As applications, the

authors obtain some real interpolation results on these grand Besov and Triebel–Lizorkin spaces.
The corresponding results for inhomogeneous spaces are also presented.

1. Introduction

The theory of Besov and Triebel–Lizorkin spaces on metric spaces has developed
rapidly in recent years. In particular, a theory of Besov spaces Bs

p,q(X ) and Triebel–
Lizorkin spaces F s

p,q(X ) on the so-called RD-spaces X , namely, metric spaces enjoy-
ing both doubling and reverse doubling properties, was established in [14, 15] and fur-
ther developed in [20, 24]; see these papers and their references for part of the history
of these spaces on metric measure spaces. Very recently, in [18, 19], a class of grand
Besov spaces A Ḃs

p,q and grand Triebel–Lizorkin spaces A Ḟ s
p,q, and their inhomoge-

neous counterparts, A Bs
p,q and A F s

p,q, on both Rn for full range of parameters and
RD-spaces for s ∈ (0, 1) and p, q ∈ (0,∞] were introduced and proved therein that
these spaces coincide with, respectively, Besov spaces and Triebel–Lizorkin spaces for
some parameters s, p and q. Furthermore, the grand Triebel–Lizorkin spaces A Ḟ s

p,q

and A F s
p,q were also proved to cover, respectively, the Hajłasz–Sobolev spaces Ṁ s,p

and M s,p. Recall that the Hajłasz–Sobolev space when s = 1 was introduced by
Hajłasz in [11, 12] and when s ∈ (0, 1) in [22]. In recent years, a lot of attention has
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been paid to the study of Hajłasz–Sobolev spaces on metric spaces; see, for example,
[9, 13, 17].

In this paper, motivated by [17, 18, 19], for all parameters s ∈ [−1, 1] and p, q ∈
(0,∞], we introduce the grand Besov spaces A Ḃs

p,q(X ) and grand Triebel–Lizorkin
spaces A Ḟ s

p,q(X ) on an RD-space X via the grand Littlewood–Paley g-function,
and prove that when ε ∈ (0, 1), |s| < ε and p ∈ (max{n/(n + ε), n/(n + ε + s)},∞],
A Ḃs

p,q(X ) ∩ (G̊ ε
0 (β, γ))′ = Ḃs

p,q(X ) with q ∈ (0,∞], and A Ḟ s
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ =
Ḟ s

p,q(X ) with q ∈ (max{n/(n + ε), n/(n + ε + s)},∞] in the sense of equivalent
quasi-norms for all admissible β and γ, where G̊ ε

0 (β, γ) is the space of test func-
tions introduced in [15]; see Theorem 1.1 below. This generalizes [18, Theorem 1.4]
and [19, Theorem 4.1] by taking s ∈ (0, 1), p ∈ (max{n/(n + ε), n/(n + ε + s)},∞]
and q ∈ (0,∞]. As an application of these coincidences and via the Calderón re-
producing formulae in [15], we establish some real interpolation conclusions of the
spaces A Ḃs

p,q(X ) and A Ḟ s
p,q(X ), which generalize the real interpolation theorems

of Besov and Triebel–Lizorkin spaces on Ahlfors n-regular metric spaces in [23] and
RD-spaces in [15]; see Theorem 1.2 below. The corresponding results on inhomoge-
neous grand Besov spaces A Bs

p,q(X ) and grand Triebel–Lizorkin spaces A F s
p,q(X )

are also obtained; see Theorems 3.1 and 3.2.
We begin with the notion of RD-spaces in [15] (see also [24]).

Definition 1.1. Let (X , d, µ) be a metric space with a regular Borel measure µ
such that all balls defined by the metric d have finite and positive measures. For any
x ∈ X and r ∈ (0,∞), let B(x, r) ≡ {y ∈ X : d(x, y) < r}. The triple (X , d, µ) is
called an RD-space if there exist constants 0 < κ ≤ n and 0 < C1 ≤ 1 ≤ C2 < ∞
such that for all x ∈ X , 0 < r < 2diam(X ) and 1 ≤ λ < 2diam(X )/r,

(1.1) C1λ
κµ(B(x, r)) ≤ µ(B(x, λr)) ≤ C2λ

nµ(B(x, r)),

where diam(X ) ≡ supx,y∈X d(x, y).

We remark that a connected space of homogeneous type in the sense of Coifman
and Weiss [7, 8] (with the quasi-metric replaced by metric) is an RD-space; see [24].

In what follows, we always assume that (X , d, µ) is an RD-space. Let V (x, y) ≡
µ(B(x, d(x, y))) and Vr(x) ≡ µ(B(x, r)) for any x, y ∈ X and r ∈ (0,∞). It is easy
to see that V (x, y) ∼ V (y, x).

Definition 1.2. Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function
ϕ on X is said to be in the space G (x1, r, β, γ) if there exists a nonnegative constant
C such that

(i) |ϕ(x)| ≤ C 1
Vr(x1)+V (x1,x)

[ r
r+d(x1,x)

]γ for all x ∈ X ;
(ii) |ϕ(x)−ϕ(y)| ≤ C[ d(x,y)

r+d(x1,x)
]β 1

Vr(x1)+V (x1,x)
[ r
r+d(x1,x)

]γ for all x, y ∈ X satisfying
d(x, y) ≤ (r + d(x1, x))/2.

Moreover, for any ϕ ∈ G (x1, r, β, γ), its norm in G (x1, r, β, γ) is defined by

‖ϕ‖G (x1,r,β,γ) ≡ inf{C : (i) and (ii) hold}.
Throughout the whole paper, we fix x1 ∈ X and let G (β, γ) ≡ G (x1, 1, β, γ).

The space G (β, γ) is a Banach space with respect to the norm ‖ · ‖G (β,γ); see [15,
Section 2.1].
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For any given ε ∈ (0, 1], let G ε
0 (β, γ) be the completion of the space G (ε, ε) in

G (β, γ) when β, γ ∈ (0, ε]. Obviously, G ε
0 (ε, ε) = G (ε, ε). We also let G̊ (x1, r, β, γ) ≡

{f ∈ G (x1, r, β, γ) :
´

X
f(x) dx = 0}, and the space G̊ ε

0 (β, γ) is defined to be the
completion of the space G̊ (ε, ε) in G̊ (β, γ) when β, γ ∈ (0, ε]. Moreover, if f ∈
G̊ ε

0 (β, γ), we then define ‖f‖G̊ ε
0 (β,γ) ≡ ‖f‖G (β,γ). Let (G ε

0 (β, γ))′ and (G̊ ε
0 (β, γ))′ be

respectively the dual spaces of G ε
0 (β, γ) and G̊ ε

0 (β, γ), endowed with the weak ∗-
topology. It is easy to see that (G̊ ε

0 (β, γ))′ = (G ε
0 (β, γ))′/C; see [15].

We now recall the notion of approximations of the identity on RD-spaces in [15,
Definition 2.3].

Definition 1.3. Let ε1 ∈ (0, 1]. A sequence {Sk}k∈Z of bounded linear integral
operators on L2(X ) is called an approximation of the identity of order ε1 (for short,
ε1-AOTI) with bounded support, if there exist positive constants C3 and C4 such
that for all k ∈ Z and all x, x′, y and y′ ∈ X , Sk(x, y), the integral kernel of Sk, is
a measurable function from X ×X into C satisfying

(i) Sk(x, y) = 0 if d(x, y) > C42
−k and |Sk(x, y)| ≤ C3

1
V
2−k (x)+V

2−k (x)
;

(ii) |Sk(x, y)− Sk(x
′, y)| ≤ C32

kε1 [d(x,x′)]ε1
V
2−k (x)+V

2−k (x)
for d(x, x′) ≤ max{C4, 1}21−k;

(iii) Property (ii) holds with x and y interchanged;
(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x

′, y) − Sk(x
′, y′)]| ≤ C32

2kε1 [d(x,x′)]ε1 [d(y,y′)]ε1
V
2−k (x)+V

2−k (x)
for

d(x, x′) ≤ max{C4, 1}21−k and d(x, x′) ≤ max{C4, 1}21−k;
(v)

´
X

Sk(x, z) dµ(z) = 1 =
´

X
Sk(z, y) dµ(z).

It was proved in [15] that, for any ε1 ∈ (0, 1], there always exists an ε1-AOTI
with bounded support on an RD-space X . In what follows, for all k ∈ Z, we set
Dk ≡ Sk − Sk−1, and for any ε ∈ (0, 1) and |s| < ε, we let p(s, ε) ≡ max{n/(n +
ε), n/(n + ε + s)}.

Let X be an RD-spaces with µ(X ) = ∞. We recall the homogeneous Besov
spaces Ḃs

p,q(X ) and Triebel–Lizorkin spaces Ḟ s
p,q(X ) on RD-spaces; see [15, Defini-

tion 5.8].

Definition 1.4. Let ε ∈ (0, 1), |s| < ε and p ∈ (p(s, ε),∞]. Let {Sk}k∈Z be an
ε-AOTI with bounded support as in Definition 1.3.

(i) Let q ∈ (0,∞]. The homogeneous Besov space Ḃs
p,q(X ) is defined to be the

set of all f ∈ (G̊ ε
0 (β, γ))′, for some β, γ satisfying that

max{s, 0,−s + n(1/p− 1)+} < β < ε,

max{s− κ/p, n(1/p− 1)+,−s + n(1/p− 1)+ − κ(1− 1/p)+)} < γ < ε,
(1.2)

such that ‖f‖Ḃs
p,q(X ) ≡ {∑k∈Z 2ksq‖Dk(f)‖q

Lp(X )}1/q < ∞ with the usual modifica-
tions made when p = ∞ or q = ∞.

(ii) Let q ∈ (p(s, ε),∞]. The homogeneous Triebel–Lizorkin space Ḟ s
p,q(X ) is

defined to be the set of all f ∈ (G̊ ε
0 (β, γ))′ for some β, γ satisfying (1.2) such that

‖f‖Ḟ s
p,q(X ) < ∞, where when p < ∞,

‖f‖Ḟ s
p,q(X ) ≡

∥∥∥∥∥∥

{∑

k∈Z

2ksq|Dk(f)|q
}1/q

∥∥∥∥∥∥
Lp(X )
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with the usual modification made when q = ∞, and when p = ∞,

‖f‖Ḟ s∞,q(X ) ≡ sup
l∈Z

sup
x∈X

{
1

µ(B(x, 2−l))

ˆ

B(x,2−l)

∞∑

k=l

2ksq|Dk(f)(x)|qdµ(x)

}1/q

with the usual modification made when q = ∞.

It was proved in [15] that the spaces Ḃs
p,q(X ) and Ḟ s

p,q(X ) are independent of the
choices of the approximations of the identity and the distribution spaces (G̊ ε

0 (β, γ))′

with β, γ as in (1.2). Many properties of the spaces Ḃs
p,q(X ) and Ḟ s

p,q(X ), such
as the frame characterization, the real interpolation and the dual theory, were also
established in [15]. Recently, Müller and Yang [20] characterized the spaces Ḃs

p,q(X )

and Ḟ s
p,q(X ) in terms of differences. To be precise, it was proved in [20] that when

s ∈ (0, 1), p ∈ [1,∞], and q ∈ (0,∞], the space Ḃs
p,q(X ) coincides with both the

space of all locally p-integrable functions f on X satisfying that
{∑

v∈Z

2vsq

[ˆ

X

1

µ(B(x,C12−v))

ˆ

B(x,C12−v)

|f(x)− f(y)|p dµ(y) dµ(x)

]q/p
}1/q

< ∞

and the space of all locally integrable functions f on X satisfying that
{∑

v∈Z

2vsq

[ˆ

X

[
1

µ(B(x,C12−v))

ˆ

B(x,C12−v)

|f(x)− f(y)|dµ(y)

]p

dµ(x)

]q/p
}1/q

< ∞,

and when s ∈ (0, 1), p ∈ (1,∞) and q ∈ (1,∞], the space Ḟ s
p,q(X ) coincides with the

space of all locally integrable functions f on X satisfying that
∥∥∥∥∥∥

{∑
v∈Z

2vsq

(
1

µ(B(·, C22−v))

ˆ

B(·,C22−v)

|f(·)− f(y)| dµ(y)

)q
}1/q

∥∥∥∥∥∥
Lp(X )

< ∞,

where C1 and C2 are positive constants independent of f .

Remark 1.1. Let α ∈ [0,∞), q ∈ (0,∞], p ∈ [1,∞) and (X, d, µ) be a doubling
metric measure space. Recently, Gogatishvili, Koskela and Shanmugalingam [10]
introduced the Besov space Bα

p,q(X ), which is defined to be space of all locally p-
integrable functions f on X such that

{ˆ ∞

0

[ˆ

X

1

µ(B(x, t))

ˆ

B(x,t)

|f(x)− f(y)|p dµ(y) dµ(x)

]q/p
dt

tαq+1

}1/q

< ∞.

This definition can be regarded as a “continuous” variant of the Besov spaces intro-
duced in [20] and, as was pointed by Gogatishvili, Koskela and Shanmugalingam [10,
p. 216], when α ∈ (0, 1) and X is an RD-space, this space also coincides with the
Besov space defined via test functions in Definition 1.4.

Following the ideas in [18] and [19], we define the homogeneous grand Besov and
Triebel–Lizorkin space as follows:

Definition 1.5. Let s ∈ [−1, 1], q ∈ (0,∞] and A ≡ {Ak(x)}k∈Z,x∈X with
Ak(x) ≡ {φ ∈ G̊ (1, 2) : ‖φ‖G̊ (x,2−k,1,2) ≤ 1} for all x ∈ X and all k ∈ Z.
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(i) The homogeneous grand Besov space A Ḃs
p,q(X ) with p ∈ (0,∞] is defined to

be the space of all f ∈ (G (1, 2))′ such that

‖f‖A Ḃs
p,q(X ) ≡





∑

k∈Z

2kqs

∥∥∥∥∥ sup
φ∈Ak(·)

|〈f, φ〉|
∥∥∥∥∥

q

Lp(X )





1/q

< ∞

with the usual modifications made when p = ∞ or q = ∞.
(ii) The homogeneous grand Triebel–Lizorkin space A Ḟ s

p,q(X ) is defined to be
the space of all f ∈ (G (1, 2))′ such that ‖f‖A Ḟ s

p,q(X ) < ∞, where when p ∈ (0,∞),

‖f‖A Ḟ s
p,q(X ) ≡

∥∥∥∥∥∥

{∑

k∈Z

2kqs sup
φ∈Ak(·)

|〈f, φ〉|q
}1/q

∥∥∥∥∥∥
Lp(X )

with the usual modification made when q = ∞, and when p = ∞,

‖f‖A Ḟ s∞,q(X ) ≡ sup
l∈Z

sup
x∈X

{
1

µ(B(x, 2−l))

ˆ

B(x,2−l)

∞∑

k=l

2ksq sup
φ∈Ak(x)

|〈f, φ〉|q dµ(x)

}1/q

with the usual modification made when q = ∞.

By the same reason as in [18, Remark 4.1] (see also [19, Remark 4.2], noticing
that (G̊ (1, 2))′ = (G (1, 2))′/C, if we replace (G (1, 2))′ by (G̊ (1, 2))′ in Definition 1.5,
the obtained new spaces, modulo constants, are respectively equivalent to the original
spaces in Definition 1.5.

Remark 1.2. Let all the notation be as in Definition 1.5.
(i) Similarly to the proof of [15, Proposition 5.7], we obtain that if f ∈ (G̊ ε

0 (β, γ))′

with ‖f‖A Ḃs
p,q(X ) < ∞ (resp. ‖f‖A Ḟ s

p,q(X ) < ∞), then f ∈ (G̊ ε
0 (β̃, γ̃))′ for every β̃,

γ̃ satisfying (1.2), namely, for any h ∈ G̊ ε
0 (β̃, γ̃), |〈f, h〉| ≤ C‖f‖A Ḃs

p,q(X )‖h‖G̊ ε
0 (β̃,γ̃)

(resp. |〈f, h〉| ≤ C‖f‖A Ḟ s
p,q(X )‖h‖G̊ ε

0 (β̃,γ̃)), where C is a positive constant independent
of f and h.

(ii) Recall that when s ∈ (0, 1) and p ∈ (p(s, ε),∞], it was proved, respectively, in
[19, Theorem 4.1] and [18, Theorem 1.4] that A Ḃs

p,q(X ) = Ḃs
p,q(X ) for q ∈ (0,∞]

and A Ḟ s
p,q(X ) = Ḟ s

p,q(X ) for q ∈ (p(s, ε),∞] with equivalent quasi-norms via a
Sobolev embedding theorem (see Lemmas 4.1 and 4.2 in [18]). On the other hand,
from [15, Proposition 5.10], it follows that Ḃs

p,q(X ) ⊂ (G̊ ε
0 (β̃, γ̃))′ and Ḟ s

p,q(X ) ⊂
(G̊ ε

0 (β̃, γ̃))′ for every β̃, γ̃ satisfying (1.2). Thus, the statement (i) of this remark when
s ∈ (0, 1) still holds if we only assume that f ∈ A Ḃs

p,q(X ) (resp. f ∈ A Ḟ s
p,q(X )).

We have the following coincidences.

Theorem 1.1. Let all notation be as in Definition 1.4. Then

A Ḃs
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ = Ḃs
p,q(X ) and A Ḟ s

p,q(X ) ∩ (G̊ ε
0 (β, γ))′ = Ḟ s

p,q(X )

with equivalent quasi-norms.

When s ∈ (0, 1), by Remark 1.2(ii), we know that A Ḃs
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ =

A Ḃs
p,q(X ) and A Ḟ s

p,q(X )∩(G̊ ε
0 (β, γ))′ = A Ḟ s

p,q(X ) with β and γ as in (1.2). Thus,
Theorem 1.1 generalizes [19, Theorem 4.1] and [18, Theorem 1.4] by taking s ∈ (0, 1),
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p ∈ (p(s, ε),∞] and q ∈ (0,∞]. However, when s ∈ (−1, 0], it is still unclear so far if
we can replace A Ḃs

p,q(X )∩(G̊ ε
0 (β, γ))′ (resp. A Ḟ s

p,q(X )∩(G̊ ε
0 (β, γ))′) by A Ḃs

p,q(X )

(resp. A Ḟ s
p,q(X )) in Theorem 1.1.

Let us now recall some general background on the real interpolation for quasi-
Banach spaces in [21]; see also [4] for the case of Banach spaces. Let H be a linear
complex Hausdorff space, and let A0, A1 be two complex quasi-Banach spaces such
that A0 ⊂ H and A1 ⊂ H . Let A0 +A1 be the set of all elements a ∈ H which can
be represented as a = a0 + a1 with a0 ∈ A0 and a1 ∈ A1. Then Peetre’s K-functional
of a = a0 + a1 at t ∈ (0,∞) is given by

K(t, a) ≡ K(t, a; A0, A1) ≡ inf
{‖a0‖A0 +t‖a1‖A1 : a = a0+a1, a0 ∈ A0 and a1 ∈ A1

}
.

Definition 1.6. Let σ∈(0, 1) and q∈(0,∞). The interpolation space (A0, A1)σ,q

is defined by

(A0, A1)σ,q ≡
{

a : a ∈ A0 + A1, ‖a‖(A0,A1)σ,q ≡
(ˆ ∞

0

[t−σK(t, a)]q
dt

t

)1/q

< ∞
}

.

If σ ∈ (0, 1) and q = ∞, then define

(A0, A1)σ,∞ ≡
{

a : a ∈ A0 + A1, ‖a‖(A0,A1)σ,∞ ≡ sup
0<t<∞

t−σK(t, a) < ∞
}

.

Using the Calderón reproducing formulae obtained in [15], we establish the fol-
lowing interpolation theorem. By Remark 1.2(i), in the below proof of Theorem 1.2,
we choose H = (G̊ ε

0 (β, γ))′ with β and γ as in (1.2).

Theorem 1.2. Let ε, β and γ be as in Definition 1.4, σ ∈ (0, 1) and q ∈ (0,∞].
(i) Let s ≡ 1− 2σ. Then for p ∈ (p(s, ε),∞],

(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃ−1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

= Ḃs
p,q(X )

and (
A Ḟ 1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḟ−1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

= Ḃs
p,q(X ).

(ii) Let s1 ∈ (−ε, ε), s ≡ (1− σ) + σs1 and p ∈ (p(s1, ε),∞]. If q1 ∈ (0,∞], then
(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,q1
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q
= Ḃs

p,q(X );

if q1 ∈ (p(s1, ε),∞], then
(
A Ḟ 1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḟ s1

p,q1
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q
= Ḃs

p,q(X ).

(iii) Let s0 ∈ (−ε, ε), s ≡ (1− σ)s0 − σ and p ∈ (p(s0, ε),∞]. If q0 ∈ (0,∞], then
(
A Ḃs0

p,q0
(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḃ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q
= Ḃs

p,q(X );

if q0 ∈ (p(s0, ε),∞], then
(
A Ḟ s0

p,q0
(X ) ∩ (G̊ ε

0 (β, γ))′, A Ḟ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q
= Ḃs

p,q(X ).
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(iv) Let s0, s1 ∈ (−ε, ε), s ≡ (1− σ)s0 + σs1 and p ∈ (max{p(s0, ε), p(s1, ε)},∞].
If q0, q1 ∈ (0,∞], then

(
A Ḃs0

p,q0
(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḃs1
p,q1

(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

= Ḃs
p,q(X );

if q0, q1 ∈ (p(si, ε),∞], then
(
A Ḟ s0

p,q0
(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḟ s1
p,q1

(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

= Ḃs
p,q(X ).

We point out that by Remark 1.2(ii), when s0 ∈ (0, 1) (resp. s1 ∈ (0, 1)), the
space A Ḃs0

p,q0
(X ) ∩ (G̊ ε

0 (β, γ))′ (resp. A Ḃs1
p,q1

(X ) ∩ (G̊ ε
0 (β, γ))′) in Theorem 1.2 can

be replaced by A Ḃs0
p,q0

(X ) (resp. A Ḃs1
p,q1

(X )).
Similarly, we also obtain the inhomogeneous counterparts of Theorems 1.1 and

1.2; see Theorems 3.1 and 3.2 below.
From Theorems 1.1 and 3.1, we deduce that Theorems 1.2 and 3.2 generalize [23,

Theorem 2.3] and [15, Theorems 8.3–8.6] by taking s0, s1 ∈ (0, 1) and q0, q1, q ∈ (0,∞]
and p ∈ (max{p(s0, ε), p(s1, ε)},∞].

Recently, Gogatishvili, Koskela and Shanmugalingam [10] proved that if a dou-
bling metric space X supports a (1, p)-Poincaré inequality, then for all p ∈ [1,∞),
s0, s1, θ ∈ (0, 1) and q0, q1, q ∈ [1,∞], or s0, θ ∈ (0, 1), s1 = 0, q0, q ∈ [1,∞] and
q1 = ∞,

(Bs0
p,q0

(X ), Bs1
p,q1

(X ))θ,q = Bs
p,q(X ), s = (1− θ)s0 + θs1, s0 6= s1

and
(KS1,p(X ), Bs1

p,q1
(X ))θ,q = Bs

p,q(X ), s = (1− θ) + θs1,

where KS1,p(X ) is the Sobolev space in the sense of Korevaar and Schoen [16]. It
was also pointed out in [10] that KS1,p(X ) coincides with the Hajłasz–Sobolev space
M1,p(X ) when the doubling metric space X supports a (1, p)-Poincaré inequality.
From this and the coincidence A F 1

p,∞(X ) = M1,p(X ) for RD-space X obtained in
[18], we deduce that if an RD-space X supports a (1, p)-Poincaré inequality, then
A F 1

p,∞(X ) = KS1,p(X ), and hence Theorem 3.2 generalizes [10, Theorem 4.4] in
this case.

Some other recent developments on the real interpolation theory of Sobolev spaces
on metric spaces were made by Badr [1, 2] and Badr–Bernicot [3]. Badr in [1, 2] ob-
tained the interpolation properties between two Sobolev spaces both with order 1
on some classes of manifolds, Lie groups and metric spaces satisfying certain dou-
bling properties, while Badr and Bernicot [3] studied the real interpolation between
Hardy–Sobolev spaces and Sobolev spaces both with order 1 on doubling Riemann-
ian manifolds via an atomic decomposition. Notice that the Triebel–Lizorkin spaces
coincide with Sobolev spaces for parameters s = 1 and certain p, q. In comparison
with Theorems 1.2 and 3.2, Badr and Bernicot’s interpolation results can be seen as
the endpoint case of Theorems 1.2 and 3.2 with s0 = s1 = 1 and q0 = q1 = q = ∞,
which are not included in Theorems 1.2 and 3.2.

The organization of this paper is as follows. Section 2 is devoted to the proofs of
Theorems 1.1 and 1.2. The key tools used in the whole paper are the dyadic cubes of
Christ [6] and the Calderón reproducing formulae established in [15]. In Section 3,
we establish the counterparts of Theorems 1.1 and 1.2 for the inhomogeneous spaces;
see Theorems 3.1 and 3.2 below.
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Finally, we make some conventions. Throughout this paper, we always use C to
denote a positive constant that is independent of the main parameters involved and
whose value may differ form line to line. Constants with subscripts, such as C1, do
not change in different occurrence. If f ≤ Cg, we then write f . g or g & f ; and if
f . g . f , we then write f ∼ g. Denote the set of integers by Z, the set of positive
integers by N and N∪{0} by Z+. For a, b ∈ R, we denote min{a, b}, max{a, b} and
max{a, 0} by a ∧ b, a ∨ b and a+, respectively. If E is a subset of X , we denote by
χE the characteristic function of E.

2. Proofs of Theorems 1.1 and 1.2

We first recall the following construction given by Christ in [6], which provides
an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type in
the sense of Coifman and Weiss [7, 8].

Lemma 2.1. Let X be a space of homogeneous type. Then there exists a
collection {Qk

α ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set, and
constants δ ∈ (0, 1) and C5, C6 > 0 such that

(i) µ(X \ ∪αQk
α) = 0 for each fixed k and Qk

α ∩Qk
β = ∅ if α 6= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩Qk

α = ∅;
(iii) for each (k, α) and each l < k, there exists a unique β such that Qk

α ⊂ Ql
β;

(iv) diam(Qk
α) ≤ C5δ

k;
(v) each Qk

α contains some ball B(zk
α, C6δ

k), where zk
α ∈ X .

In fact, we can think of Qk
α as being a dyadic cube with diameter rough δk and

centered at zk
α. In what follows, to simplify our presentation, we always suppose

δ = 1/2; otherwise, we need to replace 2−k in the definition of approximations of the
identity by δk and some other changes are also necessary; see [15] for details.

In the following, for k ∈ Z and τ ∈ Ik, we denote by {Qk,ν
τ : ν = 1, · · · , N(k, τ)}

the set of all cubes Qk+j
τ ′ ⊂ Qk

τ , where Qk
τ is a dyadic cube as in Lemma 2.1 and j is

a fixed positive large integer such that 2−jC5 < 1/3. Denote by zk,ν
τ the “center” of

Qk,ν
τ as in Lemma 2.1 and by yk,ν

τ a point in Qk,ν
τ . From (1.1), it follows that

(2.1) µ(Qk,ν
τ ) ∼ V2−(k+j)(yk,ν

τ ) ∼ V2−k(yk,ν
τ )

with equivalent constants depending on j.
The following discrete Calderón reproducing formula on RD-spaces and its vari-

ants were established in [15].

Lemma 2.2. Let ε ∈ (0, 1) and {Sk}k∈Z be a 1-AOTI with bounded support.
Then, for any fixed j ∈ N large enough, there exists a family {D̃k}k∈Z of linear oper-
ators such that for any fixed yk,ν

τ ∈ Qk,ν
τ with k ∈ Z, τ ∈ Ik and ν ∈ {1, · · · , N(k, τ)},

x ∈ X , and for all f ∈ (G̊ ε
0 (β, γ))′ with β, γ ∈ (0, ε),

f(x) =
∑

k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )D̃k(x, yk,ν

τ )Dk(f)(yk,ν
τ ),

where the series converges in both the norm of (G̊ ε
0 (β, γ))′ and the norm of Lp(X )

for p ∈ (1,∞). Moreover, for any ε′ ∈ (ε, 1), there exists a positive constant C,
depending on ε′ and j, such that the kernels, denoted by D̃k(x, y), of the operators
D̃k satisfy
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(i) for all x, y ∈ X , |D̃k(x, y)| ≤ C 1
V
2−k (x)+V (x,y)

[ 2−k

2−k+d(x,y)
]ε
′ ;

(ii) for all x, x′, y ∈ X with d(x, x′) ≤ (2−k + d(x, y))/2,

|D̃(x, y)− D̃(x′, y)| ≤ C

[
d(x, x′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′

;

(iii) for all k ∈ Z,
´

X
D̃k(x, z) dµ(z) = 0 =

´
X

D̃k(z, y) dµ(z).

Lemma 2.3. Let ε ∈ (0, 1) and {Sk}k∈Z be a 1-AOTI with bounded support
as in Definition 1.3. Then, for any fixed j ∈ N large enough, there exists a family
{Dk}k∈Z of linear operators such that for any fixed yk,ν

τ ∈ Qk,ν
τ with k ∈ Z, τ ∈ Ik

and ν ∈ {1, · · · , N(k, τ)}, x ∈ X , and for all f ∈ (G̊ ε
0 (β, γ))′ with β, γ ∈ (0, ε),

f(x) =
∑

k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(x, yk,ν

τ )Dk(f)(yk,ν
τ ),

where the series converges in both the norm of (G̊ ε
0 (β, γ))′ and the norm of Lp(X )

for p ∈ (1,∞). Moreover, for any ε′ ∈ (ε, 1), there exists a positive constant C,
depending on ε′ and j, such that the kernels, denoted by Dk(x, y), of the operators
Dk satisfy

(i) for all x, y ∈ X , |Dk(x, y)| ≤ C 1
V
2−k (x)+V (x,y)

[ 2−k

2−k+d(x,y)
]ε
′ ;

(ii) for all x, y, y′ ∈ X with d(y, y′) ≤ (2−k + d(x, y))/2,

|D(x, y)−D(x, y′)| ≤ C

[
d(y, y′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′

;

(iii) for all k ∈ Z,
´

X
Dk(x, z) dµ(z) = 0 =

´
X

Dk(z, y) dµ(z).

We now present some basic estimates which are used throughout the whole paper;
see [15, Lemmas 2.1, 5.2 and 5.3].

Lemma 2.4. (i) If a > η ≥ 0 and δ ∈ (0,∞), then there exists a positive
constant C, independent of δ, η and a, such that for all x ∈ X ,

ˆ

X

1

Vδ(x) + V (x, y)

(
δ

δ + d(x, y)

)a

[d(x, y)]η dµ(y) ≤ Cδη.

(ii) If a ∈ (0,∞) and δ ∈ (0,∞), then there exists a positive constant C, inde-
pendent of a and δ, such that for all f ∈ L1

loc(X ) and all x ∈ X ,
ˆ

d(x,y)>δ

1

V (x, y)

(
δ

δ + d(x, y)

)a

|f(y)| dµ(y) ≤ CM(f)(x),

where M is the Hardy–Littlewood maximal function on X .
(iii) Let ε ∈ (0,∞), k, k′ ∈ Z, and yk,ν

τ be any point in Qk,ν
τ for τ ∈ Ik and

ν ∈ {1, · · · , N(k, τ)}. If p ∈ (n/(n + ε), 1], then there exists a positive constant,
independent of k, k′, τ and ν, such that for all x ∈ X ,

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )

[V2−k∧k′ (x) + V (x, yk,ν
τ )]p

[
2−k∧k′

2−k∧k′ + d(x, yk,ν
τ )

]εp

≤ C [V2−k∧k′ (x)]1−p .

(iv) Let ε ∈ (0,∞), k, k′ ∈ Z, and yk,ν
τ be any point in Qk,ν

τ for τ ∈ Ik and
ν ∈ {1, · · · , N(k, τ)}. If r ∈ (n/(n + ε), 1], then there exists a positive constant C,
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depending on r but independent of k, k′, τ and ν, such that for all ak,ν
τ ∈ C and all

x ∈ X ,

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )

V2−k∧k′ (x) + V (x, yk,ν
τ )

[
2−k∧k′

2−k∧k′ + d(x, yk,ν
τ )

]ε

|ak,ν
τ |

≤ C2[k∧k′−k]n(1−1/r)



M


∑

τ∈Ik

N(k,τ)∑
ν=1

|ak,ν
τ |rχQk,ν

τ


 (x)





1/r

.

With these tools, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let {Sk}k∈Z be a 1-AOTI with bounded support. It
is easy to check that Dk(x, ·) ∈ Ak(x) for all k ∈ Z and all x ∈ X , which further
implies that the quasi-norms ‖ · ‖Ḃs

p,q(X ) and ‖ · ‖Ḟ s
p,q(X ) are, respectively, dominated

by ‖ · ‖A Ḃs
p,q(X ) and ‖ · ‖A Ḟ s

p,q(X ). Thus, A Ḃs
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ and A Ḟ s
p,q(X ) ∩

(G̊ ε
0 (β, γ))′ are continuously included in Ḃs

p,q(X ) and Ḟ s
p,q(X ), respectively.

To complete the proof of Theorem 1.1, it suffices to show that Ḃs
p,q(X ) ⊂

A Ḃs
p,q(X ) and Ḟ s

p,q(X ) ⊂ A Ḟ s
p,q(X ). For f ∈ Ḃs

p,q(X ) or f ∈ Ḟ s
p,q(X ), since

f ∈ (G̊ ε
0 (β, γ))′, by Lemma 2.2, for all x ∈ X , l ∈ Z and φ ∈ Al(x), we have

〈f, φ〉 =
∑

k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )

ˆ

X

D̃k(z, y
k,ν
τ )φ(z) dµ(z),

where we fix yk,ν
τ ∈ Qk,ν

τ such that |Dk(f)(yk,ν
τ )| ≤ 2 infz∈Qk,ν

τ
|Dk(f)(z)|. By the

definition of Al(x), we know that φ ∈ G̊ (1, 2) ⊂ G̊ (ε, ε) ⊂ G̊ ε
0 (β, γ). From this and

the uniform estimates of D̃k in Lemma 2.2, it follows that for any fixed β′ ∈ (|s|, β)
and γ′ ∈ (|s|, γ) satisfying (1.2) in Definition 1.4,

(2.2)
∣∣∣∣
ˆ

X

D̃k(z, y
k,ν
τ )φ(z) dµ(z)

∣∣∣∣ . 2−|k−l|β′

V2−(k∧l)(x) + V (x, yk,ν
τ )

(
2−(k∧l)

2−(k∧l) + d(x, yk,ν
τ )

)γ′

;

see [15, Proposition 5.7] and also [18] for a detailed proof. Thus,

(2.3) |〈f, φ〉| .
∑

k∈Z

2−|k−l|β′∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|
V2−(k∧l)(x)+V (x, yk,ν

τ )

(
2−(k∧l)

2−(k∧l) + d(x, yk,ν
τ )

)γ′

.

We first prove that Ḃs
p,q(X ) ⊂ A Ḃs

p,q(X ) in the case when p ∈ (1,∞]. Notice
that for any z ∈ Qk,ν

τ , V2−(k∧l)(x) + V (x, yk,ν
τ ) ∼ V2−(k∧l)(x) + V (x, z) and 2−(k∧l) +

d(x, yk,ν
τ ) ∼ 2−(k∧l) + d(x, z). These estimates, together with the choice of yk,ν

τ , (2.3)
and Lemma 2.4(ii), yield that

|〈f, φ〉| .
∑

k∈Z

2−|k−l|β′
ˆ

X

|Dk(f)(z)|
V2−(k∧l)(x) + V (x, z)

(
2−(k∧l)

2−(k∧l) + d(x, z)

)γ′

dµ(z)

.
∑

k∈Z

2−|k−l|β′M(|Dk(f)|)(x),

where M is the Hardy–Littlewood maximal function. Then applying the Minkowski
inequality and the boundedness of the Hardy–Littlewood maximal function on Lp(X )
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with p ∈ (1,∞], we have

‖f‖q

A Ḃs
p,q(X )

=
∑

l∈Z

2lqs

∥∥∥∥∥ sup
φ∈Al(·)

|〈f, φ〉|
∥∥∥∥∥

q

Lp(X )

.
∑

l∈Z

2lqs

∥∥∥∥∥
∑

k∈Z

2−|k−l|β′M(|Dk(f)|)
∥∥∥∥∥

q

Lp(X )

.
∑

l∈Z

2lqs

(∑

k∈Z

2−|k−l|β′‖Dk(f)‖Lp(X )

)q

.

If q ∈ (0, 1], by the inequality that for all {ak}k∈Z ⊂ C and r ∈ (0, 1],

(2.4)

(∑

k∈Z

|ak|
)r

≤
∑

k∈Z

|ak|r

and the fact that β′ > |s|, we obtain

‖f‖q

A Ḃs
p,q(X )

.
∑

k∈Z

2kqs

(∑

l≤k

2(l−k)q(s+β′) +
∑

l>k

2(k−l)q(β′−s)

)
‖Dk(f)‖q

Lp(X )

.
∑

k∈Z

2kqs‖Dk(f)‖q
Lp(X ) ∼ ‖f‖q

Ḃs
p,q(X )

.

If q ∈ (1,∞], choosing δ > 0 such that |s| + δ < β′ and then using the Hölder
inequality, we see that

‖f‖A Ḃs
p,q(X ) .

{∑

l∈Z

2lqs

(∑

k≤l

2(k−l)qβ′−kqδ‖Dk(f)‖q
Lp(X )2

lqδ

+
∑

k>l

2(l−k)qβ′+kqδ‖Dk(f)‖q
Lp(X )2

−lqδ

)}1/q

.
{∑

k∈Z

2kqs

(∑

l≥k

2(l−k)q(s+δ−β′) +
∑

l<k

2(k−l)q(δ−β′−s)

)
‖Dk(f)‖q

Lp(X )

}1/q

.
{∑

k∈Z

2kqs‖Dk(f)‖q
Lp(X )

}1/q

. ‖f‖Ḃs
p,q(X ),

which completes the proof in the case when p ∈ (1,∞].
For the case when p ∈ (p(s, ε), 1], by (2.3), the fact that

V2−(k∧l)(x) + V (x, yk,ν
τ ) ∼ V2−(k∧l)(y

l,ν′
τ ′ ) + V (yl,ν′

τ ′ , yk,ν
τ ) + V2−(k∧l)(yk,ν

τ )
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and 2−(k∧l) + d(x, yk,ν
τ ) ∼ 2−(k∧l) + d(yl,ν′

τ ′ , yk,ν
τ ) when x ∈ Ql,ν′

τ ′ , the choice of yk,ν
τ ,

Lemma 2.4(iii) and (2.4), we have

∥∥∥∥∥ sup
φ∈Al(·)

|〈f, φ〉|
∥∥∥∥∥

p

Lp(X )

.
∑

k∈Z

2−|k−l|pβ′
∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ν
τ )]p|Dk(f)(yk,ν

τ )|p

×
ˆ

X

1

[V2−(k∧l)(x) + V (x, yk,ν
τ )]p

(
2−(k∧l)

2−(k∧l) + d(x, yk,ν
τ )

)γ′p

dµ(x)

∼
∑

k∈Z

2−|k−l|pβ′
∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ν
τ )]p|Dk(f)(yk,ν

τ )|p

×
∑

τ ′∈Il

N(l,τ ′)∑

ν′=1

µ(Ql,ν′
τ ′ )

[V2−(k∧l)(y
l,ν′
τ ′ ) + V (yl,ν′

τ ′ , yk,ν
τ ) + V2−(k∧l)(y

k,ν
τ )]p

×
(

2−(k∧l)

2−(k∧l) + d(yl,ν′
τ ′ , yk,ν

τ )

)γ′p

.
∑

k∈Z

2−|k−l|pβ′
∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ν
τ )]p|Dk(f)(yk,ν

τ )|p [
V2−(k∧l)(yk,ν

τ )
]1−p

.
∑

k∈Z

2−|k−l|pβ′+[k−(k∧l)]n(1−p)
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

.
∑

k∈Z

2−|k−l|pβ′+[k−(k∧l)]n(1−p) ‖Dk(f)‖p
Lp(X ) .

If q/p ∈ (0, 1], by (2.4) and (1.2), we see that

‖f‖q

A Ḃs
p,q(X )

=
∑

l∈Z

2lqs

∥∥∥∥∥ sup
φ∈Al(·)

|〈f, φ〉|
∥∥∥∥∥

q

Lp(X )

.
∑

l∈Z

2lqs
∑

k∈Z

2−|k−l|qβ′+[k−(k∧l)]qn(1/p−1) ‖Dk(f)‖q
Lp(X )

.
∑

k∈Z

2kqs

(∑

l∈Z

2(l−k)qs−|k−l|qβ′+[k−(k∧l)]qn(1/p−1)

)
‖Dk(f)‖q

Lp(X )

.
∑

k∈Z

2kqs

(∑

l≤k

2(l−k)q[s+β′+n(1−1/p)] +
∑

l>k

2(l−k)q(s−β′)

)
‖Dk(f)‖q

Lp(X )

.
∑

k∈Z

2kqs‖Dk(f)‖q
Lp(X ) ∼ ‖f‖q

Ḃs
p,q(X )

.
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If q/p ∈ (1,∞], choosing δ > 0 satisfying |s|+ δ < β′ and β′+ s+n(1− 1/p)− δ > 0,
by the Hölder inequality, we have

‖f‖A Ḃs
p,q(X ) =





∑

l∈Z

2lqs

∥∥∥∥∥ sup
φ∈Al(·)

|〈f, φ〉|
∥∥∥∥∥

q

Lp(X )





1/q

.
{∑

k∈Z

2kqs
∑

l∈Z

2(l−k)qs−|k−l|q(β′−δ)+[(k∧l)−k]qn(1−1/p)‖Dk(f)‖q
Lp(X )

}1/q

.
{∑

k∈Z

2kqs‖Dk(f)‖q
Lp(X )

}1/q

∼ ‖f‖Ḃs
p,q(X ).

Hence, f ∈ A Ḃs
p,q(X ) and ‖f‖A Ḃs

p,q(X ) . ‖f‖Ḃs
p,q(X ).

The proof for Ḟ s
p,q(X ) ⊂ A Ḟ s

p,q(X ) is similar. Let f ∈ Ḟ s
p,q(X ), x ∈ X and

φ ∈ Al(x). For the case when p < ∞, using (2.3), Lemma 2.4(iv), the choice of yk,ν
τ ,

and choosing r ∈ (n/[n + (β′ ∧ γ′)], p ∧ q), we have

|〈f, φ〉| .
∑

k∈Z

2−|k−l|β′+[(k∧l)−k]n(1−1/r) [M (|Dk(f)|r) (x)]1/r ,

and hence

‖f‖A Ḟ s
p,q(X )

.

∥∥∥∥∥∥

{∑

l∈Z

2(l−k)qs

(∑

k∈Z

2−|k−l|β′+[(k∧l)−k]n(1−1/r) [M (|Dk(f)|r) (x)]1/r

)q}1/q
∥∥∥∥∥∥

Lp(X )

,

which together with the Hölder inequality when q ∈ (1,∞] or (2.4) when q ∈
(p(s, ε), 1], and the Fefferman–Stein vector-valued maximal function inequality in
[5] (see also [15, Lemma 3.14]) further implies that

‖f‖A Ḟ s
p,q(X ) .

∥∥∥∥∥∥

{∑

k∈Z

[
M

(
2krs|Dk(f)|r)]q/r

}r/q
∥∥∥∥∥∥

1/r

Lp/r(X )

.

∥∥∥∥∥∥

{∑

k∈Z

2ksq|Dk(f)|q
}1/q

∥∥∥∥∥∥
Lp(X )

∼ ‖f‖Ḟ s
p,q(X ).

For the case when p = ∞, notice that

‖f‖A Ḟ s∞,q(X ) ∼ sup
j∈Z

sup
a∈Ij

{
1

µ(Qj
a)

ˆ

Qj
a

∞∑

l=j

2lsq sup
φ∈Al(x)

|〈f, φ〉|q dµ(x)

}1/q

.

If q ∈ (0,∞), for any f ∈ Ḟ s
∞,q(X ), j ∈ Z, a ∈ Ij, x ∈ Qj

a and φ ∈ Al(x),
by (2.3) and the fact that V2−(k∧l)(x) + V (x, yk,τ

ν ) ∼ V2−(k∧l)(y
l,τ ′
ν′ ) + V (yl,τ ′

ν′ , yk,τ
ν ) and

2−(k∧l)+d(x, yk,τ
ν ) ∼ 2−(k∧l)+d(yl,τ ′

ν′ , yk,τ
ν ) for all x ∈ Ql,τ ′

ν′ with τ ′ ∈ Il and ν ′ ∈ N(l, τ ′),
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we have

1

µ(Qj
a)

ˆ

Qj
a

∞∑

l=j

2lsq sup
φ∈Al(x)

|〈f, φ〉|q dµ(x)

=
1

µ(Qj
a)

∞∑

l=j

∑

τ ′∈Il

N(l,τ ′)∑

ν′=1

2lsqχ{(τ ′,ν′):Ql,τ ′
ν′ ⊂Qj

a}(τ
′, ν ′)

ˆ

Ql,τ ′
ν′

sup
φ∈Al(x)

|〈f, φ〉|q dµ(x)

. 1

µ(Qj
a)

∞∑

l=j

∑

τ ′∈Il

N(l,τ ′)∑

ν′=1

2lsqχ{(τ ′,ν′):Ql,τ ′
ν′ ⊂Qj

a}(τ
′, ν ′)

ˆ

Ql,τ ′
ν′

[∑

k∈Z

2−|k−l|β′

×
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,τ
ν )|Dk(f)(yk,τ

ν )|
V2−(k∧l)(x) + V (x, yk,τ

ν )

(
2−(k∧l)

2−(k∧l) + d(x, yk,τ
ν )

)γ′



q

dµ(x)

. 1

µ(Qj
a)

∞∑

l=j

∑

τ ′∈Il

N(l,τ ′)∑

ν′=1

2lsqµ(Ql,τ ′
ν′ )χ{(τ ′,ν′):Ql,τ ′

ν′ ⊂Qj
a}(τ

′, ν ′)

[∑

k∈Z

2−|k−l|β′

×
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,τ
ν )|Dk(f)(yk,τ

ν )|
V2−(k∧l)(y

l,τ ′
ν′ ) + V (yl,τ ′

ν′ , yk,τ
ν )

(
2−(k∧l)

2−(k∧l) + d(yl,τ ′
ν′ , yk,τ

ν )

)γ′



q

.

Then, similarly to the proof of [15, Proposition 6.3], by the choice of yk,τ
ν , we further

obtain

1

µ(Qj
a)

ˆ

Qj
a

∞∑

l=j

2lsq sup
φ∈Al(x)

|〈f, φ〉|q dµ(x)

. sup
j∈Z

sup
a∈Ij

1

µ(Qj
a)

∞∑

k=j

∑
τ∈Ik

N(k,τ)∑
ν=1

2ksqµ(Qk,τ
ν )χ{(τ,ν):Qk,τ

ν ⊂Qj
a}(τ, ν)

[
inf

x∈Qk,τ
ν

|Dk(f)(x)|
]q

. sup
j∈Z

sup
a∈Ij

1

µ(Qj
a)

ˆ

Qj
a

∞∑

k=j

2ksq|Dk(f)(x)|q dµ(x) ∼ ‖f‖q

Ḟ s∞,q(X )
.

The proof for the case when q = ∞ is similar, which completes the proof of Theo-
rem 1.1. ¤

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We show this theorem by following a procedure used in
the proof of [15, Theorem 8.8] with some modifications.

To verify (i), by Remark 1.2(i), we take H = (G̊ ε
0 (β, γ))′ with ε, β and γ as in

(1.2). Let us first prove that

(A Ḃ1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′, A Ḃ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′)σ,q ⊂ Ḃs
p,q(X ).

Assume that f ∈ (A Ḃ1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′, A Ḃ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′)σ,q and
f = f0 + f1 with f0 ∈ A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′ and f1 ∈ A Ḃ−1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′.
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Let {Dk}k∈Z be as in Definition 1.4. Then

2k‖Dk(f)‖Lp(X ) . 2k

∥∥∥∥∥ sup
φ∈Ak(·)

|〈f, φ〉|
∥∥∥∥∥

Lp(X )

. 2k

∥∥∥∥∥ sup
φ∈Ak(·)

|〈f0, φ〉|
∥∥∥∥∥

Lp(X )

+ 22k−k

∥∥∥∥∥ sup
φ∈Ak(·)

|〈f1, φ〉|
∥∥∥∥∥

Lp(X )

. ‖f0‖A Ḃ1
p,∞(X ) + 22k‖f1‖A Ḃ−1

p,∞(X ).

Taking the infimum over all representations f = f0 + f1 yields that

2k‖Dk(f)‖Lp(X ) . K
(
22k, f ; A Ḃ1

p,∞(X ),A Ḃ−1
p,∞(X )

)
.(2.5)

If q ∈ (0,∞), from (2.5), it follows that

‖f‖q

(A Ḃ1
p,∞(X ),A Ḃ−1

p,∞(X ))
σ,q

=

ˆ ∞

0

t−σq
[
K

(
t, f ; A Ḃ1

p,∞(X ),A Ḃ−1
p,∞(X )

)]q dt

t

=
∑

k∈Z

ˆ 22k

22(k−1)

t−σq
[
K

(
t, f ; A Ḃ1

p,∞(X ),A Ḃ−1
p,∞(X )

)]q dt

t

&
∑

k∈Z

2−2σqk
[
K

(
22k, f ; A Ḃ1

p,∞(X ),A Ḃ−1
p,∞(X )

)]q

&
∑

k∈Z

2kqs‖Dk(f)‖q
Lp(X ) ∼ ‖f‖q

Ḃs
p,q(X )

;

if q = ∞, by (2.5), we then have

‖f‖Ḃs
p,∞(X ) = sup

k∈Z
2ks‖Dk(f)‖Lp(X )

. sup
k∈Z

2k(s−1)K
(
22k, f ; A Ḃ1

p,∞(X ),A Ḃ−1
p,∞(X )

)

. sup
t∈(0,∞)

t−σK
(
t, f ; A Ḃ1

p,∞(X ), A Ḃ−1
p,∞(X )

)

. ‖f‖(A Ḃ1
p,∞(X ),A Ḃ−1

p,∞(X ))
σ,∞

.

Thus, (A Ḃ1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḃ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′)σ,q ⊂ Ḃs
p,q(X ).

Notice that A Ḟ 1
p,∞(X ) ⊂ A Ḃ1

p,∞(X ) and A Ḟ−1
p,∞(X ) ⊂ A Ḃ−1

p,∞(X ). We then
have

(A Ḟ 1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḟ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′)σ,q

⊂ (A Ḃ1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′,A Ḃ−1
p,∞(X ) ∩ (G̊ ε

0 (β, γ))′)σ,q ⊂ Ḃs
p,q(X ).

Thus, to complete the proof of (i), it suffices to show that

Ḃs
p,q(X ) ⊂ (A Ḟ 1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′, A Ḟ−1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′)σ,q.
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We only consider the case q ∈ (0,∞) and we omit the details for the case q = ∞ by
similarity and simplicity. Let now f ∈ Ḃs

p,q(X ). We then write

‖f‖q

(A Ḟ 1
p,∞(X ),A Ḟ−1

p,∞(X ))
σ,q

=

ˆ ∞

0

t−σq
[
K

(
t, f ; A Ḟ 1

p,∞(X ),A Ḟ−1
p,∞(X )

)]q dt

t

.
∑
j∈Z

2−2jσq
[
K

(
22j, f ; A Ḟ 1

p,∞(X ),A Ḟ−1
p,∞(X )

)]q

.

Let all notation be as in Lemma 2.3. For any j ∈ Z, we write

f(z) =

j∑

k=−∞

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(z, y

k,ν
τ )Dk(f)(yk,ν

τ ) +
∞∑

k=j+1

∑
τ∈Ik

N(k,τ)∑
ν=1

· · ·

≡ f j
0 (z) + f j

1 (z).

(2.6)

From this and the definition of the K-functional, it follows that

‖f‖(A Ḟ 1
p,∞(X ),A Ḟ−1

p,∞(X ))
σ,q

.
{∑

j∈Z

2−2qjσ
(
‖f j

0‖q

A Ḟ 1
p,∞(X )

+ 22jq‖f j
1‖q

A Ḟ−1
p,∞(X )

)}1/q

.





∑
j∈Z

2−qj(1−s)

∥∥∥∥∥sup
l∈Z

2l sup
φ∈Al(·)

|〈f j
0 , φ〉|

∥∥∥∥∥

q

Lp(X )





1/q

+





∑
j∈Z

2−qj(−1−s)

∥∥∥∥∥sup
l∈Z

2−l sup
φ∈Al(·)

|〈f j
1 , φ〉|

∥∥∥∥∥

q

Lp(X )





1/q

≡ I + J.

For φ ∈ Al(x), by the fact that Dk = Sk−Sk−1 and the estimates of Sk in Definition
1.3, similarly to the proof of (2.2), we have

(2.7)
∣∣∣∣
ˆ

X

Dk(z, y
k,ν
τ )φ(z) dµ(z)

∣∣∣∣ . 2−|k−l|

V2−(k∧l)(x)+V (x, yk,ν
τ )

(
2−(k∧l)

2−(k∧l)+ d(x, yk,ν
τ )

)2

.

From (2.7), Lemma 2.4(iv) and the choices of yk,v
τ , we deduce that

|〈f j
0 , φ〉| .

j∑

k=−∞
2−|k−l| ∑

τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|
V2−(k∧l)(x) + V (x, yk,ν

τ )

(
2−(k∧l)

2−(k∧l) + d(x, yk,ν
τ )

)2

.
j∑

k=−∞
2−|k−l|2[(k∧l)−k]n(1−1/r)

[
M(|Dk(f)|r)(x)

]1/r
,
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where we chose r ∈ (n/(n+2), p). From this, the Minkowski inequality, the Fefferman–
Stein vector-valued inequality and [15, Remark 5.5], we deduce that

I .





∑
j∈Z

2−qj(1−s)

∥∥∥∥∥sup
l∈Z

2l

j∑

k=−∞
2−|k−l|2[(k∧l)−k]n(1−1/r)

[
M(|Dk(f)|r)(x)

]1/r

∥∥∥∥∥

q

Lp(X )





1/q

.
{∑

j∈Z

2−qj(1−s)

{
j∑

k=−∞
2k

∥∥Dk(f)
∥∥

Lp(X )

}q}1/q

∼ ‖f‖Ḃs
p,q(X ).

Similarly, we obtain that J . ‖f‖Ḃs
p,q(X ). Hence, we have

Ḃs
p,q(X ) ⊂ (A Ḟ 1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḟ−1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′)σ,q

and then complete the proof of (i).
The proofs of (ii), (iii) and (iv) are similar and we only give the proof of (ii).

First, following the procedure used in the proof of (i), we have

(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′, A Ḃs1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q
⊂ Ḃs

p,q(X ).

Conversely, let q2 ∈ (0, p ∧ q1). Notice that for p ∈ (p(s, ε),∞] and q1 ∈ (0,∞],

(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,q2
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q

⊂
(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,q1
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q

⊂
(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

,

and for p, q ∈ (p(s, ε),∞],

(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,q2
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q

⊂
(
A Ḟ 1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḟ s1

p,q1
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q

⊂
(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′

)
σ,q

.

To complete the proof of (ii), it suffices to prove that for p ∈ (p(s, ε),∞] and q ∈
(0,∞],

Ḃs
p,q(X ) ⊂

(
A Ḃ1

p,∞(X ) ∩ (G̊ ε
0 (β, γ))′,A Ḃs1

p,q2
(X ) ∩ (G̊ ε

0 (β, γ))′
)

σ,q
.
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To this end, we write f ≡ f j
0 + f j

1 for any j ∈ Z as in (2.6). It follows from the
definition of the K-functional that

‖f‖(A Ḃ1
p,∞(X ),A Ḃ

s1
p,q2

(X ))
σ,q

.





∑
j∈Z

2−qj(1−s)



sup

l∈Z
2l

∥∥∥∥∥ sup
φ∈Al(·)

|〈f j
0 , φ〉|

∥∥∥∥∥
Lp(X )





q


1/q

+





∑
j∈Z

2−qj(s1−s)





∑

l∈Z

2lq2s1

∥∥∥∥∥ sup
φ∈Al(·)

|〈f j
1 , φ〉|

∥∥∥∥∥

q2

Lp(X )





q/q2





1/q

≡ K + L.

The estimate for K is exactly the same as in the proof of (i) and we now turn to the
estimate for L. For φ ∈ Al(x), by (2.7) and Lemma 2.4(iv), we have

|〈f j
1 , φ〉| .

∞∑

k=j+1

2−|k−l|2[(k∧l)−k]n(1−1/r)
[
M(|Dk(f)|r)(x)

]1/r
,

where we chose r ∈ (p(s1, ε), p). Using the Minkowski inequality, the Lp/r(X )-
boundedness of M and [15, Remark 5.5], we have

L .
{∑

k∈Z

2kqs
∥∥Dk(f)

∥∥q

Lp(X )

}1/q

∼ ‖f‖Ḃs
p,q(X ).

Thus, (ii) holds, which completes the proof of Theorem 1.2. ¤

3. Inhomogeneous case

In this section, µ(X ) can be finite or infinite, since in both cases the inhomoge-
neous Calderón reproducing formulae are available; see [15, Theorem 4.16]. For any
Christ dyadic cube Q, we set mQ(f) ≡ 1

µ(Q)

´
Q

f(x)dµ(x). We recall the following
notions; see, for example, [15].

Definition 3.1. Let ε ∈ (0, 1) and {Sk}k∈Z+ be an ε-AOTI with bounded support
as in Definition 1.3. Set D0 ≡ S0 and Dk ≡ Sk − Sk−1 for k ∈ N. Let {Q0,ν

τ : τ ∈
I0, ν = 1, · · · , N(0, τ)} with a fixed large j ∈ N be dyadic cubes as in Section 2.

(i) Let |s| < ε, p ∈ (p(s, ε),∞] and q ∈ (0,∞]. The inhomogeneous Besov space
Bs

p,q(X ) is defined to be the space of all f ∈ (G ε
0 (β, γ))′, with some β, γ satisfying

(3.1) max{s, 0,−s + n(1/p− 1)+} < β < ε and n(1/p− 1)+ < γ < ε,

such that

‖f‖Bs
p,q(X ) ≡





∑
τ∈I0

N(k,τ)∑
ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p





1/p

+

{∑

k∈N

2ksq‖Dk(f)‖q
Lp(X )

}1/q

< ∞
with the usual modifications made when p = ∞ or q = ∞.
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(ii) Let |s| < ε and p, q ∈ (p(s, ε),∞]. The inhomogeneous Triebel–Lizorkin space
F s

p,q(X ) is defined to be the space of all f ∈ (G ε
0 (β, γ))′ with some β, γ satisfying

(3.1) such that ‖f‖F s
p,q(X ) < ∞, where when p < ∞,

‖f‖F s
p,q(X ) ≡





∑
τ∈I0

N(k,τ)∑
ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)

]p





1/p

+

∥∥∥∥∥∥

{∑

k∈N

2ksq|Dk(f)|q
}1/q

∥∥∥∥∥∥
Lp(X )

,

and when p = ∞,

‖f‖A F s∞,q(X ) ≡ max



 sup

τ∈I0
ν∈{1,··· ,N(0,τ)}

mQ0,τ
ν

(|D0(f)|),

sup
l∈N

sup
a∈Il

[
1

µ(Ql
a)

ˆ

Ql
a

∞∑

k=l

2ksq|Dk(f)(x)|q dµ(x)

]1/q




with the usual modification made when q = ∞.

It was showed in [15] that the spaces Bs
p,q(X ) and F s

p,q(X ) are independent of the
choices of the approximations of the identity and the distribution spaces (G ε

0 (β, γ))′

with ε, β and γ as in (3.1). Also, when s ∈ (0, 1), the difference characterizations of
Bs

p,q(X ) with p ∈ [1,∞] and q ∈ (0,∞] and F s
p,q(X ) with p ∈ (1,∞) and q ∈ (1,∞]

were presented in [20].

Definition 3.2. Let s ∈ [−1, 1], p, q ∈ (0,∞], A ≡ {Ak(x)}k∈Z+,x∈X with
A0(x) ≡ {φ ∈ G (1, 2) : ‖φ‖G (x,1,1,2) ≤ 1} for all x ∈ X and Ak(x) for all k ∈ N and
all x ∈ X being as in Definition 1.5.

(i) The inhomogeneous grand Besov space A Bs
p,q(X ) is defined to be the space

of all f ∈ (G (1, 2))′ such that

‖f‖A Bs
p,q(X ) ≡





∑

k∈Z+

2kqs

∥∥∥∥∥ sup
φ∈Ak(·)

|〈f, φ〉|
∥∥∥∥∥

q

Lp(X )





1/q

< ∞

with the usual modifications made when p = ∞ or q = ∞.
(ii) The inhomogeneous grand Triebel–Lizorkin space A F s

p,q(X ) is defined to be
the space of all f ∈ (G (1, 2))′ such that ‖f‖A F s

p,q(X ) < ∞, where when p ∈ (0,∞),

‖f‖A F s
p,q(X ) ≡

∥∥∥∥∥∥∥





∑

k∈Z+

2kqs sup
φ∈Ak(·)

|〈f, φ〉|q




1/q
∥∥∥∥∥∥∥

Lp(X )

,

and when p = ∞,

‖f‖A F s∞,q(X ) ≡ sup
l∈Z+

sup
a∈Il

{
1

µ(Ql
a)

ˆ

Ql
a

∞∑

k=l

2ksq sup
φ∈Ak(x)

|〈f, φ〉|q dµ(x)

}1/q

with the usual modification made when q = ∞.
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Theorem 3.1. Let all notation be as in Definition 3.1. Then

A Bs
p,q(X ) ∩ (G ε

0 (β, γ))′ = Bs
p,q(X ) and A F s

p,q(X ) ∩ (G ε
0 (β, γ))′ = F s

p,q(X )

with equivalent quasi-norms.

Similarly to the homogeneous case, it was proved in [18, 19] that A Bs
p,q(X ) =

Bs
p,q(X ) with equivalent quasi-norms, if s ∈ (0, 1) and p ∈ (p(s, ε),∞] and q ∈

(0,∞]; A F s
p,q(X ) = F s

p,q(X ) with equivalent quasi-norms, if s ∈ (0, 1) and p, q ∈
(p(s, ε),∞]. Thus, Theorem 3.1 generalizes the corresponding results in [18, 19].

Theorem 3.2. Let ε, β and γ be as in Definition 3.1, σ ∈ (0, 1) and q0, q1, q ∈
(0,∞]. Then all the claims of Theorem 1.2 hold with Ḃ replaced by B, Ḟ by F and
(G̊ ε

0 (β, γ))′ by (G ε
0 (β, γ))′, respectively.

Similarly to the homogeneous case, when s0 ∈ (0, 1) (resp. s1 ∈ (0, 1)), the space
A Bs0

p,q0
(X ) ∩ (G ε

0 (β, γ))′ (resp. A Bs1
p,q1

(X ) ∩ (G ε
0 (β, γ))′) in Theorem 3.2 can be

replaced by A Bs0
p,q0

(X ) (resp. A Bs1
p,q1

(X )).
The proofs of Theorems 3.1 and 3.2 are similar to those of the homogeneous cases.

We point out that instead of the homogeneous Calderón reproducing formulae, in the
proof of Theorems 3.1 and 3.2, we need the inhomogeneous ones established in [15].
We omit the details.

From the proofs of Theorems 1.1, 1.2, 3.1 and 3.2, it is easy to see that the
following remark holds.

Remark 3.1. Let s ∈ (−1, 1) and ε ∈ (0, s).
(i) Let β, γ be as in (1.2). If in Definition 1.5, we let Ak(x)≡{φ ∈ G̊ ε

0 (x, 2−k, β, γ) :

‖φ‖G̊ ε
0 (x,2−k,β,γ) ≤ 1} for all x ∈ X and k ∈ Z, then A Ḃs

p,q(X ) ∩ (G̊ ε
0 (β, γ))′ and

A Ḟ s
p,q(X ) ∩ (G̊ ε

0 (β, γ))′ in Theorems 1.1 and 1.2 can be replaced, respectively, just
by A Ḃs

p,q(X ) and A Ḟ s
p,q(X ).

(ii) Let β, γ be as in (3.1). If in Definition 3.2, we let A0(x) ≡ {φ ∈ G ε
0 (x, 1, β, γ) :

‖φ‖G ε
0 (x,1,β,γ) ≤ 1} for all x ∈ X and Ak(x) for all k ∈ N and all x ∈ X be as in (i),

then A Bs
p,q(X ) ∩ (G ε

0 (β, γ))′ and A F s
p,q(X ) ∩ (G ε

0 (β, γ))′ in Theorems 3.1 and 3.2
can be replaced, respectively, just by A Bs

p,q(X ) and A F s
p,q(X ).
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