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Abstract. We study mixed norm spaces V (Rn) that arise in connection with embeddings of
Sobolev spaces W 1

1 (Rn). We prove embeddings of V (Rn) into Lorentz type spaces defined in terms
of iterative rearrangements. Basing on these results, we introduce the scale of mixed norm spaces
V p(Rn). We prove that V ⊂ V p and we discuss some questions related to this embedding.

1. Introduction

Let W 1
p (Rn) (1 ≤ p < ∞) be the Sobolev space of all functions f ∈ Lp(Rn) for

which all first-order weak derivatives ∂f/∂xk ≡ Dkf exist and belong to Lp(Rn).
The classical Sobolev theorem asserts that for any function f in W 1

p (Rn) (1 ≤ p < n)

(1.1) ‖f‖q∗ ≤ c

n∑

k=1

‖Dkf‖p , q∗ =
np

n− p
.

Sobolev proved this inequality in 1938 for p > 1. For p = 1 inequality (1.1) was proved
independently by Gagliardo (1958) and Nirenberg (1959). The core of Gagliardo’s
approach [7] is the following:

Lemma 1.1. Let n ≥ 2. Assume that gk ∈ L1(Rn−1) (k = 1, . . . , n) are nonneg-
ative functions on Rn−1. Then

(1.2)
∫

Rn

n∏

k=1

gk(x̂k)
1/(n−1) dx ≤

( n∏

k=1

∫

Rn−1

gk(x̂k) dx̂k

)1/(n−1)

.

As usual, for any vector x ∈ Rn and any k = 1, . . . , n we denote by x̂k the
(n − 1)-dimensional vector obtained from x by removal of its kth coordinate. We
write x = (xk, x̂k).

Assume now that f ∈ W 1
1 (Rn). Then for any k = 1, . . . , n and almost all x ∈ Rn,

f(x) =

∫ xk

−∞
Dkf(u, x̂k) du = −

∫ ∞

xk

Dkf(u, x̂k) du.

It follows that for almost all x ∈ Rn

(1.3) |f(x)| ≤ 1

2

∫

R

|Dkf(u, x̂k)| du ≡ gk(x̂k), k = 1, . . . , n.
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Thus,

|f(x)| ≤ 1

2

(
n∏

k=1

gk(x̂k)

)1/n

.

Using this estimate and applying Lemma 1.1, we obtain

(1.4) ‖f‖n/(n−1) ≤ 1

2

( n∏

k=1

‖Dkf‖1

)1/n

.

This implies inequality (1.1) for p = 1. However, a more general statement can be
derived from (1.2). Let

Vk(R
n) ≡ L1

x̂k
(Rn−1)[L∞xk

(R)], 1 ≤ k ≤ n,

be the space of measurable functions on Rn with the finite mixed norm

(1.5) ‖f‖Vk
≡ ‖ψk‖L1(Rn−1), where ψk(x̂k) = ess supxk∈R |f(x)|.

We observe that ‖f‖Vk
has a clear geometric interpretation: it is the n-dimensional

measure of the essential projection of the set

{(x, y) ∈ Rn × [0;∞) : 0 ≤ y ≤ |f(x)|}
into the hyperplane xk = 0 (see Theorem 3.1 below).

Throughout this paper, we denote also

(1.6) V (Rn) =
n⋂

k=1

Vk(R
n), ||f ||V =

n∑

k=1

‖f‖Vk
.

Note that by (1.3), for any function f ∈ W 1
1 (Rn)

(1.7) ‖f‖Vk
≤ 1

2
‖Dkf‖1 (1 ≤ k ≤ n).

Gagliardo’s lemma immediately implies the following theorem:

Theorem 1.2. Let n ≥ 2. If f ∈ V (Rn), then f ∈ Ln′(Rn) and

‖f‖n′ ≤
( n∏

k=1

‖f‖Vk

)1/n

.

As usual, for any 1 < p < ∞ we denote p′ = p/(p − 1). By (1.7), Theorem 1.2
implies (1.4).

It is well known that the left-hand side in (1.1) can be replaced by a stronger
Lorentz norm ‖f‖q∗,p. Recall that the Lorentz space Lq,p(Rn) (0 < q, p < ∞) is
defined as the class of all measurable functions f on Rn such that

‖f‖q,p ≡
( ∫ ∞

0

[
t1/qf ∗(t)

]p dt

t

)1/p

< ∞,

where f ∗ denotes the nonincreasing rearrangement of f . Note that the quasi-norm
‖ · ‖q,p is a norm if and only if 1 ≤ p ≤ q < ∞ (see [12]). For a fixed q, the Lorentz
spaces Lq,p increase as the secondary index p increases (see [2, p. 217]).

The following strengthening of (1.1) holds:

(1.8) ‖f‖q∗,p ≤ c

n∑

k=1

‖Dkf‖p , 1 ≤ p < n, q∗ =
np

n− p
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(see [15], [16] for p > 1, [17] for p = 1). In this paper we consider (1.8) only in the
case p = 1. There are numerous proofs of (1.8) in this limiting case; most of them
are related to rearrangements, properties of level sets, and geometric inequalities. A
very interesting approach given by Fournier [6] was based on the following refinement
of Theorem 1.2.

Theorem 1.3. Let n ≥ 2. If f ∈ V (Rn), then f ∈ Ln′,1(Rn) and

(1.9) ‖f‖n′,1 ≤ n′
( n∏

k=1

‖f‖Vk

)1/n

.

By virtue of (1.7), inequality (1.9) immediately implies (1.8) for p = 1. Thus,
embedding

(1.10) W 1
1 (Rn) ⊂ Ln′,1(Rn)

can be split into two successive steps

(1.11) W 1
1 (Rn) ⊂ V (Rn) and V (Rn) ⊂ Ln′,1(Rn).

Note that similar splitting for embedding W 1
p (Rn) ⊂ Lq∗,p(Rn) in the whole range

1 ≤ p < n was obtained in [9]. Different extensions of Theorem 1.3 and their
applications have been studied in the works [3], [9], [14].

The motivation for this paper was twofold. On the one hand, it was motivated
by Theorems 1.2 and 1.3. These theorems show that the integrability properties of
functions of several variables can be controlled by the behaviour of the L∞-norms of
their linear sections. Following this idea, we obtain stronger versions of inequality
(1.9) expressed in terms of iterative rearrangements (see Sections 2 and 4 below). We
observe that these results were also inspired by embeddings of Sobolev spaces into
modified Lorentz spaces proved in [8].

On the other hand, smoothness or integrability properties of functions reflect on
the behaviour of their linear sections. In particular, inequality (1.7) shows that for
any f ∈ W 1

1 (Rn) the L∞-norms of xk-sections fx̂k
(xk) = f(xk, x̂k) are integrable

functions of x̂k in Rn−1. It is also natural to study other norms of linear sections.
For example, let us consider L1-norms. Assume that f ∈ W 1

1 (Rn) and set

ϕk(x̂k) =

∫

R

|f(x)| dxk (k = 1, . . . , n).

If n = 2, then ϕk ∈ L∞(R) (k = 1, 2) (it follows from (1.7)). Let n ≥ 3. It is easily
seen that ϕk ∈ W 1

1 (Rn−1) (k = 1, . . . , n). Applying inequality (1.8), we obtain that
ϕk ∈ L(n−1)′,1(Rn−1)). Thus,

(1.12) W 1
1 (Rn) ⊂

n⋂

k=1

L
(n−1)′,1
x̂k

(Rn−1)[L1
xk

(R)].

These observations (together with embeddings proved in Section 4) led us to the
definition of the scale of mixed norm spaces

(1.13) V p(Rn) =
n⋂

k=1

Lp,1
x̂k

(Rn−1)[Lrp,1
xk

(R)]
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(1 ≤ p ≤ (n − 1)′, rp = p′/(n − 1)). For p = 1 we have V 1(Rn) = V (Rn) (see
Section 5) and thus the space V is included to the scale. We prove that

(1.14) V (Rn) ⊂ V p(Rn), 1 ≤ p ≤ (n− 1)′, n ≥ 2.

By virtue of the first embedding in (1.11), for n ≥ 3 and p = (n− 1)′ (1.14) implies
(1.12). We obtain also some results concerning endpoints in the estimates of V p-
norms (see Remark 5.4 and Theorem 5.7 below).

In this paper we do not study relations between spaces V p with different values
of p. We notice only that this problem is not immediate. In particular, the spaces
V p([0, 1]2) do not form a monotone scale.

We observe also that the scales of spaces of the type (1.13) provide a flexible
control of the growth of linear sections of functions. As in the works [3], [6], [9],
[14], embeddings of these spaces can be applied to obtain optimal results in various
problems.

Acknowledgements. The authors are grateful to the referee for his/her useful
remarks.

2. Iterative rearrangements

For a measurable set E ⊂ Rk, we denote by meskE the Lebesgue measure of E
in Rk. Let f be a measurable function on Rn. Recall that nonincreasing rearrange-
ment of f is a nonnegative and nonincreasing function f ∗ on R+ ≡ (0, +∞) which is
equimeasurable with |f | (see [2, p. 37]). We assume in addition that the rearrange-
ment is left continuous on R+ (then it is defined uniquely). By S0(R

n) we denote
the class of all measurable and almost everywhere finite functions f on Rn, for which

mesn{x ∈ Rn : |f(x)| > y} < ∞ for all y > 0.

It is easy to see that f ∈ S0(R
n) if and only if f ∗(t) → 0 as t → +∞.

Further, we consider rearrangements with respect to specific variables. Let f ∈
S0(R

n) and let 1 ≤ k ≤ n. Fix x̂k ∈ Rn−1, and consider the function fx̂k
(xk) =

f(xk, x̂k). By Fubini’s theorem, fx̂k
∈ S0(R) for almost all x̂k ∈ Rn−1. We denote

the rearrangement of f with respect to xk by Rkf . That is, we set

Rkf(t, x̂k) = (fx̂k
)∗(t), t > 0.

This function is defined almost everywhere on R+ × Rn−1. Moreover, Rkf is a
measurable function equimeasurable with f (see [8]). Let Pn denote the set of
all permutations σ = (k1, . . . , kn) of the numbers 1, 2, . . . , n. Let f ∈ S0(R

n) and
σ ∈ Pn. The Rσ-rearrangement of f is defined as the function

Rσf(t) = Rkn · · ·Rk1f(t), t ∈ Rn
+.

That is, we obtain Rσf from f by “rearranging” f succesively with respect to the
variables xk1 , . . . , xkn , starting with xk1 . In so doing, we replace successively the argu-
ments xk1 , . . . , xkn by the arguments tk1 , . . . , tkn . It is easy to see that Rσf decreases
monotonically with respect to each variable. In view of the above observation, Rσf
is equimeasurable with |f |.

In what follows we set

π(t) =
n∏

k=1

tk, t ∈ Rn
+.
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For 0 < p, s < ∞ and σ ∈ Pn, the space L p,s
σ (Rn) is defined as the class of all

functions f ∈ S0(R
n) such that

‖f‖L p,s
σ
≡

( ∫

Rn
+

[
π(t)1/pRσf(t)

]s dt

π(t)

)1/s

< ∞

(see [4]). Set also

L p,s(Rn) =
⋂

σ∈Pn

L p,s
σ (Rn).

It was proved in [18] that

(2.1) ‖f‖p,s ≤ 21/s−1/p‖f‖L p,s
σ

for 0 < s ≤ p < ∞ and σ ∈ Pn. Thus, for any σ ∈ Pn

(2.2) L p,s
σ ⊂ Lp,s if 0 < s ≤ p < ∞

(for p < s the converse embedding holds). The key point of the proof is the following:
if a function F defined on Rn

+ is nonnegative and nonincreasing with respect to each
variable, then for any t ∈ Rn

+

(2.3) mesn{s ∈ Rn
+ : F (s) ≥ F (t)} ≥ π(t).

Basing on this observation, we give an alternative proof of (2.1) with a better con-
stant.

Theorem 2.1. Let f ∈ S0(R
n) and σ ∈ Pn. For all 0 < s ≤ p < ∞,

(2.4) ‖f‖Lp,s ≤ ‖f‖L p,s
σ

.

Proof. Set F (t) = Rσf(t). We may suppose that

(2.5) mesn{t ∈ Rn
+ : F (t) = y} = 0

for all y ≥ 0. Fix a > 1 and set

Aν = {t ∈ Rn
+ : f ∗(a−ν+1) ≤ F (t) < f ∗(a−ν)}, ν ∈ Z.

Let t ∈ Aν . Then by (2.3) and (2.5),

π(t) ≤ mesn{s ∈ Rn
+ : F (s) ≥ f ∗(a−ν+1)}

= mes1{u > 0: f ∗(u) ≥ f ∗(a−ν+1)} = a−ν+1.

Thus, we have

‖f‖s
L p,s

σ
=

∑
ν∈Z

∫

Aν

π(t)s/p−1F (t)sdt ≥
∑
ν∈Z

a(s/p−1)(−ν+1)

∫

Aν

F (t)sdt

= as/p−1
∑
ν∈Z

a−ν(s/p−1)

∫ a−ν+1

a−ν

f ∗(u)sdu

≥ as/p−1
∑
ν∈Z

∫ a−ν+1

a−ν

us/p−1f ∗(u)sdu = as/p−1‖f‖s
Lp,s .

Since a > 1 is arbitrary, this implies inequality (2.4). ¤
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Remark 2.2. Observe that embedding (2.2) is strict (see [18]). Moreover, if

E = {(x, y) : 0 < y ≤ 1

x(ln(2/x))p/s
, 0 < x ≤ 1},

and 0 < s < p < ∞, then |E| < ∞, but the characteristic function of the set E does
not belong to L p,s

{1,2}(R
2) ∪L p,s

{2,1}(R
2) (see [10, p. 55]).

In what follows we set

‖Rσf‖Vk(Rn
+) ≡

∫

Rn−1
+

‖Rσf(t̂k, ·)‖∞ dt̂k (σ ∈ Pn, k = 1, . . . , n).

Lemma 2.3. Let f ∈ S0(R
n). Then

(2.6) ‖Rσf‖Vk(Rn
+) ≤ ‖f‖Vk(Rn) (k = 1, . . . , n)

for any σ ∈ Pn and any k = 1, . . . , n.

Proof. Let σ ∈ Pn. We have

|f(x)| ≤ ‖f(x̂k, ·)‖∞ ≡ ψk(x̂k) (k = 1, . . . , n)

for almost all x ∈ Rn. Hence, Rσf(t) ≤ Rσk
ψk(t̂k), where σk is obtained from σ by

removing k. This gives

‖Rσf(t̂k, ·)‖∞ ≤ Rσk
ψk(t̂k), t̂k ∈ Rn−1

+ .

Integrating this inequality over Rn−1
+ , and taking into account that∫

Rn−1
+

Rσk
ψk(t̂k) dt̂k =

∫

Rn−1

ψk(x̂k) dx̂k = ‖f‖Vk(Rn),

we obtain (2.6). ¤

3. Projections and spaces Vk

Let E ⊂ Rn be a measurable set and let 1 ≤ k ≤ n. For a point x̂k ∈ Rn−1,
denote by E(x̂k) the x̂k-section of the set E,

E(x̂k) = {xk ∈ R : (xk, x̂k) ∈ E}.
By Fubini’s theorem, for any 1 ≤ k ≤ n and almost all x̂k ∈ Rn−1, the sections E(x̂k)
are measurable in R, and the functions

mk(x̂k) = mes1E(x̂k), k = 1, . . . , n,

defined a.e. on Rn−1, are measurable. The essential projection of E into the coordi-
nate hyperplane xk = 0 is defined to be the set Πk(E) of all points x̂k ∈ Rn−1 such
that E(x̂k) is measurable and mk(x̂k) > 0. Since the function mk is measurable, the
essential projection Πk(E) is measurable.

Let now f be a measurable function on Rn. Let 1 ≤ k ≤ n. By Fubini’s theorem,
for almost all x̂k ∈ Rn−1 the sections fx̂k

are measurable functions on R. Moreover,
the function

(3.1) ψk(x̂k) = ||fx̂k
||L∞(R) = ess supxk∈R |f(xk, x̂k)|

(defined a.e. on Rn−1) is measurable. It suffices to prove the latter statement in the
case when f is a bounded function with the compact support. In this case we have

ψk(x̂k) = lim
ν→∞

||fx̂k
||Lν(R),
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and the functions x̂k 7→ ||fx̂k
||Lν(R) are measurable by Fubini’s theorem.

Thus, the definition of the space Vk (see (1.5)) is correct. Now we shall show
that the norm in Vk has a simple geometric interpretation. Let f be a non-negative
measurable function on Rn and let Uf denote the region under the graph of f ,

Uf = {(x, y) ∈ Rn × [0;∞) : 0 ≤ y ≤ f(x)}.
Theorem 3.1. Let f be a nonnegative measurable function on Rn and let Πk(Uf )

be the essential projection of Uf into the hyperplane xk = 0 (1 ≤ k ≤ n). Then
f ∈ Vk(R

n) if and only if mesnΠk(Uf ) < ∞. Moreover, in this case

||f ||Vk
= mesnΠk(Uf ).

Proof. We consider the case k = n and set A = Πn(Uf ). The set A consists of
all points (x̂n, y) such that x̂n ∈ Rn−1, 0 ≤ y < ∞, the function fx̂n is measurable
on R, and

(3.2) mes1{xn ∈ R : f(xn, x̂n) ≥ y} > 0.

Let a point x̂n ∈ Rn−1 be such that fx̂n is measurable on R. First, assume that
ψn(x̂n) < ∞ (see (3.1)) and ψn(x̂n) < y < ∞. Then (3.2) does not hold and
(x̂n, y) 6∈ A. Now, let ψn(x̂n) > 0 and 0 ≤ y < ψn(x̂n). Then, by the definition of
essential supremum,

mes1{xn ∈ R : f(xn, x̂n) > y} > 0

and hence (x̂n, y) ∈ A. We obtain that

ψn(x̂n) = mes1{y > 0: (x̂n, y) ∈ A}.
Thus, ∫

Rn−1

ψn(x̂n) dx̂n = mesnA.

On the other hand, by the definition, the latter integral is equal to ||f ||Vn . This
proves the theorem. ¤

Fournier [6, Theorem 3.1] proved the following theorem (see (1.6)).

Theorem 3.2. Let f ∈ V (Rn) (n ≥ 2) be a nonnegative function. Then f ∈
S0(R

n). Assume that a function g defined on Rn is equimeasurable with f and has
the property that for each y > 0 the set

{x ∈ Rn : g(x) > y}
is essentially a cube in Rn with edges parallel to the coordinate axes. Then ‖g‖V ≤
‖f‖V .

The proof of this theorem employed the following Loomis–Whitney isoperimetric
inequality [11] (this inequality follows also from (1.2)).

Theorem 3.3. Let E ⊂ Rn be a measurable set. Then

(mesnE)n−1 ≤
n∏

k=1

mesn−1Πk(E).

We observe that Theorems 3.1 and 3.3 combined give a shorter proof of Theo-
rem 3.2.
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4. Iterative rearrangement inequalities

As we observed in Section 1, Theorem 1.3 implies Sobolev-type inequality (1.8)
for p = 1. It was proved in [8] that the Lq∗,p-norm on the left-hand side in (1.8) can
be replaced by the stronger L q∗,p-norm.

Theorem 4.1. Let n ≥ 2 and 1 ≤ p < n. Set q∗ = np/(n− p). If f ∈ W 1
p (Rn),

then f ∈ L q∗,p(Rn) and

(4.1) ‖f‖L q∗,p ≤ c

n∑

k=1

‖Dkf‖p.

We obtain a similar refinement for mixed norm spaces V . Denote by Mdec(R
n
+)

the class of all nonnegative functions on Rn
+ which are nonincreasing in each variable.

For any f ∈ Mdec(R
n
+) and any σ ∈ Pn we have that f = Rσf a.e. on Rn

+.
Our main result is the following:

Theorem 4.2. Let n ≥ 2, 1 ≤ p1, . . . , pn < ∞, and

(4.2)
n∑

k=1

1

p′k
= 1.

Assume that f ∈ V (Rn). Then

(4.3)
∫

Rn
+

n∏

k=1

t
1/pk−1
k Rσf(t)dt ≤

n∏

k=1

(
pkp

′
k‖f‖Vk

)1/p′k

for any σ ∈ Pn.

Proof. By virtue of Lemma 2.3, it is sufficient to prove inequality (4.3) for a
function f ∈ Mdec(R

n
+). Set

Aj =

{
t ∈ Rn

+ : tj ≤
n∏

k=1

t
1/p′k
k

}
(j = 1, . . . , n).

Then

(4.4)
n⋃

j=1

Aj = Rn
+.

Indeed, set

τ(t) =
n∏

k=1

t
1/p′k
k , t ∈ Rn

+.

Assume that there is a point t ∈ Rn
+ such that tj > τ(t) for all j = 1, . . . , n. Then,

applying (4.2), we obtain

τ(t) =
n∏

j=1

t
1/p′j
j > τ(t)1/p′1+...+1/p′n = τ(t),

which is false.
Let f ∈ Mdec(R

n
+). Observe that

(4.5) f(t) ≤ ‖f(t̂j, ·)‖∞ ≡ ψj(t̂j), t ∈ Rn
+, j = 1, . . . , n.
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Set
τj(t̂j) =

( ∏

k 6=j

t
1/p′k
k

)pj

.

Then
Aj = {t ∈ Rn

+ : t̂j ∈ Rn−1
+ , 0 ≤ tj ≤ τj(t̂j)}.

Applying (4.5), we have
∫

Aj

n∏

k=1

t
1/pk−1
k f(t) dt ≤

∫

Rn−1
+

∏

k 6=j

t
1/pk−1
k ψj(t̂j)

∫ τj(t̂j)

0

t
1/pj−1
j dtj dt̂j

= pj

∫

Rn−1
+

ψj(t̂j) dt̂j = pj‖f‖Vj
.

From here and (4.4),

(4.6)
∫

Rn
+

n∏

k=1

t
1/pk−1
k f(t) dt ≤

n∑
j=1

pj‖f‖Vj
.

Now we derive the multiplicative inequality (4.3) from (4.6). For ε1, . . . , εn > 0,
set

ε =
n∏

k=1

εk and g(t) = f(ε1t1, . . . , εntn), t ∈ Rn
+.

Then g ∈ Mdec(R
n
+). Furthermore,

(4.7) ‖g‖Vk
=

εk

ε
‖f‖Vk

(k = 1, . . . , n)

and

(4.8)
∫

Rn
+

n∏

k=1

t
1/pk−1
k g(t) dt =

n∏

k=1

ε
−1/pk

k

∫

Rn
+

n∏

k=1

t
1/pk−1
k f(t) dt.

Applying (4.6) to the function g, we have
∫

Rn
+

n∏

k=1

t
1/pk−1
k g(t) dt ≤

n∑

k=1

pk‖g‖Vk
.

Further, using (4.7) and (4.8), we get

(4.9)
∫

Rn
+

n∏

k=1

t
1/pk−1
k f(t) dt ≤

n∏

k=1

ε
−1/p′k
k

n∑

k=1

pkεk‖f‖Vk
.

Now set εk = (p′kpk‖f‖Vk
)−1, k = 1, . . . , n. Using (4.9) and taking into account (4.2),

we obtain (4.3). ¤

Corollary 4.3. Let n ≥ 2 and 1 < p < (n − 1)′. Set r = p′/(n − 1). Assume
that f ∈ V (Rn). Then

(4.10)
∫

Rn
+

n−1∏

k=1

t
1/p−1
k t1/r−1

n Rσf(t) dt ≤ (rr′‖f‖Vn)1/r′
n−1∏

k=1

(pp′‖f‖Vk
)1/p′
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for any σ ∈ Pn. In particular, f ∈ L n′,1
σ (Rn) and

(4.11) ‖f‖
L n′,1

σ
≤ nn′

n∏

k=1

‖f‖1/n
Vk

.

for any σ ∈ Pn.

Indeed, setting p1 = · · · = pn−1 = p and pn = r, we have that
n∑

k=1

1

p′k
=

n− 1

p′
+

1

r′
=

1

r
+

1

r′
= 1.

Thus, the condition (4.2) in Theorem 4.2 is satisfied. Applying this theorem, we get
(4.10). Taking p = n′ in (4.10), we obtain (4.11). By (2.4), ‖f‖Ln′,1 ≤ ‖f‖

L n′,1
σ

. Thus,
estimate (4.11) implies Theorem 1.3 (although with a worse constant coefficient). We
emphasize that the norm in L n′,1

σ (Rn) is stronger than the norm in Ln′,1(Rn), and
therefore (4.11) gives a refinement of Theorem 1.3.

Applying Theorem 4.2 and (1.7), we obtain the following embedding for Sobolev
spaces.

Corollary 4.4. Let n ≥ 2, 1 ≤ p1, . . . , pn < ∞, and
∑n

k=1 1/p′k = 1. If f ∈
W 1

1 (Rn), then

(4.12)
∫

Rn
+

n∏

k=1

t
1/pk−1
k Rσf(t) dt ≤

n∏

k=1

(
pkp

′
k‖Dkf‖1

)1/p′k ,

for all σ ∈ Pn.

For p1 = · · · = pn = n′ inequality (4.12) becomes

‖f‖
L n′,1

σ
≤ nn′

n∏

k=1

‖Dkf‖1/n
1 .

This estimate coincides with (4.1) (for p = 1).

5. Mixed norm spaces V p

In this section we introduce the scale of “intermediate” mixed norm spaces V p(Rn).
First we recall some definitions. For a function f ∈ S0(R

n), set

f ∗∗(t) =
1

t

∫ t

0

f ∗(u) du.

It is clear that

(5.1) lim
t→0+

f ∗∗(t) = ‖f‖L∞ .

For 0 < p < ∞, the space L∞,p(Rn) consists of all f ∈ S0(R
n) such that

‖f‖∞,p ≡
( ∫ ∞

0

[
f ∗∗(t)− f ∗(t)

]p dt

t

)1/p

< ∞

(see [1], [13]). Applying the equality
d

dt
f ∗∗(t) = −1

t
(f ∗∗(t)− f ∗(t)) (t > 0)
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and using (5.1), we obtain that L∞,1(Rn) = L∞(Rn) and

(5.2) ‖f‖∞,1 = ‖f‖∞ for any f ∈ S0(R
n).

Further, let 1 < r < ∞. Assume that f ∈ Lr,1(Rn). Applying Fubini’s theorem,
we have ∫ ∞

0

t1/rf ∗(t)
dt

t
=

1

r′

∫ ∞

0

t1/rf ∗∗(t)
dt

t
.

This implies that

(5.3)
1

r′

∫ ∞

0

t1/r[f ∗∗(t)− f ∗(t)]
dt

t
=

1

r
||f ||r,1.

Applying (5.2), (5.3), and the monotone convergence theorem (for both increasing
and decreasing sequences), we easily obtain that

(5.4) lim
r→∞

1

r
‖f‖r,1 = ‖f‖∞ if f ∈ Lr0,1(Rn) for some r0 > 1.

The spaces Vk are defined as mixed norm spaces in which the interior norm is
L∞-norm (see (1.5)). That is, for a function f ∈ Vk(R

n) almost all linear sections
fx̂k

are essentially bounded on R. Basing on equalities (5.2) and (5.3), it is natural
to impose growth conditions on linear sections of functions in terms of Lr,1(R)-norms
(1 ≤ r ≤ ∞). Then Corollary 4.3 suggests that the corresponding scale of exterior
norms should be formed by the spaces Lp,1(Rn−1), where

1

r′
+

n− 1

p′
= 1.

These reasonings together with observations given in Introduction (see (1.12)) lead
us to the following definition.

Let n ≥ 2 and 1 ≤ p ≤ (n− 1)′. Set rp = p′/(n− 1). For a function f ∈ S0(R
n)

and k = 1, . . . , n, set

ψ
(p)
k (x̂k) = ‖f(x̂k, ·)‖Lrp,1(R) and ||f ||V p

k
= ||ψ(p)

k ||Lp,1(Rn−1).

By V p
k (Rn) we denote the class of all functions f ∈ S0(R

n) such that ||f ||V p
k

< ∞.
As usual, we write

V p
k (Rn) = Lp,1

x̂k
(Rn−1)[Lrp,1

xk
(R)].

Set also

V p(Rn) =
n⋂

k=1

V p
k (Rn), ||f ||V p =

n∑

k=1

||f ||V p
k
.

In this section we study embeddings of the space V into the spaces V p. Observe
that V 1

k = Vk, and the norms coincide. Indeed, if p = 1, then rp = ∞, and by (5.2)

||f ||V 1
k (Rn) =

∫

Rn−1

||f(x̂k, ·)||∞,1 dx̂k =

∫

Rn−1

||f(x̂k, ·)||∞ dx̂k = ||f ||Vk(Rn).

Further, we note that the case n = 2 and p = ∞ also is included to the definition of
V p

k . In this case r = p′ = ∞, and by (5.2),

V ∞
1 (R2) = L∞,1

x2
(R)[L1

x1
(R)] = L∞x2

(R)[L1
x1

(R)]

and similarly
V ∞

2 (R2) = L∞x1
(R)[L1

x2
(R)];
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moreover, the corresponding norms coincide. Further, we have that

(5.5) ‖f‖V ∞1 ≤ ‖f‖V2 and ‖f‖V ∞2 ≤ ‖f‖V1 .

Indeed, the first inequality in (5.5) is equivalent to the obvious estimate

ess supx2∈R

∫

R

|f(x1, x2)| dx1 ≤
∫

R

ess supx2∈R |f(x1, x2)| dx1.

The second inequality in (5.5) is obtained similarly.

Theorem 5.1. Let n ≥ 2, 1 < p ≤ (n− 1)′, and r = p′/(n− 1). If f ∈ V (Rn),
then f ∈ V p(Rn), and for every j = 1, . . . , n it holds that

(5.6) ‖f‖V p
j
≤ cn,p‖f‖1/r′

Vj

∏

k 6=j

‖f‖1/p′
Vk

,

where cn,p = 1 if n = 2 and p = ∞, and cn,p = (rr′)1/r′(pp′)(n−1)/p′ otherwise.

Proof. In the case n = 2 and p = ∞ inequality (5.6) coincides with (5.5). Assume
that either n = 2 and 1 < p < ∞, or n ≥ 3 and 1 < p ≤ (n− 1)′. We will prove (5.6)
for j = n.

Let Rnf(y, η) (y ∈ Rn−1, η ∈ R+) be the rearrangement of f with respect to the
nth variable. Next, for a fixed η ∈ R+, let F (ξ, η) (ξ ∈ R+) be the rearrangement of
the function

(5.7) y 7→ Rnf(y, η), y ∈ Rn−1,

with respect to y. It follows from [4, Theorem 4.5. I] that

(5.8) ‖f‖V p
n
≤

∫ ∞

0

∫ ∞

0

ξ1/p−1η1/r−1F (ξ, η) dξ dη.

On the other hand, let σ = (n, n − 1, . . . , 1). For a fixed η ∈ R+, we take the
iterative rearrangement of the function (5.7) successively with respect to the variables
yn−1, . . . , y1. We obtain the rearrangement Rσf(s, η), s ∈ Rn−1

+ . By Theorem 2.1,
for any fixed η, we have

(5.9)
∫ ∞

0

ξ1/p−1F (ξ, η) dξ ≤
∫

Rn−1
+

(
n−1∏

k=1

sk

)1/p−1

Rσf(s, η) ds.

Further, by Corollary 4.3,
∫

Rn−1
+

∫

R+

(
n−1∏

k=1

sk

)1/p−1

η1/r−1Rσf(s, η) ds dη

≤ (rr′‖f‖Vn)1/r′
n−1∏

k=1

(pp′‖f‖Vk
)1/p′ .

(5.10)

Applying inequalities (5.8), (5.9), and (5.10), we obtain (5.6). ¤

Remark 5.2. If n ≥ 3, then the spaces V p
k (Rn) formally can be defined for

p > (n− 1)′, too (with rp = p′/(n− 1) < 1). However, in this case Theorem 5.1 fails
to hold. Indeed, take (n− 1)/p < α < n− 2 and set

f(x) =
n∑

k=1

|x̂j|−αχ(0,1)n(x), x ∈ Rn,
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A straightforward computation shows that f ∈ V (Rn) and for any r > 0

‖f‖Lp
x̂j

(Rn−1)[Lr
xj

(R)] = ∞ (j = 1, . . . , n).

Applying (5.6) and the theorem on the arithmetic and geometric means, we easily
obtain the following:

Corollary 5.3. Let either n = 2 and 1 < p < ∞, or n ≥ 3 and 1 < p ≤ (n− 1)′.
Set r ≡ rp = p′/(n− 1). If f ∈ V (Rn), then f ∈ V p(Rn) and

(5.11) ‖f‖V p
k
≤ rp‖f‖Vk

+ p
∑

j 6=k

‖f‖Vj
(k = 1, . . . , n).

We shall show below that (5.11) (divided by rp) becomes equality as p → 1.

Remark 5.4. Let n = 2 and f ∈ V (R2). By (5.6), we have that

(5.12) ‖f‖V p
1
≤ pp′‖f‖1/p

V1
‖f‖1/p′

V2
(1 < p < ∞)

and

(5.13) ||f ||V ∞1 ≤ ||f ||V2 .

Observe that for f = χ(0,1)2 we have equalities in (5.12) and (5.13). Hence, the
constants in these inequalities are optimal. However, we notice that the constant
in (5.12) tends to ∞ as p → ∞, but for p = ∞ we have inequality (5.13) with the
constant 1. It is easy to explain this fact. Indeed, it follows directly from (5.12) that

(5.14) lim sup
p→∞

1

p
‖f‖V p

1
≤ ‖f‖V2 .

Besides, we show below that

(5.15) ‖f‖V ∞1 ≤ lim inf
p→∞

1

p
‖f‖V p

1
.

By virtue of relations (5.14) and (5.15), (5.13) follows from (5.12) as a limiting case
as p →∞.

To prove (5.15), we observe that for any y ∈ R and any µ > 0,

||f(·, y)||p′,1 ≥
∫ µ

0

s1/p′−1R1f(s, y) ds ≥ µ1/p′−1Fµ(y),

where
Fµ(y) =

∫ µ

0

R1f(s, y) ds, y ∈ R.

Thus,

(5.16) ‖f‖V p
1
≥ µ1/p′−1||Fµ||p,1.

On the other hand,
||Fµ||p,1 ≥ pτ 1/pF ∗

µ(τ)

for any τ > 0, and therefore

lim inf
p→∞

1

p
‖f‖V p

1
≥ ‖Fµ‖∞

(by virtue of (5.16), it follows also from (5.4)). It is easy to see that ‖f‖V ∞1 =
limµ→∞ ‖Fµ‖∞. Thus, we obtain (5.15).

Inequalities (5.11) and (1.7) yield the following:
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Corollary 5.5. If f ∈ W 1
1 (Rn) (n ≥ 2), then f ∈ V p(Rn) for any 1 < p ≤

(n− 1)′, and

‖f‖V p ≤ c

n∑

k=1

‖Dkf‖1,

where c depends only on p and n.

Remark 5.6. The results of this section have been derived from the iterative
rearrangement inequality (4.3) (see the proof of Theorem 5.1). However, these results
are expressed in terms of mixed norm spaces and therefore they give a more explicit
description of the behaviour of linear sections of functions. In particular, taking
p = n′ in Corollary 5.5, we obtain:

W 1
1 (Rn) ⊂ Ln′,1

x̂k
(Rn−1)[Ln′,1

xk
(R)], k = 1, . . . , n.

For n = 2 we have that

W 1
1 (R2) ⊂ L2,1

x2
(R)[L2,1

x1
(R)] ∩ L2,1

x1
(R)[L2,1

x2
(R)].

This inclusion does not follow from the strong type Sobolev inequality (1.8), which
states that

W 1
1 (R2) ⊂ L2,1(R2).

Indeed, it was shown by Cwikel [5] that

L2,1(R2) 6⊂ L2,1
x2

(R)[L2,1
x1

(R)].

At the same time, the results in terms of iterative rearrangements are stronger.
In particular, if f ∈ W 1

1 (R2), then f ∈ L 2,1(R2) (see Theorem 4.1). Mixed norm
inequalities follow from here, since

L 2,1
{1,2}(R

2) ⊂ L2,1
x2

(R)[L2,1
x1

(R)], L 2,1
{2,1}(R

2) ⊂ L2,1
x1

(R)[L2,1
x2

(R)]

(see [4, Theorem 4.5. I]).

Finally, we return to inequality (5.11) and we shall study the limiting behaviour
of ‖f‖V p

j
as p → 1+. We observe that for any s ≥ 1

(5.17)
1

s
‖f‖s,1 =

1

s

∫ ∞

0

t1/s−1f ∗(t) dt =

∫ ∞

0

f ∗(us) du

(note that (5.4) can be also easily derived from (5.17)).

Theorem 5.7. Let n ≥ 2 and let k ∈ {1, . . . , n}. If f ∈ S0(R
n) and

(5.18) f ∈
⋂

j 6=k

Vj(R
n),

then

(5.19) lim
p→1+

n− 1

p′
‖f‖V p

k
= ‖f‖Vk

.

Proof. We prove (5.19) for k = n. Let {pν} be a decreasing sequence of numbers
such that pν > 1 and pν → 1. Let sν = p′ν/(n−1). Then {sν} increases and sν →∞.
Set

Fν(y) =
1

sν

||f(y, ·)||Lsν ,1(R), y ∈ Rn−1.
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By (5.17),

Fν(y) =

∫ ∞

0

Rnf(y, usν ) du.

Set also

Gν(y) =

∫ 1

0

Rnf(y, usν ) du.

For a fixed y ∈ Rn−1, the functions u 7→ Rnf(y, usν ) form an increasing sequence on
(0, 1) and

lim
ν→∞

Rnf(y, usν ) = Rnf(y, 0+) = ||f(y, ·)||L∞(R), u ∈ (0, 1).

Setting ||f(y, ·)||L∞(R) = ϕ(y), and applying the monotone convergence theorem, we
obtain that

lim
ν→∞

Gν(y) = ϕ(y) for any y ∈ Rn−1.

Moreover, {Gν(y)} is an increasing sequence on Rn−1 and thus

(5.20) lim
ν→∞

G∗
ν(t) = ϕ∗(t) for any t > 0

(see [2, p. 41]).
We shall prove that

(5.21) lim
ν→∞

1

sν

||f ||V pν
n

= ||f ||Vn .

We have F ∗
ν (t) ≥ G∗

ν(t) and therefore

(5.22)
1

sν

||f ||V pν
n

=

∫ ∞

0

t1/pν−1F ∗
ν (t) dt ≥

∫ ∞

0

t1/pν−1G∗
ν(t) dt.

For any fixed t ∈ (1,∞) the sequence {t1/pν−1G∗
ν(t)} increases. Thus, by (5.20) and

the monotone convergence theorem, we have that

(5.23) lim
ν→∞

∫ ∞

1

t1/pν−1G∗
ν(t) dt =

∫ ∞

1

ϕ∗(t) dt.

The monotone convergence theorem implies also that

(5.24) lim
ν→∞

∫ 1

0

G∗
ν(t) dt =

∫ 1

0

ϕ∗(t) dt.

Now, applying (5.22), (5.23), and (5.24), we obtain that

(5.25) ||f ||Vn = ||ϕ||1 ≤ lim inf
ν→∞

∫ ∞

0

t1/pν−1G∗
ν(t) dt ≤ lim inf

ν→∞
1

sν

||f ||V pν
n

.

First, this implies (5.21) if ‖f‖Vn = ∞. Suppose now that ‖f‖Vn < ∞. Then, by
virtue of assumption (5.18), we have that f ∈ V (Rn). Thus, by inequality (5.11),

1

sν

‖f‖V p
n
≤ ‖f‖Vn +

pν

sν

∑

j 6=k

‖f‖Vj
.

Since pν/sν → 0 as ν →∞, it follows that

(5.26) lim sup
ν→∞

1

sν

‖f‖V pν
n
≤ ‖f‖Vn .

Inequalities (5.25) and (5.26) combined give (5.21). This proves the theorem. ¤
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Corollary 5.8. If f ∈ S0(R
n) (n ≥ 2), then

lim
p→1+

n− 1

p′
‖f‖V p = ‖f‖V .
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