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Abstract. We prove that the component PΦ+(X, Y ) of the perturbation class for the up-
per semi-Fredholm operators between Banach spaces X and Y coincide with the strictly singular
operators when every closed infinite dimensional subspace of X contains an infinite dimensional
complemented subspace whose complement is isomorphic to X. Similarly, we prove that the com-
ponent PΦ−(X, Y ) of the perturbation class for the lower semi-Fredholm operators coincide with
the strictly cosingular operators when every infinite codimensional subspace of Y is contained in an
infinite codimensional complemented subspace isomorphic to Y . We also give examples of Banach
spaces satisfying the aforementioned conditions.

1. Introduction

The perturbation classes problem arises in the study of the stability of Fredholm
and semi-Fredholm operators under additive perturbations. Let L (X, Y ) denote the
(continuous linear) operators between the Banach spaces X and Y . An operator
T ∈ L (X,Y ) is said to be upper semi-Fredholm (T ∈ Φ+) if its kernel N(T ) is
finite dimensional and its range R(T ) is closed; T is said to be lower semi-Fredholm
(T ∈ Φ−) if its range is closed and finite codimensional, and T is said to be Fredholm
(T ∈ Φ) if it is both upper and lower semi-Fredholm. Let A be any of the classes
Φ+, Φ− or Φ. The perturbation class of A is defined by its components in L (X,Y ),
when A (X, Y ) is non-empty:

PA (X, Y ) := {K ∈ L (X,Y ) : K + T ∈ A (X,Y ) for all T ∈ A (X, Y )}.
The components PA (X,Y ) were studied in [17] in the case X = Y and in [2]

in the general case. It was proved in [22] that PΦ coincides with the inessential
operators I n when it is defined, but the perturbation classes PΦ+ and PΦ− have
been identified only in a few cases. Kato showed that the strictly singular operators
S S are contained in PΦ+ [16, Theorem 5.2], Vladimirskii proved that the strictly
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cosingular operators S C are contained in PΦ− [24, Corollary 1], and it is a conse-
quence of the continuity of the index for semi-Fredholm operators that both PΦ+

and PΦ− are contained in I n (see [5, Theorem 5.6.9]).
Recall that an operator T : X −→ Y is in S S if its restriction T |E is an isomor-

phism for no infinite dimensional subspace E; T ∈ S C if QF T is surjective for no
infinite codimensional closed subspace F of Y , where QF : Y −→ Y/F is the quotient
operator, and T ∈ I n if for every A ∈ L (Y, X), IX − AT ∈ Φ.

The perturbation classes problem asks whether S S and S C coincide with PΦ+

and PΦ− respectively. This problem was formulated by Gohberg, Markus and Feld-
man [11, p. 74]) for the upper semi-Fredholm operators. Later, it was explicitly stated
in [5, page 101], [22, 26.6.12], [23, Section 3] and [3]. Finally, it was proved in [12]
that there exists a complex separable Banach space Z for which PΦ+(Z) 6= S S (Z)
and PΦ−(Z∗) 6= S C (Z∗). However, there is still interest in finding spaces X and
Y for which PΦ+(X, Y ) = S S (X,Y ) or PΦ−(X, Y ) = S C (X,Y ) because these
results provide intrinsic characterizations of the operators K in the respective classes;
i.e., characterizations involving the action of K instead of the properties of the sums
of K with all the operators in Φ+(X, Y ) or Φ−(X, Y ). Moreover, the aforementioned
space Z of [12] is certainly special: it is a finite product of hereditarily indecompos-
able spaces. The existence of hereditarily indecomposable Banach spaces was only
recently proved in [15]. So the perturbation classes problem still remains open for
many classical Banach spaces.

Provided Φ+(X, Y ) 6= ∅, we have PΦ+(X, Y ) = S S (X,Y ) in the following
cases:

(1) Y subprojective [17, 1];
(2) X = Y = Lp(µ), 1 ≤ p ≤ ∞ [25];
(3) X hereditarily indecomposable [1, Theorem 3.14];
(4) X is separable and Y contains a complemented copy of C[0, 1] [3];
(5) X = Lp(0, 1) when 1 < p < 2 and Y satisfies the Orlicz property [14];
(6) X = L1(0, 1) and Y is weakly sequentially complete [14];
(7) X = Lp(0, 1) with 2 ≤ p ≤ ∞ [14].
Also, provided Φ−(X, Y ) 6= ∅, we have PΦ−(X, Y ) = S C (X,Y ) in the following

cases:
(1’) X superprojective [17, 1];
(2’) X = Y = Lp(µ), 1 ≤ p ≤ ∞ [25];
(3’) Y quotient indecomposable [1, Theorem 3.14];
(4’) X contains a complemented copy of `1 and Y is separable [3];
(5’) Y = Lp(0, 1) when 2 < p < ∞ and X∗ satisfies the Orlicz property [14];
(6’) Y = Lp(0, 1) with 1 ≤ p ≤ 2 [14].
In this paper, we introduce the notions of strongly subprojective and strongly

superprojective Banach space, which strengthen those of subprojective and superpro-
jective Banach space introduced in [26]. We remark that all known examples of sub-
projective spaces and superprojective spaces are respectively strongly subprojective
and strongly superprojective. Next, we prove that if X is strongly superprojective,
then PΦ+(X, Y ) = S S (X, Y ) for all spaces Y (Theorem 2.6), and if Y is strongly
superprojective, then PΦ−(X, Y ) = S C (X,Y ) for all spaces X (Theorem 3.7).

We point out that although Theorem 3.7 is a certain dual form of Theorem 2.6,
its proof does not follow by duality from it. This is because, given T ∈ L (X,Y ),
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the implications T ∗ ∈ S S ⇒ T ∈ S C and T ∗ ∈ S C ⇒ T ∈ S S hold but
their converses fail. See [21, Examples 1 and 2]. Moreover, the proof of Theorem 3.7
is technically more complicated than that of Theorem 2.6 because the former one
involves quotients instead of subspaces.

2. Operators on strongly subprojective spaces

A Banach space X is said to be subprojective if every infinite dimensional closed
subspace M of X contains an infinite dimensional subspace N complemented in X.
Clearly, a closed subspace of a subprojective space is also subprojective. This concept
was introduced by Whitley [26]. Here we consider a strengthening of it.

Definition 2.1. A Banach space X is said to be strongly subprojective if every
infinite dimensional closed subspace M of X contains an infinite dimensional subspace
N complemented in X with complement isomorphic to X.

The following remark will allow us to show that all the known examples of sub-
projective spaces (see Proposition 2.4) are strongly subprojective.

Remark 2.2. If the subspace N in the definition of subprojective space can be
taken isomorphic to its square (N ' N ×N) then X is strongly subprojective.

Proof. Let M be an infinite dimensional closed subspace of a subprojective space
X. Then there exist closed subspaces N and H of X such that X = N ⊕ H and
N ⊂ M . By hypothesis, N contains two closed subspaces N1 and N2 such that
N ' N1 ' N2 and N = N1 ⊕ N2. Therefore, N1 is a subspace of M , N2 ⊕ H ' X
and

X = N1 ⊕ (N2 ⊕H),

which proves that X is strongly subprojective. ¤

Remark 2.3. Recall that a compact space K is said to be scattered (or dispersed)
if every non-empty subset of K has an isolated point. As examples, we mention:

(1) Let κ be any ordinal. The interval [0, κ] = {α ordinal : 0 ≤ α ≤ κ}, endowed
with the order topology, is a scattered compact.

(2) Let Γ be a set, endowed with the discrete topology. The one-point compact-
ification Γ∞ is a scattered compact and C(Γ∞) is isomorphic to c0(Γ).

Note that `p ' `p × `p for 1 ≤ p < ∞ and c0 ' c0 × c0. Therefore, Remark 2.2
can be applied to obtain the following result.

Proposition 2.4. The following Banach spaces are strongly subprojective:
(1) The sequence spaces `p for 1 ≤ p < ∞ and c0.
(2) The James space J .
(3) The Lorentz sequence spaces d(w, p) for 1 ≤ p < ∞ and w = (wn) a non-

increasing null sequence with
∑∞

n=1 wn divergent. This applies to `p,q for
1 ≤ p, q < ∞.

(4) The Baernstein spaces Bp for 1 < p < ∞.
(5) The Tsirelson space T .
(6) The function spaces Lp(0, 1) for 2 ≤ p < ∞.
(7) The function spaces Lp(0,∞) ∩ L2(0,∞) for 1 ≤ p ≤ 2.
(8) The Lorentz spaces ΛW,p(0, 1), Lp,q(0,∞) and Lp,q(0, 1) for 2 < p < ∞ and

1 ≤ q < ∞.
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(9) The spaces of continuous functions C(K), with K a scattered compact.
(10) Closed subspaces of the previous examples.

Proof. (1) Denoting by X any of these spaces, every infinite dimensional closed
subspace of X contains a subspace isomorphic to X and complemented in X [4,
Proposition 2.2.1].

(2) Every infinite dimensional closed subspace of J contains a subspace isomor-
phic to `2 and complemented in J [9, Corollary 2.d.4].

(3) Every infinite dimensional closed subspace of d(w, p) contains a subspace
isomorphic to `p and complemented in d(w, p) [18, Proposition 4.e.3].

(4) Every infinite dimensional closed subspace of Bp contains a subspace isomor-
phic to `p and complemented in Bp [7, Theorem 0.15].

(5) Let {tn} denote the unit basis of T . By [7, Proposition II.7], every closed
subspace of T contains a subspace N complemented in T and isomorphic to the closed
subspace generated by a subsequence of the basis {tn}. Moreover, [7, Proposition I.12]
ensures that N ' N ×N .

(6) Every infinite dimensional closed subspace of Lp(0, 1) is either isomorphic to
`2 and complemented, or contains a subspace isomorphic to `p and complemented in
Lp(0, 1) [4, Corollary 6.4.9].

(7) The argument given in (6) applies in this case [8, Theorem 4.1].
(8) The argument given in (6) applies for ΛW,p(0, 1) and Lp,q(0,∞). See [10,

Remark 5.7] and [6, Theorem 2.5]. For Lp,q(0, 1), the result follows from (10), since
Lp,q(0, 1) is a closed subspace of Lp,q(0,∞).

(9) Every infinite dimensional closed subspace of C(K) contains a subspace iso-
morphic to c0 and complemented in C(K) [19, Theorem 11].

(10) Given a pair of closed subspaces M and Z of X with M ⊂ Z, if M is
complemented in X, then it is also complemented in Z. ¤

The next result will be useful later.

Proposition 2.5. Let X be a strongly subprojective Banach space. Then every
finite codimensional closed subspace of X contains a subspace isomorphic to X.
Consequently, Φ+(X, Y ) is non-empty if and only if Y contains a subspace isomorphic
to X.

Proof. Let Z be a closed subspace of X with dim X/Z = n. Since X is strongly
subprojective, X contains an infinite codimensional subspace X0 isomorphic to X.
Let Z0 be a closed n-codimensional subspace of X containing X0. Since Z and Z0

are isomorphic, the first assertion is clear.
For the second assertion, note that Φ+(X, Y ) is non-empty if and only if Y

contains a closed subspace isomorphic to a finite codimensional subspace of X. ¤
Let us give the main result of this section.

Theorem 2.6. Let X be a strongly subprojective space and let Y be a Banach
space. If Φ+(X,Y ) 6= ∅ then PΦ+(X,Y ) = S S (X, Y ).

Proof. It is enough to show that, given K ∈ L (X,Y ) \S S (X, Y ), there exists
T ∈ Φ+(X, Y ) such that T + K /∈ Φ+.

Since K is not strictly singular, there exists an infinite dimensional closed sub-
space V of X such that K|V is an isomorphism; hence K|V ∈ Φ+(V, Y ). As X is



Perturbation classes for semi-Fredholm operators on subprojective and superprojective spaces 485

strongly subprojective, we may assume that

X = V ⊕X1 with X1 ' X.

By Proposition 2.5, Y has a closed subspace L isomorphic to X. Taking into con-
sideration the relative positions of the subspaces K(V ) and L inside Y , three cases
may happen:

(a) K(V ) ∩ L finite dimensional and K(V ) + L closed;
(b) K(V ) ∩ L is infinite dimensional;
(c) K(V ) ∩ L finite dimensional and K(V ) + L not closed.
(a) As L is strongly subprojective, by Proposition 2.5, the closed complement of

K(V )∩L in L contains a subspace isomorphic to L. Thus we can assume K(V )∩L =
{0}.

Let S : X1 −→ L be a bijective isomorphism. We consider the operator

T : X = V ⊕X1 −−−→ K(V )⊕ L ⊂ Y

that maps v + x1 to −K(v) + S(x1), where v ∈ V and x1 ∈ X1. Clearly T ∈ Φ+.
However (T + K)|V = 0, so T + K /∈ Φ+, and we are done.

(b) Assume K(V ) ∩ L is infinite dimensional. Since L is strongly subprojective,
there exists a closed subspace W contained in V and a closed subspace L3 in L such
that L1 := K(W )∩L is infinite dimensional, L3 is isomorphic to L and L = L1⊕L3.
Let V1 := (K|V )−1(L1). By the strong subprojectivity of X, there exist an infinite
dimensional closed subspace V2 of V1 and a closed subspace X2 of X such that X2 is
isomorphic to X and X = V2⊕X2. Since K|V2 is an isomorphism and K(V2) + L3 is
closed, we are in the conditions of case (a).

(c) As in case (a), we can assume that K(V )∩L = {0} and K(V )+L not closed.
In order to prove that K /∈ PΦ+(X, Y ), it is enough to find a compact operator
K1 ∈ L (X, Y ) so that dim (K + K1)(V ) ∩ L = ∞; indeed, once the operator K1 has
been found, since (K+K1)|V ∈ Φ+(V, Y ), the operator K+K1 satisfies the conditions
of case (b), which leads to K + K1 /∈ PΦ+(X, Y ), and therefore K /∈ PΦ+(X,Y ).

In order to find that operator K1, since K(V ) + L is not closed, there exists a
normalized sequence (yn) in K(V ) with dist (yn, L) −→

n
0. If (yn) has a subsequence

weakly convergent to some y ∈ Y , since y ∈ K(V ), we may choose a sequence
(un) ⊂ L so that ‖un − yn‖ −→n 0, so un

w−→
n

y ∈ L, hence y = 0. Therefore, [4,
Theorem 1.5.6] implies that (yn) contains a basic subsequence, and taking a bounded
sequence (vn) ⊂ V such that yn = K(vn) and passing to a subsequence if necessary,
we may assume that both (yn) and (vn) are basic sequences.

Since the sequence (vn) is basic and infn ‖vn‖ > 0, there exists a bounded se-
quence (fn) ⊂ X∗ such that 〈fi, vj〉 = δij. But dist (yn, L) −→

n
0, so we can pick a

sequence (zn) ⊂ L and a subsequence (ykn) of (yn) so that
∑∞

n=1 ‖ykn − zn‖ < ∞.
Hence, the expression

K1(x) :=
∞∑

n=1

〈fkn , x〉(zn − ykn)

defines a compact operator K1 ∈ L (X, Y ) that satisfies (K + K1)(vkn) = zn. Since
(K + K1)|V is upper semi-Fredholm and zn ∈ (K + K1)(V ) ∩ L for every n, (K +
K1)(V ) ∩ L is infinite dimensional, as we wanted to prove. ¤
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Since all known examples of subprojective spaces are strongly subprojective, the
following result implies that, in most of the cases, Theorem 2.6 is not a consequence
of assertion (1) in the introduction.

Proposition 2.7. Suppose that Y is subprojective and Φ+(X,Y ) is not empty.
Then X is subprojective.

Proof. It is enough to observe that Φ+(X,Y ) 6= ∅ implies that a finite codimen-
sional closed subspace of X is isomorphic to a subspace of Y . ¤

3. Operators into strongly superprojective spaces

Superprojectivity is the dual notion to subprojectivity. A Banach space X is
said to be superprojective if every infinite codimensional closed subspace H of X is
contained in an infinite codimensional complemented subspace E of X.

Definition 3.1. A Banach space X is said to be strongly superprojective if every
infinite codimensional closed subspace H of X is contained in an infinite codimen-
sional closed subspace E isomorphic to X and complemented in X.

The proof of the following result is similar to that of Remark 2.2.

Remark 3.2. If the complement of the subspace E in the definition of super-
projective space can be taken isomorphic to its square, then X is strongly superpro-
jective.

Some examples of strongly superprojective Banach spaces are obtained through
duality:

Proposition 3.3. Let X be a reflexive Banach space. Then X is strongly sub-
projective if and only if X∗ is strongly superprojective.

Proof. Assume X is a reflexive strongly subprojective space and let M be an
infinite codimensional closed subspace of X∗. Thus, as M⊥ is an infinite dimensional
subspace of X, it contains an infinite dimensional complemented subspace N with
X/N ' X. Hence N⊥ is an infinite codimensional complemented subspace of X∗

isomorphic to X∗ that contains M . Therefore, X∗ is strongly superprojective.
The proof of the converse implication is similar. ¤
Observe that Proposition 3.3 is also true for superprojective and subprojective

spaces.
In the following result, we list some examples of strongly superprojective spaces.

Given 1 < p < ∞, p∗ denotes the only real number satisfying 1/p + 1/p∗ = 1.

Proposition 3.4. The following Banach spaces are strongly superprojective:
(1) The sequence spaces `p for 1 < p < ∞ and c0.
(2) The dual J∗ of James’ space.
(3) The dual spaces d(w, p)∗ of d(w, p) for 1 < p < ∞ and w = (wn) a non-

increasing null sequence with
∑∞

n=1 wn divergent. This applies to `∗p,q for
1 < p, q < ∞.

(4) The dual spaces B∗
p of Baernstein’s spaces for 1 < p < ∞.

(5) The dual T ∗ of Tsirelson’s space.
(6) The function spaces Lp(0, 1) for 1 < p ≤ 2.
(7) The function spaces Lp(0,∞) + L2(0,∞) for 2 ≤ p < ∞.
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(8) The dual spaces ΛW,p(0, 1)∗, Lp,q(0,∞)∗ and Lp,q(0, 1)∗ for 2 < p < ∞ and
1 < q < ∞.

(9) The spaces of continuous functions C(K), with K a scattered compact.
(10) Quotients of the previous examples.

Proof. (1) The result for `p follows from Propositions 2.4 and 3.3 and, by Re-
mark 2.3, the result for c0 is a special case of (9).

(2) Although J is non-reflexive, since J ' J∗∗ and dim J∗∗/J = 1, the arguments
in the proof of Proposition 3.3 allow us to show that J strongly subprojective implies
J∗ strongly superprojective.

(3) to (8) In these cases we consider dual spaces of reflexive strongly subpro-
jective spaces (see Proposition 2.4); therefore they are strongly superprojective by
Proposition 3.3. Note that

• d(w, p) is reflexive if and only if 1 < p < ∞ [18, page 178];
• Bp is reflexive for 1 < p < ∞ [7, Theorem 0.15];
• Tsirelson’s space T is reflexive [18, Theorem 1.c.12] and [7, Theorem I.8];
• for 2 ≤ p < ∞, Lp(0,∞) + L2(0,∞) is the dual of Lp∗(0,∞) ∩ L2(0,∞) and
these spaces are reflexive [8, Theorem 3.1];

• the spaces ΛW,p(0, 1) and Lp,q(0,∞) are reflexive for 1 < p, q < ∞ [10, p. 406].

(9) Let K be a scattered compact and let M be a closed infinite codimensional
subspace M of C(K). By [20, Theorem 4.2], C(K)/M has a quotient isomorphic to
c0 or to `2. In other words, C(K) has a closed subspace A with M ⊂ A such that
C(K)/A is isomorphic to c0 or to `2. But K is scattered, so C(K)∗ has no copy of
`2 because C(K)∗ ≡ `1(K); therefore, C(K)/A must be isomorphic to c0.

Consider the quotient operator QA : C(K) −→ C(K)/A. Since C(K) has the
Pełczyński property, there exists a subspace F of C(K) isomorphic to c0 such that
QA|F is an isomorphism. Observe that QA(F ) is complemented in C(K)/A ' c0. So
we can write C(K)/A = QA(F ) ⊕ N for some closed subspace N . Hence C(K) =
F ⊕Q−1

A (N). We have proved that M is contained in a complemented infinite codi-
mensional subspace. Thus C(K) is superprojective. Since F is isomorphic to c0 we
have F ' F × F , so Remark 3.2 shows that C(K) is strongly superprojective.

(10) It is enough to prove that quotients of superprojective spaces are superpro-
jective. Let M be a closed subspace of X and let QM : X −→ X/M be the quotient
map. Given an infinite codimensional closed subspace A of X/M , Q−1

M (A) is closed
an infinite codimensional in X and A ' Q−1

M (A)/M . Moreover, if B is an infinite
codimensional complemented subspace of X containing Q−1

M (A), then QM(B) is an
infinite codimensional complemented subspace of X/M containing A. ¤

The next two results will be needed later.

Lemma 3.5. Let K ∈ L (X,Y ) be an operator and Y0 be a closed subspace of Y
such that QY0K is surjective. If E is a closed subspace of X such that K−1(Y0) ⊂ E,
then Y contains a closed subspace F such that Y0 ⊂ F and E = K−1(F ). Moreover,
if E is infinite codimensional in X then F is infinite codimensional in Y .

Proof. Consider the surjective isomorphism U : X/N(QY0K) −→ Y/Y0 induced
by QY0K.

Let E be any closed subspace of X such that E ⊃ K−1(Y0). The desired subspace
F is Q−1

Y0
U QK−1(Y0)(E). Indeed, the facts that F is closed, F contains Y0 and E =
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K−1(F ) are straightforward. Moreover, if E is infinite codimensional in X, then
Q−1

Y0
U QK−1(Y0)(E) is infinite codimensional in Y . ¤

Proposition 3.6. Let Y be a strongly superprojective space. Then every quo-
tient of Y by a finite dimensional subspace has a quotient isomorphic to Y . Therefore,
Φ−(X,Y ) is not empty if and only if X has a quotient isomorphic to Y .

Proof. Let Z be a finite dimensional subspace of Y . As Y is strongly superpro-
jective, there is a closed infinite dimensional subspace Y0 of Y such that Y/Y0 ' Y .
Let F be any subspace of Y0 with dim F = dim Z. Then

Y/F

Y0/F
' Y

Y0

' Y,

and as Y/Z ' Y/F , the first assertion follows easily.
For the second assertion, the ‘if’ part is trivial. For the reverse, given T ∈

Φ−(X,Y ), there exists a finite dimensional subspace N of Y such that

Y

N
' R(T ) ' X

N(T )
,

thus, an application of the first assertion finishes the proof. ¤
Next theorem is the main result of this section.

Theorem 3.7. Let Y be a strongly superprojective space and let X be a Banach
space such that Φ−(X, Y ) 6= ∅. Then PΦ−(X, Y ) = S C (X,Y ).

Proof. It is enough to show that, given K ∈ L (X, Y ) \S C (X,Y ), there exists
T ∈ Φ−(X,Y ) such that T + K /∈ Φ−. In order to do that, let K : X −→ Y be a
non-strictly cosingular operator. Thus there exists a closed subspace Y0 ⊂ Y with
dim Y/Y0 = ∞ such that QY0K is surjective, where QY0 is the quotient operator onto
Y/Y0. Obviously, R(K) + Y0 = Y .

Since Y is strongly superprojective, the space Y0 can be assumed to be isomorphic
to Y and complemented in Y . Thus Y = Y0 ⊕N with dim N = ∞.

Let P : Y −→ Y be the projection with N(P ) = Y0 and R(P ) = N . Thus

R(PK) = P
(
R(K) + Y0

)
= N,

N(PK) = K−1(Y0).

As Φ−(X, Y ) 6= ∅, Proposition 3.6 provides a closed subspace M of X such that
X/M ' Y . Hence, as Y ' Y0, there exists S ∈ L (X,Y ) such that N(S) = M and
R(S) = Y0.

Taking into account the relative positions of K−1(Y0) and M in X, three cases
occur:

(a) K−1(Y0) + M is closed and finite codimensional in X,
(b) K−1(Y0) + M is infinite codimensional in X,
(c) K−1(Y0) + M is finite codimensional in X but K−1(Y0) + M is not closed.
(a) Let M1 be a subspace of X containing M such that dim M1/M < ∞ and

K−1(Y0) + M1 = X. Since X/M is superprojective, by Proposition 3.6, there exists
a closed subspace M2 containing M1 such that X/M2 ' Y . Thus we can assume
K−1(Y0) + M = X.
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Let T := S − PK. Observe that R(T ) = Y . Indeed, given y ∈ Y , decompose

y = y0 + y1 with y0 ∈ Y0 and y1 ∈ N.

We will show that

y0 = S(x0) for some x0 ∈ K−1(Y0),(1)
y1 = PK(x1) for some x1 ∈ M .(2)

In order to prove (1), take x ∈ X such that y0 = S(x) and consider any decomposition
x = x0 + x′0 with x0 ∈ K−1(Y0) and x′0 ∈ M . Thus x′0 ∈ N(S), hence y0 = S(x0).

For (2), as N = R(PK), there exists x ∈ X such that y1 = PK(x). Take any
decomposition x = x1 + x′1 with x1 ∈ M and x′1 ∈ K−1(Y0). Since K(x′1) ∈ Y0 =
N(P ), it follows that y1 = PK(x1), and (2) is proved.

Finally, formulas (1) and (2) yield that x0 ∈ N(PK) and x1 ∈ N(S), hence y =
(S − PK)(x0 − x1). We have just proved that T is surjective, hence, T ∈ Φ−(X,Y ).

However, R(T + K) = R(S + (IX − P )K) ⊂ Y0, so T + K /∈ Φ−(X,Y ).
(b) Assume K−1(Y0) + M is infinite codimensional. Thus (K−1(Y0) + M)/M is

an infinite codimensional subspace of X/M . But X/M is isomorphic to Y , so it is
strongly superprojective, hence there exists a closed infinite codimensional subspace
X1 of X such thatK−1(Y0) + M ⊂ X1, X1/M ' Y and

X

M
=

X1

M
⊕ E

M

for some subspace M ⊂ E ⊂ X with dim E/M = ∞. Lemma 3.5 provides a closed
subspace Y1 of Y such that dim Y/Y1 = ∞, Y0 ⊂ Y1 and X1 = K−1(Y1). Thus

K−1(Y1) + E = X1 + E = X.

Moreover,

X/E ' X/M

E/M
' X1/M ' Y.

Therefore, using again that Y is strongly superprojective, there exists a comple-
mented infinite codimensional subspace Y2 of Y such that Y1 ⊂ Y2 ⊂ Y and Y2 ' Y .

Obviously, QY2K is surjective, X/E ' Y and K−1(Y2) + E = X so we are in
the conditions of case (a) (using an operator S1 ∈ L (X, Y ) with N(S1) = E and
R(S1) = Y2, instead of S).

(c) As in the case (a), we can assume that K−1(Y0)+M is dense but not closed in
X. We will find a compact operator K1 ∈ L (X, Y ) such that (K + K1)−1(Y0) + M
is infinite codimensional in X. Once K1 has been found, as R

(
QY0(K + K1))

)
is

finite codimensional in Y/Y0, there exists a finite rank operator K2 ∈ L (X,Y )

such that QY0(K + K1 + K2) is surjective and (K + K1 + K2)−1(Y0) + M is infinite
codimensional in X yet. Hence, applying the argument of (b), we get that K +K1 +
K2 /∈ PΦ−(X, Y ), and as K1+K2 is compact, we can conclude that K /∈ PΦ−(X,Y ).

In order to find K1, since K−1(Y0) + M is not closed, it follows K−1(Y0)
⊥ + M⊥

is not closed either; but X =K−1(Y0) + M , so

(3) {0} = K−1(Y0)
⊥ ∩M⊥.

Thus, we may take a normalized sequence (fn) ⊂ K−1(Y0)
⊥ such that dist (fn,M⊥) <

1/2n. Take also a sequence (hn) in M⊥ so that ‖fn − hn‖ < 1/2n.
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Note that (fn) does not have any convergent subsequence; otherwise, if fkn −→n f ,
then hkn −→n f too, so f = 0 because of (3), a contradiction.

Let f be a weak∗ cluster point of (fn). As both subspaces K−1(Y0)
⊥ and M⊥ are

weak∗ closed, (3) yields that f = 0. Thus, by [13, Lemma 3.1.19], there is a bounded
sequence (xn) in X and a basic subsequence (fkn) of (fn) such that 〈fkn , xm〉 = δnm.

As K−1(Y0)
⊥ = K∗(Y ⊥

0 ), we may pick a sequence (gn) in Y ⊥
0 such that K∗(gn) =

fkn ; note that (gn) is bounded because K∗|Y ⊥0 is an isomorphism. Let yn := K(xn).
Obviously,

〈gi, yj〉 = 〈K∗(gi), xj〉 = δij.

Consider the compact operator K1 : X −→ Y given by the expression

K1(x) :=
∞∑

n=1

〈hkn − fkn , x〉yn.

Its conjugate operator is given by K∗
1(g) =

∑∞
n=1〈g, yn〉(hkn − fkn). Thus (K∗ +

K∗
1)(gn) = hkn ∈ (K∗+K∗

1)(Y ⊥
0 )∩M⊥ for all n, which proves that (K∗+K∗

1)(Y ⊥
0 )∩

M⊥ is infinite dimensional. But

(K∗ + K∗
1)(Y ⊥

0 ) ∩M⊥ = (K + K1)
−1(Y0)

⊥ ∩M⊥ =(K + K1)−1(Y0) + M
⊥

hence (K + K1)−1(Y0) + M is an infinite codimensional subspace of X, as we wanted
to prove. The proof is done. ¤

Since all known examples of superprojective spaces are strongly superprojective,
the following result implies that, in most of the cases, Theorem 3.7 is not a conse-
quence of assertion (1’) in the introduction.

Proposition 3.8. Assume that X is superprojective and Φ−(X,Y ) is not empty.
Then Y is superprojective.

Proof. It is enough to note that Φ−(X, Y ) 6= ∅ implies that a quotient of Y by a
finite dimensional subspace is isomorphic to a quotient of X. ¤
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