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Abstract. We find necessary and sufficient conditions for an arbitrary metric space X to have
a unique pretangent space at a marked point a ∈ X. Applying this general result we show that each
logarithmic spiral has a unique pretangent space at the asymptotic point. Unbounded multiplicative
subgroups of C∗ = C\{0} having unique pretangent spaces at zero are characterized as lying either
on the positive real semiaxis or on logarithmic spirals. Our general uniqueness conditions in the
case X ⊆ R make it also possible to characterize the points of the ternary Cantor set having unique
pretangent spaces.

1. Introduction

Analysis on metric spaces without a smooth structure has recently experienced a
rapid development. This development is closely related to some generalizations of the
differentiability. Important examples of such generalizations and even an axiomatic
approach of so-called “pseudo-gradients” can be found in [1,3,4,7,15–17,22] and in [2].
In almost all aforementioned books and papers the generalized differentiations involve
an induced linear structure that makes possible to use the classical differentiations
in the linear normed spaces. A new sequential approach to the “smooth” structure
for general metric spaces was proposed by Martio and the second author in [14].

A basic technical tool in [14] is the notion of pretangent spaces at a point a of
an arbitrary metric space X which were defined as the factor spaces of families of se-
quences of points xn ∈ X convergent to a. The questions related to the compactness
of pretangent spaces were studied in [11]. Certain characterizations of ultrametric
pretangent spaces were found in [12, 13]. The metric differentiation based on the
pretangent spaces was introduced in [9]. In the present paper we find necessary and
sufficient conditions under which the metric space with a marked point a has a unique
pretangent space at a for every normalizing sequence r̃, see Theorem 2.4. Applying
these conditions we study the uniqueness of pretangent spaces in the following situ-
ations: The point a is a “cusp of the space X” (Section 3); a is the asymptotic point
of the logarithmic spiral X (Section 4); for arbitrary X ⊆ R we characterize the
uniqueness conditions in the terms of some cluster sets (Section 5); a is a point of
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the triadic Cantor set (Section 6). Section 7 contains examples which show that the
two conditions for the uniqueness are independent.

For convenience we recall the basic definitions and results from [14], see also [9].
Let (X, a, d) be a pointed metric space with a marked point a and a metric d. Fix
a sequence r̃ of positive real numbers rn which tend to zero. In what follows this
sequence r̃ is called a normalizing sequence. Let us denote by X̃ the set of all
sequences of points from X.

Definition 1.1. Two sequences x̃, ỹ ∈ X̃, x̃ = {xn}n∈N and ỹ = {yn}n∈N, are
mutually stable (with respect to a normalizing sequence r̃ = {rn}n∈N) if there is a
finite limit

(1.1) lim
n→∞

d(xn, yn)

rn

:= d̃r̃(x̃, ỹ) = d̃(x̃, ỹ).

We shall say that a family F̃ ⊆ X̃ is self-stable (w.r.t. r̃) if every two x̃, ỹ ∈ F̃ are
mutually stable. A family F̃ ⊆ X̃ is maximal self-stable if F̃ is self-stable and for an
arbitrary z̃ ∈ X̃ either z̃ ∈ F̃ or there is x̃ ∈ F̃ such that x̃ and z̃ are not mutually
stable. A standard application of Zorn’s Lemma leads to the following

Proposition 1.2. Let (X, a, d) be a pointed metric space. Then for every nor-
malizing sequence r̃ = {rn}n∈N there exists a maximal self-stable family X̃a = X̃a,r̃

such that ã := {a, a, . . . } ∈ X̃a.

Note that the condition ã ∈ X̃a implies the equality

lim
n→∞

d(xn, a) = 0

for every x̃ = {xn}n∈N which belongs to X̃a. Consider a function d̃ : X̃a × X̃a → R

where d̃(x̃, ỹ) = d̃r̃(x̃, ỹ) is defined by (1.1). Obviously, d̃ is symmetric and nonnega-
tive. Moreover, the triangle inequality for the original metric d implies

d̃(x̃, ỹ) ≤ d̃(x̃, z̃) + d̃(z̃, ỹ)

for all x̃, ỹ, z̃ from X̃a. Hence (X̃a, d̃) is a pseudometric space.

Definition 1.3. The pretangent space to the space X at the point a w.r.t. a
normalizing sequence r̃ is the metric identification of the pseudometric space (X̃a,r̃, d̃).

Since the notion of pretangent space is basic for the present paper, we remind this
metric identification construction. Define a relation ∼ on X̃a by x̃ ∼ ỹ if and only if
d̃(x̃, ỹ) = 0. Then ∼ is an equivalence relation. Let us denote by Ωa = Ωa,r̃ = ΩX

a,r̃

the set of equivalence classes in X̃a under the equivalence relation ∼. It follows from
general properties of pseudometric spaces, see, for example, [18, Chapter 4, Th. 15],
that if ρ is defined on Ωa by

(1.2) ρr̃(α, β) = ρ(α, β) := d̃(x̃, ỹ)

for x̃ ∈ α and ỹ ∈ β, then ρ is the well-defined metric on Ωa. The metric identification
of (X̃a, d̃) is, by definition, the metric space (Ωa, ρ).

Remark that Ωa,r̃ 6= ∅ because the constant sequence ã belongs to X̃a,r̃, see
Proposition 1.2.

Let {nk}k∈N be an infinite, strictly increasing sequence of natural numbers. Let
us denote by r̃′ the subsequence {rnk

}k∈N of the normalizing sequence r̃ = {rn}n∈N
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and let x̃′ := {xnk
}k∈N for every x̃ = {xn}n∈N ∈ X̃. It is clear that if x̃ and ỹ are

mutually stable w.r.t. r̃, then x̃′ and ỹ′ are mutually stable w.r.t. r̃′ and

(1.3) d̃r̃(x̃, ỹ) = d̃r̃′(x̃
′, ỹ′).

If X̃a,r̃ is a maximal self-stable (w.r.t. r̃) family, then, by Zorn’s Lemma, there exists
a maximal self-stable (w.r.t. r̃′) family X̃a,r̃′ such that

{x̃′ : x̃ ∈ X̃a,r̃} ⊆ X̃a,r̃′ .

Denote by inr̃′ the mapping from X̃a,r̃ to X̃a,r̃′ with inr̃′(x̃) = x̃′ for all x̃ ∈ X̃a,r̃.
If follows from (1.2) that after the metric identifications inr̃′ pass to an isometric
embedding em′ : Ωa,r̃ → Ωa,r̃′ under which the diagram

(1.4)

X̃a,r̃
inr̃′−−−−−→ X̃a,r̃′

p

y

yp′

Ωa,r̃
em′−−−−−→ Ωa,r̃′

is commutative. Here p, p′ are the natural projections, p(x̃) := {ỹ ∈ X̃a,r̃ : d̃r̃(x̃, ỹ) =

0} and p′(x̃) := {ỹ ∈ X̃a,r̃′ : d̃r̃′(x̃, ỹ) = 0}.
Let X and Y be two metric spaces. Recall that a map f : X → Y is called an

isometry if f is distance-preserving and onto.

Definition 1.4. A pretangent Ωa,r̃ is tangent if em′: Ωa,r̃ → Ωa,r̃′ is an isometry
for every r̃′.

Simple arguments give the following proposition.

Proposition 1.5. Let (X, a) be a pointed metric space, r̃ a normalizing sequence
and X̃a,r̃ a maximal self-stable family with correspondent pretangent space Ωa,r̃. The
following statements are equivalent.

(i) Ωa,r̃ is tangent.
(ii) For every subsequence r̃′ of the sequence r̃ the family {x̃′ : x̃ ∈ X̃a,r̃} is max-

imal self-stable w.r.t. r̃′.
(iii) The function em′ : Ωa,r̃ → Ωa,r̃′ is surjective for every r̃′.
(iv) The function in′r : X̃a,r̃ → X̃a,r̃′ is surjective for every r̃′.

For the proof see [9, Proposition 1.2] or [10, Proposition 1.5].

2. Conditions of uniqueness of pretangent spaces

In this section we start from the simplest example of a metric space with unique
pretangent spaces.

Example 2.1. Let X = R+ = [0,∞[ be the set of all non-negative, real numbers
with the usual metric

d(x, y) = |x− y| ,
let r̃ = {rn}n∈N be an arbitrary normalizing sequence and let 0 be the marked point
of X. Consider a maximal self-stable family X̃0,r̃.

Proposition 2.2. The following statements are true.
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(i) Let x̃ = {xn}n∈N ∈ X̃. Then x̃ ∈ X̃0,r̃ if and only if there is c ≥ 0 such that

(2.1) lim
n→∞

xn

rn

= c.

(ii) For every two x̃ = {xn}n∈N and ỹ = {yn}n∈N from X̃0,r̃ the equality

d̃r̃(x̃, ỹ) = 0

holds if and only if
lim

n→∞
xn

rn

= lim
n→∞

yn

rn

.

(iii) The pretangent space ΩX
0,r̃ is isometric to (R+, |·, ·|).

(iv) The pretangent space ΩX
0,r̃ is tangent.

Proof. (i) If x̃ = {xn}n∈N ∈ X̃0,r̃, then there is a finite limit

lim
n→∞

|xn − 0|
rn

= d̃(x̃, 0̃).

Since we have xn = |xn − 0| for all n ∈ N, limit relation (2.1) holds with c = d̃(x̃, 0̃).
Suppose that x̃, ỹ ∈ X̃, x̃ = {xn}n∈N , ỹ = {yn}n∈N and there are c1, c2 ∈ R+ such
that

lim
n→∞

xn

rn

= c1, lim
n→∞

yn

rn

= c2.

Consequently,

(2.2) lim
n→∞

|xn − yn|
rn

= |c1 − c2| ,
so that x̃ and ỹ are mutually stable. It implies statement (i).

(ii) Statement (ii) follows from statement (i) and (2.2).
(iii) Define a function f : ΩX

0,r̃ → R+ by the rule: If β ∈ Ω0,r̃ and x̃ ∈ β, then
write f(β) := lim

n→∞
xn

rn
. Statements (i),(ii) and limit relation (2.2) imply that f is a

well-defined isometry.
(iv) Let ñ = {nk}k∈N be a strictly increasing, infinite sequence of natural numbers

and let r̃′ = {rnk
}k∈N be the corresponding subsequence of the normalizing sequence

r̃. If x̃ = {xk}k∈N ∈ X̃0,r̃′ then, by statement (i), there is b ∈ R+ such that

lim
k→∞

xk

rnk

= b.

Define ỹ = {yn}n∈N ∈ X̃ as

yn :=

{
xk if there is an element nk of the sequence ñ such that nk = n,

brn otherwise.

It is clear that ỹ′ = {ynk
}k∈N = x̃ and

lim
n→∞

yn

rn

= b.

Hence, by statement (i), ỹ belongs to X̃0,r̃. Using statement (iv) of Proposition 1.5
we see that Ω0,r̃ is tangent. ¤

Statement (i) of Proposition 2.2 shows that the pointed space (R+, 0, |·, ·|) pos-
sesses an interesting property: For every normalizing sequence r̃ there exists a unique
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pretangent space Ω0,r̃. We shall denote by U the class of all pointed metric spaces
having this property, i.e.

((X, a, d) ∈ U) ⇔ (∀r̃ there is a unique ΩX
a,r̃).

The main results of this paper describe metric spaces belonging to U.

Remark 2.3. The uniqueness in the previous paragraph and in all theorems be-
low is understood in the usual set-theoretical sense. Statement (i) of Proposition 2.2
implies that for X = R+ the family (= the set) X̃a,r̃ is unique. Hence ΩX

0,r̃, the metric
identification of X̃0,r̃, is also unique. Since the set X̃0,r̃ is the union of all equivalence
classes β ∈ Ω0,r̃, the uniqueness of the pretangent spaces ΩX

0,r̃ gives the uniqueness of
X̃0,r̃.

Let (X, a, d) be a marked metric space. For each pair of nonvoid sets C,D ⊆ X
write

∆(C, D) := sup {d(x, y) : x ∈ C, y ∈ D}
and write

Aa(r, k) :=
{

x ∈ X :
r

k
≤ d(x, a) ≤ rk

}
, Sa(r) := {x ∈ X : d(x, a) = r}

for every r > 0 and every k ≥ 1 and define

Ra,X :=
{
r ∈ R+ : Sa(r) 6= ∅}

and, for every ε ∈ ]0, 1[

(2.3) R2
ε :=

{
(r, t) ∈ R2

a,X : r 6= 0 6= t and
∣∣∣r
t
− 1

∣∣∣ ≥ ε
}

where R2
a,X is the Cartesian product of Ra,X ’s. See Figure 1.

t

r

t

r

Ra,X
2

R
2

å

1 2 3

1

2

3

1 2 3

1

2

3

Figure 1. The sets R2
a,X and R2

ε with Ra,X = [0, 1]∪ [2, 3] and ε = 1
6 . Nontengential limit (2.8)

is taken over the set R2
ε.

Theorem 2.4. Let (X, a, d) be a pointed metric space and let a be a limit
point of X. Then (X, a, d) ∈ U if and only if the following conditions are satisfied
simultaneously.

(i) The limit relation

(2.4) lim
k→1+

lim sup
r→0+

diam(Aa(r, k))

r
= 0, r ∈ ]0,∞[, k ∈ [1,∞[
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holds.
(ii) If {(qn, tn)}n∈N is a sequence such that (qn, tn) ∈ R2

ε for all n ∈ N and

lim
n→∞

(qn, tn) = (0, 0)

and there is

(2.5) lim
n→∞

qn

tn
= c0 ∈ [0,∞] ,

then there exists a finite limit

(2.6) lim
n→∞

∆(Sa(qn), Sa(tn))

|qn − tn| := κ0.

Remark 2.5. The annulus Aa(r, k) can be void in (2.4). At that time we use
the convention

diam Aa(r, k) = diam(∅) = 0.

Remark 2.6. If a is an isolated point of X then, obviously, (X, a, d) ∈ U and
conditions (i), (ii) of the above theorem is vacuously true.

We need the following lemma.

Lemma 2.7. Let (X, a, d) be a pointed metric space. Then (X, a, d) ∈ U if and
only if the implication

((x̃ and ã are mutually stable) and (ỹ and ã are mutually stable))
=⇒ (x̃ and ỹ are mutually stable)

(2.7)

is true for every x̃, ỹ ∈ X̃.

Proof. Suppose that (2.7) is true. Let X̃m
a,r̃ be the set of all x̃ ∈ X̃ which are

mutually stable with ã. It follows from (2.7) that X̃m
a,r̃ is self-stable. Consider an

arbitrary maximal self-stable X̃a,r̃, then, by definition of X̃a,r̃, we obtain the inclusion
X̃m

a,r̃ ⊇ X̃a,r̃. Since X̃a,r̃ is maximal self-stable, we have also X̃a,r̃ ⊇ X̃m
a,r̃. Hence the

equality
X̃a,r̃ = X̃m

a,r̃

holds for all X̃a,r̃, so all X̃a,r̃ coincide.
Now suppose that X̃a,r̃ is unique for every r̃ and there are x̃, ỹ ∈ X̃ and there

is a normalizing sequence t̃ such that: x̃ and ã are mutually stable; ỹ and ã are
mutually stable; x̃ and ỹ are not mutually stable. By Zorn’s Lemma there exist
maximal self-stable families X̃

(1)

a,t̃
⊇ {x̃, ã} and X̃

(2)

a,t̃
⊇ {ỹ, ã}. It is clear that X̃

(1)

a,t̃
6=

X̃
(2)

a,t̃
. Hence, the uniqueness of pretangent spaces, see Remark 2.3, implies (2.7). ¤

Lemma 2.8. Let (X, a, d) be a pointed metric space and let a be a limit point
of X. Write

δ(Sa(q), Sa(t)) := inf{d(x, y) : x ∈ Sa(q), y ∈ Sa(t)}
for each q, t ∈ Ra,X . If condition (i) of Theorem 2.4 holds, then we have the equality

(2.8) lim
(t,q)→(0,0)

(t,q)∈R2
ε

∆(Sa(q), Sa(t))

δ(Sa(q), Sa(t))
= 1

for every ε ∈ ]0, 1[.
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Proof. Suppose that there is ε > 0 such that (2.8) does not hold. Then there
exist two sequences of spheres {Sa(qn)}n∈N, {Sa(tn)}n∈N, (tn, qn) ∈ R2

ε for all n ∈ N,
and four sequences of points {xn}n∈N, {yn}n∈N, {zn}n∈N, {pn}n∈N such that

xn, zn ∈ Sa(tn) and yn, pn ∈ Sa(qn)

for all n ∈ N and

lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = lim
n→∞

pn = a,

lim sup
n→∞

d(xn, yn)

d(zn, pn)
> 1.(2.9)

Suppose also that condition (i) of Theorem 2.4 holds. Then using relation (2.4) with
k = 1 we obtain

(2.10) lim
n→∞

d(xn, zn)

tn
= lim

n→∞
d(yn, pn)

qn

= 0.

Note also that the relation (tn, qn) ∈ R2
ε and definition (2.3) imply that there is

ε1 ∈ ]0, ε] such that the inequalities

(2.11) |qn − tn| > ε1qn and |tn − qn| > ε1tn

hold for all n ∈ N. Let us find the upper bound of the quantity in the left side of
(2.4). Write

ηn :=
d(xn, zn)

tn
and ξn :=

d(yn, pn)

qn

for all n ∈ N. The triangle inequality implies
d(xn, yn)

d(zn, pn)
6 d(xn, zn)

d(zn, pn)
+

d(zn, pn)

d(zn, pn)
+

d(pn, yn)

d(zn, pn)
6 ηn

tn
d(zn, pn)

+ 1 + ξn
qn

d(zn, pn)
.

Using
d(zn, pn) > |d(zn, a)− d(pn, a)| = |tn − qn|

and (2.11) we obtain
tn

d(zn, pn)
6 tn
|tn − qn| 6 1

ε1

and
qn

d(zn, pn)
6 qn

|tn − qn| 6 1

ε1

.

Thus

lim sup
n→∞

d(xn, yn)

d(zn, pn)
6 1 +

1

ε1

lim sup
n→∞

(ηn + ξn).

The upper limit in the right is zero by (2.10). Consequently

lim sup
n→∞

d(xn, yn)

d(zn, pn)
6 1

contrary to (2.9). ¤
Proof of Theorem 2.4. Assume (X, a, d) ∈ U. We need to verify conditions

(i)–(ii).
(i) Consider the following function f : [1,∞[→ R+,

f(k) := k lim sup
r→0

diam(Aa(r, k))

r
.
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Since

f(k) := lim sup
r→0

diam(Aa(k
r
k
, k))

r
k

= lim sup
t→0

diam(Aa(kt, k))

t

and
Aa(kt, k) = {x ∈ X : t ≤ d(x, a) ≤ k2t},

the function f is increasing. Since we have
diam(Aa(r, k))

r
≤ 2rk

r
= 2k

for every k ≥ 1 and all r > 0, the double inequality

0 ≤ f(k) ≤ 2k2

holds. Consequently, there is a finite, positive limit lim
k→1

f(k) := c0. It is clear that
this limit coincides with the limit in (2.4). Suppose that c0 > 0. Let ε ∈ ]0, c0[. Then
there is k0 > 1 such that the double inequality

(2.12) c0 − ε < lim sup
r→0

diam(Aa(r, k))

r
< c0 + ε

holds for all k ∈ ]1, k0]. Let {kn}n∈N be a strictly decreasing sequence of real numbers
such that all kn ∈ ]1, k0] and

(2.13) lim
n→∞

kn = 1.

Double inequality (2.12) implies that there is a sequence r̃ = {rn}n∈N, rn = rn(kn) >
0, such that limn→0 rn = 0 and

(2.14) c0 − ε <
diam(Aa(rn, kn))

rn

< c0 + ε

for all n ∈ N. It follows from (2.14) that there are x̃ = {xn}n∈N and ỹ = {yn}n∈N

from X̃ such that

(2.15) xn, yn ∈ Aa(rn, kn) and
d(xn, yn)

rn

≥ c0 − ε

for all n ∈ N. The definition of the annulus Aa(rn, kn) and (2.15) imply that

(2.16)
d(xn, a)

rn

,
d(yn, a)

rn

∈
[

1

kn

, kn

]

for all n ∈ N. Define a sequence z̃ = {zn}n∈N ∈ X̃ by the rule

(2.17) zn :=

{
xn if n is even,
yn if n is odd.

Then it follows from (2.13), (2.16) and (2.17) that

lim
n→∞

d(xn, a)

rn

= lim
n→∞

d(zn, a)

rn

= 1.

Moreover, (2.14) and (2.16) imply that

lim inf
n→∞

d(xn, zn)

rn

= lim
n→∞

d(x2n, z2n)

r2n

= 0,
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but
lim sup

n→∞

d(xn, zn)

rn

= lim sup
n→∞

d(x2n+1, z2n+1)

r2n+1

≥ c0 − ε > 0.

Thus x̃ and ã are mutually stable, z̃ and ã are mutually stable but x̃ and z̃ are
not mutually stable (w.r.t. the normalizing sequence r̃ = {rn}n∈N). Hence, by
Lemma 2.7, (X, a, d) /∈ U contrary to the assumption.

(ii) Let {(qn, tn)}n∈N be a sequences of elements of R2
ε such that lim

n→∞
(qn, tn)

= 0 and (2.5) holds. If in (2.5) c0 = 0 or c0 = ∞, then it is clear that (2.6) holds
with κ0 = 1, so it is sufficient to take

(2.18) 0 < c0 < ∞.

Consider the sequence q̃ = {qn}n∈N as a normalizing sequence. Let x̃ = {xn}n∈N and
ỹ = {yn}n∈N belong to X̃ and d(a, xn) = qn, d(a, yn) = tn and

(2.19) lim
n→∞

d(xn, yn)

∆(Sa(qn), Sa(tn))
= 1.

Conditions (2.5) and (2.18) imply that there is

d̃q̃(ỹ, ã) = lim
n→∞

d(yn, a)

qn

=
1

c0

< ∞.

Hence, by Lemma 2.7, there is a finite limit

d̃q̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

qn

.

Moreover, since (qn, tn) ∈ R2
ε for all n ∈ N, we have c0 6= 1. Consequently, using

(2.19) and (2.5) we obtain

lim
n→∞

∆(Sa(qn), Sa(tn))

|qn − tn| = lim
n→∞

d(xn, yn)∆(Sa(qn), Sa(tn))

qn

∣∣∣1− tn
qn

∣∣∣ d(xn, yn)

= lim
n→∞

d(xn, yn)

qn

lim
n→∞

1∣∣∣1− tn
qn

∣∣∣
=

c0

|1− c0| d̃q̃(x̃, ỹ).

(2.20)

Suppose that conditions (i)–(ii) are satisfied simultaneously. We must prove that
Ωa,r̃ is unique for every normalizing sequence r̃. Let r̃ = {rn}n∈N be an arbitrary
normalizing sequence and let x̃ = {xn}n∈N and ỹ = {yn}n∈N be two elements of X̃
such that

0 ≤ d̃(ã, x̃) = lim
n→∞

d(a, xn)

rn

< ∞
and

0 ≤ d̃(ã, ỹ) = lim
n→∞

d(a, yn)

rn

< ∞.

To prove the uniqueness of Ωa,r̃ it is sufficient, by Lemma 2.7, to show that x̃ and ỹ

are mutually stable w.r.t. r̃. If d̃(ã, x̃) = 0, then, by the triangle inequality,

lim sup
n→∞

d(xn, yn)

rn

≤ lim
n→∞

(
d(xn, a)

rn

+
d(yn, a)

rn

) = d̃(ã, ỹ)

and
lim inf
n→∞

d(xn, yn)

rn

≥ lim
n→∞

(
d(yn, a)

rn

− d(xn, a)

rn

) = d̃(ã, ỹ).
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Consequently, there is a finite limit

d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn

= d(ã, ỹ),

i.e., x̃ and ỹ are mutually stable. The case where d(ã, ỹ) = 0 is similar. Hence,
without loss of generality we may assume that

d̃(ã, ỹ) 6= 0 6= d(ã, x̃).

Consider first the case where

d̃(ã, ỹ) = d(ã, x̃) := b 6= 0.

This assumption implies that for every k > 1 there is n0 = n0(k) ∈ N such that the
inclusion

(2.21) Aa(brn, k) ⊇ {xn, yn}
holds for all natural n > n0(k), where

Aa(brn, k) =

{
x ∈ X :

brn

k
≤ d(x, a) ≤ kbrn

}
.

It follows from (2.21) that

d(xn, yn) ≤ diam(Aa(brn, k))

if n > n0(k). Consequently,
1

b
lim sup

n→∞

d(xn, yn)

rn

≤ lim sup
n→∞

diam(Aa(brn, k))
brn

.

Letting k → 1 on the right-hand side of the last inequality and using (2.4) we see
that

0 ≤ 1

b
lim sup

n→∞

d(xn, yn)

rn

≤ lim
k→∞

(
lim sup

n→∞

diam(Aa(brn, k))
brn

)
= 0.

Hence

(2.22) d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn

= 0.

It implies that x̃ and ỹ are mutually stable. It still remains to show that there exists
a finite limit

d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn

if

(2.23) 0 6= d̃(x̃, ã) 6= d̃(ỹ, ã) 6= 0.

For convenience we write

qn := d(xn, a), tn := d(yn, a)

for all n ∈ N. Condition (2.23) implies that there are ε > 0 and a natural number
n0 = n0(ε) such that

(2.24) qn ∧ tn > 0 and
∣∣∣∣
qn

tn
− 1

∣∣∣∣ ≥ ε

for all n ≥ n0. It is clear that

xn ∈ Sa(qn) and yn ∈ Sa(tn),
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where Sa(qn) and Sa(tn) are the spheres with the common center a ∈ X and radii
qn, tn, respectively. Consequently, we have the following inequalities

(2.25) ∆(Sa(qn), Sa(tn)) ≥ d(xn, yn) ≥ δ(Sa(qn), Sa(tn)),

where the quantity δ(Sa(qn), Sa(tn)) is defined in Lemma 2.8. Limit relations (2.8)
and (2.6) imply that

κ0 = lim
n→∞

∆(Sa(qn), Sa(tn))

|qn − tn| = lim
n→∞

δ(Sa(qn), Sa(tn))

|qn − tn| .

Hence, using (2.25), we obtain

κ0 = lim
n→∞

d(xn, yn)

|qn − tn| =
1∣∣∣d̃(x̃, ã)− d̃(ỹ, ã)

∣∣∣
lim

n→∞
d(xn, yn)

rn

,

that implies

(2.26) d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn

= κ0

∣∣∣d̃(x̃, ã)− d̃(ỹ, ã)
∣∣∣ ,

i.e., x̃ and ỹ are mutually stable. ¤
It will be proved in the Section 7 of the paper that conditions (i) and (ii) of

Theorem 2.4 are mutually independent in the sense that no one of them implies the
another.

The next proposition follows from Lemma 2.7.

Proposition 2.9. Let (X, a, d) be a pointed metric space, let Y ⊆ X and let
a ∈ Y . Then the relation (X, a, d) ∈ U implies (Y, a, d) ∈ U.

3. Examples of metric spaces with unique pretangent spaces

Using Example 2.1 as a model we can construct more geometrically interesting
examples of metric spaces with unique tangent spaces. To this end we recall first some
facts related to the structure of pretangent spaces to subspaces of metric spaces.

Let (X, a, d) be a pointed metric space, let Y and Z be subspaces of X such that
a ∈ Y ∩ Z and let r̃ = {rn}n∈N be a normalizing sequence.

Definition 3.1. The pointed spaces (Y, a) and (Z, a), a ∈ X ∩ Y , are tangent
equivalent at a w.r.t. normalizing sequence r̃ if for every ỹ1 = {y(1)

n }n∈N ∈ Ỹ and
every z̃1 = {z(1)

n }n∈N ∈ Z̃ with finite limits

d̃r̃(ã, ỹ1) = lim
n→∞

d(y
(1)
n , a)

rn

and d̃r̃(ã, z̃1) = lim
n→∞

d(z
(1)
n , a)

rn

there exist ỹ2 = {y(2)
n }n∈N ∈ Ỹ and z̃2 = {z(2)

n }n∈N ∈ Z̃ such that

lim
n→∞

d(y
(1)
n , z

(2)
n )

rn

= lim
n→∞

d(y
(2)
n , z

(1)
n )

rn

= 0.

We shall say that (Y, a) and (Z, a) are strongly tangent equivalent if (Y, a) and
(Z, a) are tangent equivalent for all normalizing sequences r̃.

Let F̃ ⊆ X̃. For a normalizing sequence r̃ we define a family [F̃ ]Y = [F̃ ]Y,r̃ by
the rule

(ỹ ∈ [F̃ ]Y ) ⇔ ((ỹ ∈ Ỹ ) and (∃ x̃ ∈ F̃ : d̃r̃(x̃, ỹ) = 0)).
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The following two lemmas were proved in [9], see also [14].

Lemma 3.2. Let Y and Z be subspaces of a metric space X, a ∈ Y ∩Z and let
r̃ be a normalizing sequence. Suppose that (Y, a) and (Z, a) are tangent equivalent
w.r.t. r̃. Then following statements hold for every maximal self-stable (in Z̃) family
Z̃a,r̃.

(i) The family [Z̃a,r̃]Y is maximal self-stable (in Ỹ ) and we have the equality

[[Z̃a,r̃]Y ]Z = Z̃a,r̃.

(ii) If ΩZ
a,r̃ and ΩY

a,r̃ are metric identifications of Z̃a,r̃ and, respectively, of Ỹa,r̃ :=

[Z̃a,r̃]Y , then the mapping

ΩZ
a,r̃ 3 α 7−→ [α]Y ∈ ΩY

a,r̃

is an isometry. Furthermore, if ΩZ
a,r̃ is tangent, then ΩY

a,r̃ also is tangent.
(iii) If for the normalizing sequence r̃ there exists a unique maximal self-stable (in

Z̃) family Z̃a,r̃ 3 ã, then Ỹa,r̃ := [Z̃a,r̃]Y is a unique maximal self-stable (in Ỹ )
family which contains ã.

Let Y be a subspace of a metric space (X, d). For a ∈ Y and t > 0 we denote by

SY
t = SY (a, t) := {y ∈ Y : d(a, y) = t}

the sphere (in the subspace Y ) with the center a and the radius t. Similarly for
a ∈ Z ⊆ X and t > 0 define

SZ
t = SZ(a, t) := {z ∈ Z : d(a, z) = t}.

Write
εa(t, Z, Y ) := sup

z∈SZ
t

inf
y∈Y

d(z, y)

and
εa(t) := εa(t, Z, Y ) ∨ εa(t, Y, Z).

Lemma 3.3. Let Y and Z be subspaces of a metric space (X, d) and let a ∈
Y ∩ Z. Then Y and Z are strongly tangent equivalent at the point a if and only if
the equality

(3.1) lim
t→0

εa(t)

t
= 0

holds.

Remark 3.4. Statement (iii) of Lemma 3.2 implies, in particular, that

((Y, a) ∈ U) ⇔ ((Z, a) ∈ U)

if (Y, a) and (Z, a) are strongly tangent equivalent.

Using Proposition 2.2, Lemma 3.2 and Lemma 3.3 we can easily obtain examples
of subspaces of Euclidean spaces which have unique tangent spaces in their cusps.
The first example will be examined in details.

Example 3.5. Let F : [0, 1] → En, n ≥ 2, be a Jordan curve in the Euclidean
space En, i.e., F is continuous and

F (t1) 6= F (t2)
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for every two distinct points t1, t2 ∈ [0, 1]. We can write F in the coordinate form

F (t) = (f1(t), . . . , fn(t)), t ∈ [0, 1].

Suppose that all functions fi, 1 ≤ i ≤ n, are differentiable at the point 0 and

F ′(0) = (f ′1(0), . . . , f ′n(0)) 6= (0, . . . , 0).

(We use the one-sided derivatives here.) We claim that each pretangent space to the
space Y = F ([0, 1]) ⊆ En at the point a = F (0) is unique and tangent and isometric
to R+ for every normalizing sequence r̃. Indeed, by Lemma 3.2 and by Proposition
2.2, it is sufficient to show that Y is strongly tangent equivalent to the ray

Z = {(z1(t), . . . , zn(t)) : (z1(t), . . . , zn(t)) = tF ′(0) + F (0), t ∈ R+}
at the point a = F (0).

The classical definition of the differentiability of real functions shows that limit
relation (3.1) holds with these Y and Z. Hence, by Lemma 3.3, Y and Z are strongly
tangent equivalent at the point a = F (0).

Example 3.6. Let fi : [0, 1] → R, i = 1, . . . , n, be functions such that f1(0) =
· · · = fn(0) = c where c ∈ R is a constant. Suppose all fi have a common finite right
derivative b at the point 0, f ′1(0) = · · · = f ′n(0) = b. Write

a = (0, c) and X =
n⋃

i=1

{(t, fi(t)) : t ∈ [0, 1]},

i.e., X is an union of the graphs of the functions fi. Let us consider X as a subspace
of the Euclidean plane E2. Then for every normalizing sequence r̃ a pretangent space
Ω̃a,r̃ to the space X at the point a is unique, tangent and isometric to R+.

Example 3.7. Let f1, f2 be two functions from the precedent example. Put

X = {(x, y) : f1(x) ∧ f2(x) ≤ y ≤ f1(x) ∨ f2(x), x ∈ [0, 1]},
i.e., X is the set of points of the plane which lie between the graphs of the functions
f1 and f2. Then for every normalizing sequence r̃ each pretangent space Ω̃X

a,r̃ to X
at a = (0, c) is unique, tangent and isometric to R+.

Example 3.8. Let α be a positive real number. Write

X = {(x, y, z) ∈ E3 :
√

y2 + z2 ≤ x1+α, x ∈ R+},
i.e., X can be obtained by the rotation of the plane figure

{(x, y) ∈ E2 : 0 ≤ y ≤ x1+α, x ∈ R+}
around the real axis. Then each pretangent space Ω̃a,r̃ to X at the point a = (0, 0, 0)
is unique, tangent and isometric to R+.

In all examples above pretangent spaces ΩX
a,r̃ were also tangent. The following

example shows that there is a metric space X for which ΩX
a,r̃ is unique but not tangent.

Example 3.9. Let r̃ = {rn}n∈N be a sequence of strictly decreasing positive real
numbers rn with

(3.2) lim
n→∞

rn

rn+1

= ∞
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and such that rn > 2rn+1 for all n ∈ N. Let X be a union of two countable sets
{rn : n ∈ N} and {2r2n : n ∈ N} and the one-point set {0} ,

(3.3) X = {rn : n ∈ N} ∪ {2r2n : n ∈ N} ∪ {0}.
Consider the metric space (X, |·, ·|). It is clear that the sequences 0̃ and x̃ := {rn}n∈N

are mutually stable w.r.t. r̃ and

d̃r̃(x̃, 0̃) = 1.

Let X̃0,r̃ be a unique (by Proposition 2.9) maximal self-stable family such that

X̃0,r̃ ⊇ {0, x̃}.
We claim that the pretangent space ΩX

0,r̃ corresponding to X̃0,r̃ is two-point. Indeed,
suppose that ỹ = {yn}n∈N ∈ X̃0,r̃ and d̃(ỹ, 0̃) > 0. It is sufficient to prove the equality

(3.4) d̃(x̃, ỹ) = 0.

To this end, we note that (3.2) and (3.3) imply

(3.5)
y2n+1

r2n+1

= 1 and
y2n

r2n

∈ {1, 2}

for all sufficiently large n ∈ N because in the opposite case

either lim
n→∞

yn

rn

= 0 or lim
n→∞

yn

rn

= ∞.

Since

1 = lim
n→∞

y2n+1

r2n+1

= lim
n→∞

yn

rn

= lim
n→∞

y2n

r2n

,

conditions (3.5) imply that
y2n = r2n

for sufficiently large n. Hence (3.4) follows.
Now let r̃′ := {r2n}n∈N and X̃0,r̃′ be a maximal self-stable family such that

X̃0,r̃′ ⊇ {0̃, x̃, z̃}
where x̃ := {r2n}n∈N and z̃ := {2r2n}n∈N. Since

1 = d̃r̃′(0̃, x̃) =
1

2
d̃r̃′(0̃, z̃) = d̃r̃′(x̃, z̃),

the pretangent space Ω0,r̃′ corresponding to X̃0,r̃′ contains at least three distinct
points. Consequently, Ω0,r̃ is not tangent.

Remark 3.10. There are pointed metric spaces (X, a) for which all pretangent
spaces ΩX

a,r̃ are tangent but (X, a) 6∈ U. As an example we can take X = C of X = R,
see [10].

In the next section of the paper we will describe the tangent space to the loga-
rithmic spiral at its asymptotic point.
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4. Uniqueness of pretangent spaces and logarithmic spirals

We will consider only logarithmic spirals having the asymptotic point at 0. The
polar equation of these spirals is

(4.1) ρ = kbϕ,

where k and b are constants, k ∈ ]0,∞[ and b ∈ ]0, 1[ ∪ ]1,∞[. The rotation of the
polar axis on the angle ϕ1 = − ln k

ln b
transforms (4.1) to the form

(4.2) ρ = bϕ.

Let us denote by S∗ = S∗(b) the set of all complex numbers lying on spiral (4.2) and
let

S = S∗ ∪ {0},
i.e., S is the closure of S∗ in the complex plane C. In the following theorems we
consider S as a metric space with the usual metric d(z, w) = |z − w|.

Theorem 4.1. Each pretangent space to S at the point 0 is unique, tangent and
isometric to S.

Denote by C∗ the multiplicative group of all nonzero complex numbers. We shall
need the following lemma.

Lemma 4.2. S∗ is a subgroup of the group C∗.

Proof. As is well known, a nonvoid subset H of a group G is a subgroup of G if
and only if

hg ∈ H and h−1 ∈ H

for all h, g ∈ H. See, for example, [19, Chapter 1, §2]. Let z be a point of C∗. It is
clear from (4.2) that z ∈ S∗ if and only if

(4.3) z = |z| exp(i logb |z|).
The last equality implies

z−1 = |z|−1 exp(−i logb |z|) = |z−1| exp(i logb |z−1|).
Hence z−1 belongs to S∗ if z ∈ S∗. Similarly we obtain zw ∈ S∗ if z ∈ S∗ and
w ∈ S∗. ¤

The next useful lemma describes the isometries of metric identifications of pseu-
dometric spaces.

Lemma 4.3. Let (X, dX) be a pseudometric space, (Y, dY ) a metric space, (Ω, ρ)
a metric identification of (X, dX) and p : X → Ω the natural projection. Then for
every distance-preserving, surjective mapping F : X → Y there is a unique mapping
f : Ω → Y such that the diagram

(4.4)

X Y

Ω
?

p

-F

¡
¡

¡¡µ

f

is commutative. This f is an isometry.



368 Fahreddin Abdullayev, Oleksiy Dovgoshey and Mehmet Küçükaslan

Proof. Let us define a mapping f by the rule: if α ∈ Ω, then
(4.5) f(α) = F (x),

where x is an arbitrary point in p−1(α). This definition is correct. Indeed, if x1,
x2 ∈ p−1(α), then dX(x1, x2) = 0 because p is natural projection. The equality
dX(x1, x2) = 0 implies dY (F (x1), F (x2)) = 0 because F is distance-preserving. Since
dY is a metric, the last equality gives F (x1) = F (x2).

Rewriting (4.5) as f(p(x)) = F (x) we see that the diagram is commutative. The
uniqueness of f which satisfies the equality F = f ◦ p follows from the surjectivity of
p. It still remains to prove that F is an isometry.

Let α, β ∈ Ω, x, y ∈ X and α = p(x), β = p(y). Then we have
dY (f(α), f(β)) = dY (f(p(x)), f(p(y))) = dY (F (x), F (y))

= dX(x, y) = ρ(p(x), p(y)) = ρ(α, β).

Thus f is distance-preserving. Moreover f is surjective because F is surjective.
Hence f is an isometry as a distance-preserving, surjective mapping between metric
spaces. ¤

Proof of Theorem 4.1. We shall first prove (S, 0) ∈ U. To this end it is sufficient
to show that conditions (i)–(ii) from Theorem 2.4 are satisfied with X = S and a = 0.

We start from the verification of

Condition (i). Let z1 and z2 be some points of the annulus

A0(r, k) = {z ∈ S :
r

k
≤ |z| ≤ kz},

where k ∈ ]1,∞[, r ∈ ]0,∞[. Let us denote by l(z1, z2) the length of the arc of spiral
(4.2) joining the points z1, z2. If the polar coordinates of z1 and z2 are (ρ1, ϕ1) and
(ρ2, ϕ2) respectively, then we obtain the famous formula

(4.6) l(z1, z2) =

∣∣∣∣∣

ϕ2∫

ϕ1

√
ρ2 + ρ′2dϕ

∣∣∣∣∣ =

√
1 + ln2 b

| ln b| |bϕ2 − bϕ1| =
√

1 + ln2 b

| ln b| |ρ2 − ρ1|.

It implies that
diam A0(r, k) ≤ sup{l(z1, z2) : z1, z2 ∈ A0(r, k)}

=

√
1 + ln2 b

| ln b| |rk − r
1

k
| = r

√
1 + ln2 b

| ln b| (k − 1

k
).

Consequently,

lim
k→1

lim sup
r→0

diam(Aa(r, k))

r
≤ lim

k→1

√
1 + ln2 b

| ln b| (k − 1

k
) = 0,

i.e., (2.4) holds and condition (i) is satisfied.

Condition (ii). Let ε ∈ ]0, 1[ and let {(qn, tn)}n∈N be a sequence of points of R2
ε,

see Figure 1, such that
(4.7) lim

n→∞
(qn, tn) = (0, 0)

and there is

(4.8) lim
n→∞

qn

tn
= c0 ∈ [0,∞].
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We must show that there exists a finite limit

(4.9) lim
n→∞

∆(S0(qn), S0(tn))

|qn − tn| = κ.

It follows from the definition of the set R2
ε that qn, tn ∈ ]0,∞[ for all n ∈ N. Conse-

quently, we can find θn, τn ∈ ]−∞, +∞[ such that

(4.10) qne
iτn ∈ S∗ and tneiθn ∈ S∗

for all n ∈ N. Since the spheres S0(qn) and S0(tn) are one-point and qne
iτn ∈ S0(qn)

and tne
iθn ∈ S0(tn), we have

∆(S0(tn), S0(qn))

|tn − qn| =
|tneiθn − qne

iτn|
|tn − qn|

with

(4.11) τn = logb qn, θn = logb tn,

see (4.3). Consider firstly the cases where c0 = 0 or c0 = ∞ in equation (4.8). If
c0 = 0, then it implies that

(4.12) lim
n→∞

|tneiθn − qne
iτn|

|tn − qn| = lim
n→∞

|1− qn

tn
ei(τn−θn)|

|1− qn

tn
| =

|1− c0|
|1− c0| = 1 = κ.

Similar computations yield κ = 1 for c0 = ∞. Suppose now c0 ∈ ]0,∞[. Using (4.8)
and (4.11) we obtain

(4.13) lim
n→∞

(τn − θn) = lim
n→∞

(logb qn − logb tn) = lim
n→∞

logb

qn

tn
= logb c0.

Moreover, we have

(4.14) c0 6= 1

because (qn, tn) ∈ R2
ε for all n ∈ N. Applying (4.13) in computations (4.12) we

obtain

lim
n→∞

|tneiθn − qneiτn |
|tn − qn| =

1− c0 exp(i logb c0)

|1− c0| .

Note that the right side in this equality is finite and correctly defined by virtue of
(4.14).

Thus conditions (i)–(ii) from Theorem 2.4 are satisfied, so that this theorem
implies the desirable uniqueness of pretangent spaces. It still remains to prove that
all pretangent spaces are tangent and isometric to S.

Let r̃ = {rn}n∈N be a normalizing sequence and let S̃0,r̃ be a corresponding
maximal self-stable family. For every x̃ = {xn}n∈N ∈ S̃0,r̃ there is a unique x∗ ∈ S
such that

(4.15) |x∗| = lim
n→∞

d(xn, 0)

rn

= r̃(x̃, 0̃).

We claim that the mapping

(4.16) F : S̃0,r̃ → S, F (x̃) = x∗

is surjective and distance-preserving in the sense that the equality

(4.17) d̃r̃(x̃, ỹ) = |x∗ − y∗|
holds for all x̃, ỹ ∈ S̃0,r̃.
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Surjectivity. We have already verified that (S, 0) ∈ U. Hence, by Lemma 2.7,
it is sufficient to prove that for every a ∈ S there is x̃ ∈ S̃ such that |x∗| = |a|.
If |a| = 0, then the equality |x∗| = |a| is evident for x̃ = (0, 0, . . . ). Assume that
|a| > 0. For every n ∈ N define a complex number r0

n as

(4.18) r0
n := | 1

rn

| exp(i log | 1

rn

|),

see formula (4.3). The points r0
n and x∗ belong to S∗. By Lemma 4.2 the set S∗

is a subgroup of C∗. Since the equation ay = b is solvable in every group, there is
xn ∈ S∗ such that

(4.19) r0
nxn = a.

This equality and (4.18) imply
d(xn, 0)

rn

= |xn

rn

| = |a|
for all n ∈ N. Thus the equality |a| = |x∗| holds for x̃ := {xn}n∈N if all xn fulfil
equations (4.19).

Preservation of distances. Let x̃ = {xn}n∈N and ỹ = {yn}n∈N belong to S̃0,r̃.
If x∗ = 0 or y∗ = 0, then equality (4.17) follows simply from (4.15). Assume that
x∗ 6= 0 6= y∗. This assumption implies that x∗ ∈ S∗, y∗ ∈ S∗ and

xn ∈ S∗, yn ∈ S∗

for all sufficiently large n ∈ N. These membership relations give, in particular, the
equalities

(4.20) x∗ = |x∗| exp(i logb |x∗|), xn = |xn| exp(i logb |xn|),
see (4.3). Moreover, we can rewrite (4.18) as

r0
n = |r0

n| exp(i logb |r0
n|).

Using it, (4.20) and (4.15) we obtain

(4.21) lim
n→∞

|r0
n| |xn| = |x∗|.

Consequently,

(4.22) lim
n→∞

exp(i logb(|r0
n| |xn|)) = exp(i logb |x∗|).

Relations (4.20)–(4.22) give the equality

(4.23) lim
n→∞

r0
nxn = x∗.

Similarly, we have limn→∞ r0
nyn = y∗. The last two equality imply

|x∗ − y∗| = | lim
n→∞

(r0
nxn − r0

nyn)| = lim
n→∞

|xn − yn|
rn

,

i.e., (4.17) holds.
We can now easily show that all pretangent spaces ΩS

0,r̃ are isometric to S and
tangent. Indeed, as has been shown above the mapping F : S̃0,r̃ → S is distance-
preserving and onto. Hence, by Lemma 4.3 there is an isometry f : ΩS

0,r̃ → S. Fur-
thermore, statement (iv) of Proposition 1.5 asserts that all ΩS

0,r̃ are tangent if and
only if the mappings in′r : S̃0,r̃ → S̃0,r̃′ are surjective for every r̃′, see diagram (1.4).
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Let A be an infinite subset of N, r̃′ = {rn}n∈A a subsequence of r̃ = {rn}n∈N and let
ỹ = {yn}n∈A ∈ S̃0,r̃. Let us define xn, n ∈ N, as

(4.24) xn =

{
yn if n ∈ A,
y
r0
n

if n ∈ N \ A,

where r0
n is defined by (4.18) and y is a point of S such that |y| = d̃r̃′(ỹ, 0̃). It follows

from Lemma 4.2 that x̃ = {xn}n∈N belongs to S̃. Moreover, (4.18) and (4.24) imply

lim
n→∞

d(xn, 0)

rn

= |y| < ∞.

Consequently, by Lemma 2.7, we obtain x̃ ∈ S̃0,r̃. It is also clear that x̃′ := {xn}n∈A =
ỹ. Hence each in′r is a surjective mapping. ¤

Remark 4.4. The form of Lemma 4.2 seems to be new. Of course, it is closely
related to the contemporary definition of logarithmic spirals, see, for example, [5,
9.6.9.1]. In the proof of Theorem 4.1 we have used formula (4.6) for the verification
of condition (i) of Theorem 2.4 but to this end we really need only in the following
remarkable fact discovered by Descartes. The length measured along the logarithmic
spiral from the pole O to the point P of the spiral is proportional to the radius vector
OP .

The logarithmic spirals and the set R∗
+ := R+ \ {0} of all strictly positive real

numbers have some common properties: They are the unbounded subgroups of the
multiplicative group C∗ and they have unique pretangent spaces at 0. The following
theorem shows that logarithmic spirals and R∗

+ are exhausted all maximal subgroups
of C∗ having these properties.

Theorem 4.5. Let Γ∗ be an unbounded subgroup of the multiplicative group
C∗ and let Γ := Γ∗ ∪ {0}. The following two statements are equivalent.

(i) Γ∗ ⊆ R∗
+ or there is b ∈ ]0, 1[∪]1,∞[ such that Γ∗ ⊆ S∗(b).

(ii) (Γ, 0) ∈ U.

Proof. First of all we claim that the theorem is true for all unbounded subgroups
Γ∗ if and only if it is true for all closed (in C∗) unbounded subgroups Γ∗. Let Γ∗ be
the closure of Γ∗ in C∗. For convenience we denote by (i) and (ii) the results of the
substitution of Γ∗ for Γ∗ in (i) and, respectively, of Γ∗ ∪ {0} for Γ in (ii). Since R∗

+

and S∗(b) are closed subsets of C∗ we have the equivalences

(Γ∗ ⊆ R∗
+) ⇔ (Γ∗ ⊆ R∗

+), (Γ∗ ⊆ S∗(b)) ⇔ (Γ∗ ⊆ S∗(b)).

Thus (i) ⇔ (i). Note now that Γ∗ ∪ {0} is the closure of Γ in C. Hence using
Lemma 3.3 we see that Γ and Γ ∪ {0} are strongly tangent equivalent at 0. By
statement (iii) of Lemma 3.2 we obtain (ii)⇔ (ii). Moreover, since the closure of the
subgroup is a subgroup [19, p. 111], we see that Γ∗ is a closed subgroup of C∗.

Thus we may assume, without loss of generality, that Γ∗ is a closed subgroup of
C∗. Let us prove now the implication

(i)⇒ (ii) This implication follows from Proposition 2.9, Theorem 4.1 and Propo-
sition 2.2. Indeed, Proposition 2.2 means, in particular, that R+ has unique pretan-
gent spaces at 0, by Theorem 4.1 the same property is true for S∗(b). Finally, the
property to have unique pretangent spaces is hereditary by Proposition 2.9.
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(ii) ⇒ (i) Suppose that Γ∗ is a closed subgroup of C∗ and statement (ii) of the
theorem holds. Since Γ∗ is unbounded, there exists a sequence {pi}i∈N ∈ Γ̃∗ with

lim
i→∞

|pi| = ∞.

Let z1, z2 ∈ Γ∗ and |z1| = |z2|. Write ri = |x1|
|pi| for i ∈ N. Note that z1

pi
and z2

pi
belongs

to Γ∗ because Γ∗ is a subgroup of C∗. It is clear that
z1

pi

,
z2

pi

∈ A0(ri, k) = {z ∈ Γ:
ri

k
≤ |z| ≤ kri}

for all k ∈ [1,∞[ and all i ∈ N. Statement (ii) of the present theorem implies relation
(2.4). Consequently,

0 = lim
k→1

lim sup
i→∞

diam(A0(ri, k))

ri

≥
| z1

pi
− z2

pi
|

| z1

pi
| =

|z1 − z2|
|z1| ,

i.e., the implication

(4.25) (|z1| = |z2|) ⇒ (z1 = z2)

is true for all z1, z2 ∈ Γ∗.
Let us consider the continuous homomorphism Φ: Γ∗ → R∗

+ such that

Φ(z) = |z|, z ∈ Γ∗.

It is easy to prove that Φ is closed. Consequently, Φ(Γ∗) is a closed subgroup of R∗
+.

Using the well-known classification of the closed subgroups of the additive group R,
see, for example, [6, Chapter V, §1, 1], we obtain at the most three possible cases:

(i) Φ(Γ∗) = {1},
(ii) Φ(Γ∗) = R∗

+,
(iii) there is g ∈ ]1,∞[ such that Φ(Γ∗) = {gn : n ∈ Z} where Z is the set of

integers.
Since Γ∗ is unbounded, the case (i) is impossible. Implication (4.25) shows that
the homomorphism Φ: Γ∗ → R∗

+ is one-to-one. Consequently, in the case (iii), the
group Γ∗ is cyclic with the generator z = Φ−1(g). Writing z in the trigonometric
form z = |z|eiϕ = geiϕ, ϕ ∈ [0, 2π[, we see that either Γ∗ ⊆ R∗

+ for ϕ = 0 or, for
ϕ ∈ ]0, 2π[, Γ∗ lies on the logarithmic spiral

S∗ = {t exp(i logb t) : t ∈ R∗
+}

with b = exp( ln g
ϕ

).
Suppose now that we have Φ(Γ∗) = R∗

+. In this case Φ is an isomorphism of the
groups Γ∗ and R∗

+ and, simultaneously, Φ is a homeomorphism as a continuous closed
bijection of the topological spaces Γ∗ and R∗

+. Write Φ−1 for the inverse mapping. Let
T = {x ∈ C : |z| = 1} and Ψ: C∗ → T be the standard homomorphism, Ψ(z) = z

|z|
and in : Γ∗ → C∗ be the inclusion in(z) = z. Then the mapping

(4.26) R
exp−−→ R∗

+
Φ−1−−→ Γ∗

in−→ C∗ Ψ−→ T

is a character (a continuous homomorphism) of the additive group R. Denote this
character by κ. There is ν ∈ R such that

(4.27) κ(t) = exp(iνt)
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for all t ∈ R, see [19, p. 256]. Since Φ−1 is bijective we obtain from (4.26) and (4.27)
that

κ(t) =
Φ−1(exp t)

exp t
= exp(iνt), t ∈ R,

that is
Φ−1(|z|)
|z| = exp(iν ln |z|),

(4.28) z = |z| exp(iν ln |z|)
for all z ∈ Γ∗. The last equation implies Γ∗ ⊆ R∗

+ if ν = 0. For ν 6= 0 we can rewrite
(4.28) as

z = |z| exp(i logb |z|)
where b = exp( 1

ν
). Hence Γ∗ is the logarithmic spiral. ¤

5. Uniqueness of pretangent spaces to subsets of R

In this part of the paper we specify the general uniqueness conditions, presented
by Theorem 2.4 for arbitrary metric spaces X, to the case where X ⊆ R.

Lemma 5.1. Let X ⊆ R and let a be a limit point of X. Condition (i) of
Theorem 2.4 does not hold for the pointed metric space (X, a) if and only if there
exist some sequences x̃ = {xn}n∈N, ỹ = {yn}n∈N belonging to X̃ such that

(5.1) lim
n→∞

xn = lim
n→∞

yn = a and xn ∈ ]−∞, a[, yn ∈ ]a, +∞[

for all n ∈ N and

(5.2) lim
n→∞

a− xn

yn − a
= 1.

Proof. Let x̃ = {xn}n∈N and ỹ = {yn}n∈N satisfy relations (5.1)–(5.2). For every
n ∈ N write

r = r(n) :=
√

(a− xn)(yn − a) and k = k(n) := (
a− xn

yn − a
)

1
2 ∨ (

yn − a

a− xn

)
1
2 .

We can simply show that

lim
n→∞

r(n) = 0 and lim
n→∞

k(n) = 1

and r(n) > 0, k(n) ≥ 1 and

xn, yn ∈ Aa(r(n), k(n)) = {x ∈ X :
r(n)

k(n)
≤ |x− a| ≤ r(r)k(n)}

for all n ∈ N. Consequently,
diam(Aa(r(n), k(n)))

r(n)
≥ |yn − xn|

r(n)
=

(yn − a) + (a− xn)

r(n)

=

√
yn − a

a− xn

+

√
a− xn

yn − a
≥ 2.

Hence the limit relation
lim
k→1

lim sup
r→0

Aa(r, k)

r
≥ 2

holds. Thus condition (i) of Theorem 2.4 does not hold.
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Suppose now that

(5.3) lim
k→1

lim sup
r→0

diam(Aa(r, k))

r
> 0.

We must find the sequences x̃ = {xn}n∈N ∈ X̃ and ỹ = {yn}n∈N ∈ X̃ which satisfy
relations (5.1)–(5.2). Inequality (5.3) implies that there are constant c > 0 and the
sequences {r(n)}n∈N, {k(n)}n∈N such that r(n) > 0, k(n) ≥ 1 and r(n) ↓ 0, k(n) ↓ 1
and

(5.4)
diam Aa(r(n), k(n))

r(n)
> c

for all n ∈ N. Let us consider the closed intervals

I+
n := [a +

r(n)

k(n)
, a + r(n)k(n)], I−n := [a− r(n)k(n), a− r(n)

k(n)
].

It is clear that
Aa(r(n), k(n)) ⊆ I+

n ∪ I−n .

Inequality (5.4) implies that for every n ∈ N there are xn, yn ∈ Aa(r(n), k(n)) such
that xn < yn and

(5.5)
|xn − yn|

r(n)
> c.

If xn, yn ∈ I+
n or xn, yn ∈ I−n , then

(5.6)
|xn − yn|

r(n)
≤ k(n)− 1

k(n)
.

Since limn→∞ k(n) = 1, inequality (5.6) contradicts (5.5) for sufficiently large n.
Using the inequality xn < yn we obtain

(5.7) xn ∈ I−n and yn ∈ I+
n ,

if n is taken large enough. Relations (5.7) and limn→∞ k(n) = 1 imply (5.2). The
rest desirable properties of x̃ = {xn}n∈N and ỹ = {yn}n∈N are evident from the
construction. ¤

Consider now the “real-valued” variants of condition (ii) from Theorem 2.4. Re-
call that

Sa(r) = {x ∈ X : d(x, a) = r} and Ra,X = {r ∈ R+ : Sa(r) 6= ∅}
for every pointed metric space (X, a, d). In the case X ⊆ R there exists the natural
decomposition of the set Ra,X into the sets

(5.8)
1Ra,x := {r ∈ Ra,X : card Sa(r) = 1},
2Ra,x := {r ∈ Ra,X : card Sa(r) = 2}.

Now we have

(5.9) Ra,X = 1Ra,X ∪ 2Ra,X and 1Ra,X ∩ 2Ra,X = ∅.
The sets 1Ra,X and 2Ra,X are closely related to the symmetric properties of X ⊆ R
in the point a. We shall say that a ∈ R is a local asymmetry point for the set X ⊆ R
if there is ε > 0 so that

(x + a ∈ X) ⇒ (−x + a 6∈ X)
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for all x with 0 < |x| < ε. The last requirement can be written as

(5.10) 2Ra,X∩]0, ε[= ∅ or as 1Ra,X∩]0, ε[= Ra,X∩]0, ε[.

Corollary 5.2. Let X ⊆ R and let a be a limit point of X. If condition (i) of
Theorem 2.4 holds, then a is a local asymmetry point for X.

Let X ⊆ R and a ∈ X. For every r ≥ 0 define

(r ∈ +1Ra,X) iff (r ∈ 1Ra,X and a + r ∈ X)

and
(r ∈ −1Ra,X) iff (r ∈ 1Ra,X and a− r ∈ X).

Then we obtain

1Ra,X = +1Ra,X ∪ −1Ra,X and +1Ra,X ∩ −1Ra,X = {0},
cf. (5.9). The simple geometric considerations show, see Figure 2, that, for every
q, t ∈ Ra,X , we have

(5.11) ∆(Sa(q), Sa(t)) =

{
|q − t| if (q, t) ∈ (+1R

2
a,X) ∪ (−1R

2
a,X),

|q + t| otherwise,

where +1R
2
a,X and −1R

2
a,X are the Cartesian squares of +1Ra,X and, respectively, of

−Ra,X and, as usual

∆(Sa(q), Sa(t)) = sup{|x− y| : x ∈ Sa(q), y ∈ Sa(t)}.

a

a t- m a t+ m

a q- m a q+ m a

a t- m

a q- m a q+ m

a

a t+ m

a q- m a q+ m

Figure 2. The sphere Sa(tm) lies inside the sphere Sa(qm).

For every ε > 0 let us introduce also the sets

+Kε := {q

t
: q, t ∈ +1Ra,X ∩ [0, ε]}, −Kε := {q

t
: q, t ∈ −1Ra,X ∩ [0, ε]},

1Kε := {q

t
: (q, t) ∈ (R2

a,X ∩ [0, ε]2) \ (+1R
2
a,X ∪ −1R

2
a,X)},

(5.12)

where [0, ε]2 is the Cartesian product of the closed interval [0, ε] with itself and
q

t
:= ∞ if t = 0.

Proposition 5.3. Let X be a subset of R and let a be a limit point of X.
Condition (ii) of Theorem 2.4 holds if and only if

(5.13)
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(1Kε)) ⊆ {0, 1,∞},

where the closures are taken with respect to [0,∞].
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Proof. Suppose inclusion (5.13) holds. We must prove condition (ii) of Theo-
rem 2.4. Let ε0 > 0 and let {(qn, tn)}n∈N be a sequence belonging to R̃2

ε0
, see Figure 1,

such that limn→∞(qn, tn) = (0, 0) and

(5.14) lim
n→∞

qn

tn
:= c0 ∈ [0,∞].

It is necessary to show that there is a finite limit

(5.15) lim
n→∞

∆(Sa(qn), Sa(tn))

|qn − tn| = κ0.

We first note that (5.15) holds with κ0 = 1 if c0 = 0 or c0 = ∞. Indeed, equality
(5.11) implies the double estimation

|qn − tn|
|qn − tn| ≤

∆(Sa(qn), Sa(tn))

|qn − tn| ≤ |qn + tn|
|qn − tn| .

Letting n → ∞ and using (5.14) with c0 ∈ {0,∞} we obtain (5.15) with κ0 = 1.
Moreover, the relations (qn, tn) ∈ R2

ε0
imply the inequality

|qn

tn
− 1| ≥ ε0

so that
c0 6= 1

and κ0 is finite, if it exists. Let us consider now the case 0 < c0 < ∞. Define, for
ε > 0,

Kε := {q

t
: q, t ∈ Ra,X ∩ [0, ε]}.

Then, using the standard representation from the theory of cluster sets, see, for
example, [8, 1.1], we have

c0 ∈
⋂

ε∈R∗+

Cl(Kε).

Furthermore, it follows from (5.12) that

Kε = 1Kε ∪ (+Kε ∪ −Kε).

Thus Cl(Kε) = Cl(1Kε) ∪ Cl(+Kε ∪ −Kε). The last equality and the monotonicity:
if ε1 ≥ ε2, then

(5.16) Cl(1Kε1) ⊇ Cl(1Kε2) and Cl(+Kε1 ∪ −Kε1) ⊇ Cl(+Kε2 ∪ −Kε2)

imply the equality

(5.17)
⋂

ε∈R∗+

Cl(Kε) = (
⋂

ε∈R∗+

Cl(1Kε)) ∪ (
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε)).

Hence we have

(5.18) c0 ∈
⋂

ε∈R∗+

Cl(1Kε)

or

(5.19) c0 ∈
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε).
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It follows directly form (5.13) that

(
⋂

ε∈R∗+

Cl(1Kε)) ∩ (
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε)) ⊆ {0, 1,∞}.

Since c0 6∈ {0, 1,∞}, representation (5.18) and (5.19) imply that there is n0 ∈ N
such that either

(5.20) (qn, tn) ∈ R2
a,X \ (+1R

2
a,X ∪ −1R

2
a,X)

for all n ≥ n0, or

(5.21) (qn, tn) ∈ +1R
2
a,X ∪ −1R

2
a,X

for all n ≥ n0. Now applying (5.11) we obtain

κ0 =

{
1+c0
|1−c0| if (5.20) holds,
1 if (5.21) holds.

The “sufficiency” is proved.
To prove the “necessity” suppose that (5.13) does not hold. The left side of (5.13)

can be written as
(

⋂

ε∈R∗+

Cl(+Kε ∪ −Kε)) ∩ (
⋂

ε∈R∗+

Cl(1Kε)).

Consequently there is c0 ∈ ]0,∞[ such that c0 6= 1 and

c0 ∈
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε) and c0 ∈
⋂

ε∈R∗+

Cl(1Kε).

Hence there are two sequences {(zn, wn)}n∈N and {(qn, tn)}n∈N such that

(5.22) (zn, wn) ∈ (+1R
2
a,X ∪ −1R

2
a,X)

and

(5.23) (qn, tn) ∈ (R2
a,X) \ (+1R

2
a,X ∪ −1R

2
a,X)

for all n ∈ N, and

(5.24) lim
n→∞

(qn, tn) = lim
n→∞

(zn, wn) = (0, 0)

and

(5.25) lim
n→∞

qn

tn
= lim

n→∞
zn

wn

= c0.

Since c0 6= 1, there is ε0 > 0 such that

(5.26) |qn

tn
− 1| ≥ ε0 and | zn

wn

− 1| ≥ ε0

if n is sufficiently large. Equality (5.11) and (5.22), (5.23) imply

(5.27) lim
n→∞

∆(Sa(qn), Sa(tn))

|qn − tn| =
1 + c0

|1− c0|
and

(5.28) lim
n→∞

∆(Sa(zn), Sa(wtn))

|zn − wn| = 1.
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Let n0 be a natural number such that (5.26) holds for all n ≥ n0. Define a sequence
{(sn, yn)}n∈N as the “mixture” of the sequences {(qn, tn)}n∈N and {(zn, wn)}n∈N,

(sn, yn) =





(qn0 , tn0) if n ≤ n0,

(qn, tn) if n is add and n > n0,

(zn, wn) if n is even and n > n0.

Then (sn, yn) ∈ R2
ε0

for all n ∈ N and, by (5.24), (5.25), we have

lim
n→∞

(sn, yn) = (0, 0), lim
n→∞

sn

yn

= c0.

If there is the limit

lim
n→∞

∆(Sa(sn), Sa(yn))

|sn − yn| ,

then the definition of the sequence {(sn, yn)}n∈N and equalities (5.27), (5.28) imply

1 =
1 + c0

|1− c0| .

Hence c0 = 0, contrary to the condition c0 6∈ {0, 1,∞}.
Thus it is proved that condition (ii) of Theorem 2.4 does not hold if (5.13) is

false. ¤
The following theorem is the main result of the present section of the paper.

Define, for ε > 0,

(5.29) +−Kε := {q

t
: q ∈ +1Ra,X ∩ [0, ε], t ∈ −1Ra,X ∩ [0, ε]},

where q
t

:= ∞ if t = 0.

Theorem 5.4. Let X be subset of R and let a be a limit point of X. Then for
every normalizing sequence r̃ there is a unique pretangent space ΩX

a,r̃ if and only if
X is locally asymmetric at the point a and

(5.30)
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε)) ⊆ {0,∞}.

Proof. Suppose (X, a) ∈ U. Then conditions (i)–(ii) of Theorem 2.4 holds. Using
Corollary 5.2 we see that a is the local asymmetry point for the set X. Moreover,
since 1Kε ⊇ +−Kε, we obtain from inclusion (5.13) the inclusion

⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε)) ⊆ {0, 1,∞}.

It still remains to prove that

(5.31) 1 6∈
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε)).

Since X is locally asymmetric at a and a is a limit point of X, we have

(5.32) 1 ∈
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε).
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Taking into account this and the equality

(5.33)
⋂

ε∈R∗+

(Cl(+Kε∪−Kε)∩Cl(+−Kε)) = (
⋂

ε∈R∗+

Cl(+Kε∪−Kε))∩(
⋂

ε∈R∗+

Cl(+−Kε))

we see that (5.31) is equivalent to

(5.34) 1 6∈
⋂

ε∈R∗+

Cl(+−Kε).

If (5.34) does not hold, then there exist some sequences x̃ = {xn}n∈N, ỹ = {yn}n∈N

belonging to X̃ such that limn→∞ xn = limn→∞ yn = a and xn ∈ ]−∞, a[, yn ∈ ]a, +∞[
for all n ∈ N and

(5.35) lim
n→∞

a− xn

yn − a
= 1.

By Lemma 5.1 it contradicts condition (i) of Theorem 2.4. Thus (5.31) is proved.
Conversely, suppose that a is a local asymmetry point of X and inclusion (5.30)

holds. We must prove conditions (i)–(ii) of Theorem 2.4.
Rewriting Lemma 5.1 in the terms of cluster sets we see that condition (i) does

not hold if and only if
1 ∈

⋂

ε∈R∗+

Cl(+−Kε).

This relation, (5.32) and (5.33) show that the point 1 belongs to the set in the left
part of formula (5.30), contrary to this formula.

To prove condition (ii) of Theorem 2.4 note that

1Kε =
(
R2

a,X \ (+1R
2
a,X ∪ −1R

2
a,X)

) ∩ [0, ε]2

= (+1Ra,X × −1Ra,X) ∪ (−1Ra,X × +1Ra,X) ∩ [0, ε]2

for sufficiently small ε > 0 if a is the local asymmetry point of X. Hence, by
Proposition 5.3, condition (ii) holds if

(5.36)
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε ∪ −+Kε)) ⊆ {0, 1,∞}.

Here −+Kε is the set obtained by the permutation of the symbols + and − in (5.29).
Similarly (5.17) we can show that

⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε ∪ −+Kε))

= (
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε)))

∪ (
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(−+Kε))).

(5.37)

It follows from the definition of the sets +Kε, −Kε, +−Kε and −+Kε that if a positive
number s belongs to

⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(−+Kε)),
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then
1

s
∈

⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε)).

Consequently, we can transpose “+” and “−” in inclusion (5.30). Thus we have the
inclusion ⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(+−Kε ∪ −+Kε)) ⊆ {0,∞}

that is stronger than (5.36). ¤

6. Uniqueness on the Cantor set

Recall the definition of the Cantor set. Let x ∈ [0, 1] and expand x as

(6.1) x =
∞∑

n=1

bn(x)

3n
, bn(x) ∈ {0, 1, 2}.

The Cantor set C is the set of all points from [0, 1] which have expansion (6.1)
using only the digits 0 and 2. Thus x belongs to C if and only if x has a triadic
representation

(6.2) x =
∞∑

m=1

2αm

3m
,

where αm = αm(x) ∈ {0, 1}.
Denote by C1 the set of all endpoints of complementary intervals of C and write

C0 := C \ C1.

Proposition 6.1. Let X be a closed subset of R. If a ∈ X is an endpoint of a
complementary interval of X, then (X, a) ∈ U.

Proof. Since a is an endpoints of a complementary interval of X, there is ε > 0
such that either

[a− ε, a + ε] ∩X ⊆ ]−∞, a] or [a− ε, a + ε] ∩X ⊆ [a, +∞[.

Hence X is locally isometric to a subset of R+. Observe that for every two locally
isometric pointed metric spaces (Z, p) and (Y, b) the uniqueness of pretangent spaces
ΩZ

p,r̃ implies the uniqueness of ΩY
b,r̃. The last assertion follows directly from the defini-

tion of pretangent spaces or, more formally, from Theorem 2.4. Thus the uniqueness
of ΩX

a,r̃ follows from Proposition 2.9 and Proposition 2.2. ¤

Corollary 6.2. The relation (C, a) ∈ U holds for each a ∈ C1.

The main purpose of the present section of the paper is to prove the conversion
of Corollary 6.2, i.e., ((C, a) ∈ U) ⇒ (a ∈ C1). Moreover, we prove that the Cantor
set C is locally asymmetric in each its point. In the end of the section we shall give
the explicit form of the pretangent space ΩC

a,r̃ for a ∈ C1 and r̃ = {3−n}n∈N.

Proposition 6.3. All point a ∈ C are the points of the local asymmetry for C.

Proof. It is clear if a ∈ C1. Suppose a ∈ C0 and there are two distinct points
x, y ∈ C such that

(6.3) a =
x + y

2
.
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Writing a, x and y in form (6.1) we obtain from (6.3) the equality

(6.4)
∞∑

n=1

bn(a)

3n
=

∞∑
n=1

1
2
(bn(y) + bn(x))

3n
,

where bn(a), bn(x), bn(y) ∈ {0, 2} for all n. Since x 6= y, there is n0 such that either

bn0(y) = 2 and bn0(x) = 0

or
bn0(y) = 0 and bn0(x) = 2.

Thus the number a ∈ C has two different ternary representations. The point a of the
Cantor set C has two different ternary representations if and only if a ∈ C1 \ {0}.
(It follows directly from Problem 22 in [20, p. 40]). Consequently, (6.4) contradicts
the relation a ∈ C0. ¤

Remark 6.4. A simple result related to the asymmetry of the Cantor set C can
be found in [21, p. 50].

Define a subset C2 of the Cantor set C by the rule: x ∈ C2 if and only if x ∈ C
and there is m0 = m0(x) ∈ N such that, for all m > m0,

(6.5) αm(x) =

{
1 if m−m0 is odd,
0 if m−m0 is even,

where αm(x) are the digits in ternary representation (6.2). For example, the numbers
3

4
=

2

3
+

0

32
+

2

33
+

0

34
+ . . .

and

(6.6)
1

4
=

0

3
+

2

32
+

0

33
+

2

34
+ . . .

belong to C2.

Lemma 6.5. Let a ∈ C0 \ C2. If +Kε, −Kε and 1Kε are the sets defined by
(5.12), then

(6.7) 3 ∈
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(1Kε)).

Remark 6.6. Let x and y be distinct points of the Cantor set,

x =
∞∑

m=1

2αm(x)

3m
, y =

∞∑
m=1

2αm(y)

3m
, αm(x), αm(y) ∈ {0, 1}.

Write M for the smallest natural number m such that αm(x) 6= αm(y). Then the
inequality x > y holds if and only if αM(x) = 1 and αM(y) = 0. It enables us to
reformulate the definitions of the sets +Kε, −Kε etc. for the specific case when X
is the Cantor set. For example, a point s belongs to +Kε if and only if there are
M1,M2 ∈ N and sequences {βm}m∈N, {γm}m∈N with βm, γm ∈ {0, 1}, such that

s =
3−M1 +

∑∞
m=M1+1

βm−αm(a)
3m

3−M2 +
∑∞

m=M2+1
γm−αm(a)

3m
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and
(

3−M1 +
∞∑

m=M1+1

βm − αm(a)

3m

)
∨

(
3−M2 +

∞∑
m=M2+1

γm − αm(a)

3m

)
≤ ε

2
.

Proof of Lemma 6.5. Since a ∈ C0, there exists a strictly increasing sequence
{mk}k∈N of natural numbers such that either

(6.8) αmk
(a) = 0 and αmk+1(a) = 1 for all k ∈ N

or

(6.9) αmk
(a) = 1 and αmk+1(a) = 0 for all k ∈ N.

Suppose (6.8) holds. (The case when (6.9) holds is similar.) Equalities (6.8) imply
that

C 3 a + 2 · 3−mk > a and C 3 a− 2 · 3−(mk+1) < a.

Thus
2 · 3−mk ∈ +Ra,C and 2 · 3−(mk+1) ∈ −Ra,C .

Hence
2 · 3−mk

2 · 3−(mk+1)
= 3 ∈ 1Kε

for all ε > 0. Thus we obtain

(6.10) 3 ∈
⋂

ε∈R∗+

Cl(1Kε).

On the other hand, since a ∈ C0 \C2, there is a strictly increasing sequence {mk}k∈N

such that either
αmk

(a) = αmk+1(a) = 0 for all k ∈ N

or
αmk

(a) = αmk+1(a) = 1 for all k ∈ N.

Reasoning as in the proof of (6.10) we obtain the membership relation

(6.11) 3 ∈
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε).

It still remains to observe that (6.10) and (6.11) imply (6.7). ¤

Lemma 6.7. Let X = C and a ∈ C2. The following statements hold for every
γ ∈ R∗

+.
(i) The membership relation

(6.12) γ ∈
⋂

ε∈R∗+

Cl(+Kε ∪ −Kε)

holds if and only if there are θ1, θ2 ∈ C and m ∈ Z such that

(6.13) γ = 32m 5 + 4θ1

5 + 4θ2

.
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(ii) The membership relation

(6.14) γ ∈
⋂

ε∈R∗+

Cl(1Kε)

holds if and only if there are θ3, θ4 ∈ C and m ∈ Z such that

(6.15) γ = 32m+1 5 + 4θ3

5 + 4θ4

.

Proof. (i) Let (6.12) hold. Then we obtain

(6.16) γ ∈
⋂

ε∈R∗+

Cl(+Kε) or γ ∈
⋂

ε∈R∗+

Cl(−Kε).

Suppose the first relation holds. Then, by the definition of the cluster set
⋂

ε∈R∗+

Cl(+Kε),

there are {xn}n∈N ∈ X̃ and {yn}n∈N ∈ X̃ such that lim
n→∞

xn = lim
n→∞

yn = a and
a < xn ∧ yn for all n ∈ N and

(6.17) γ = lim
n→∞

xn − a

yn − a
.

As in (7.9) we define

k′ = k′(xn, a) := min{m : αm(xn) 6= αm(a)}
and

k” = k”(xn, a) := min{m : αm(yn) 6= αm(a)}.
Now the inequality a < xn ∧ yn implies αk′(xn) = αk”(yn) = 1 and αk′(a) = αk”(a) =
0. Furthermore if n is sufficiently large, then

∞∑

m=k′+1

2αm(a)

3m
=

(
2

3k′+1
+

2

3k′+3
+

2

3k′+5
+ . . .

)
=

1

3k′
3

4

and similarly
∞∑

m=k”+1

2αm(a)

3m
=

(
2

3k”+1
+

2

3k”+3
+

2

3k”+5
+ . . .

)
=

1

3k”

3

4
,

because lim
n→∞

xn = lim
n→∞

yn = a. Consequently, we have

(6.18)
xn − a

yn − a
=

2
3k′ + 1

3k′ θ(xn)− 1
3k′

3
4

2
3k” + 1

3k” θ(yn)− 1
3k”

3
4

=
3k”

3k′

5
4

+ θ(xn)
5
4

+ θ(yn)
,

where
1

3k′ θ(xn) =
∞∑

m=k′+1

αm(xn)

3m
and

1

3k”
θ(yn) =

∞∑

m=k”+1

αm(yn)

3m
.

Since C is a compact set and θ(xn), θ(yn) ∈ C, there is a subsequence {nl}l∈N such
that

lim
l→∞

θ(xnl
) := θ1 and lim

l→∞
θ(ynl

) := θ2

with θ1, θ2 ∈ C. These equalities, (6.18) and (6.17) imply the convergence

γ
5/4 + θ2

5/4 + θ1

= lim
l→∞

3k”(ynl
,a)−k′(xnl

,a).
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Since γ ∈ R∗
+ and k”(ynl

, a)− k′(xnl
, a) ∈ Z, we obtain the equality

(6.19) γ = 3p 5 + 4θ1

5 + 4θ2

,

where p = lim
l→∞

(k”(ynl
, a)− k′(xnl

, a)) ∈ Z. As was noted above

αk′(a) = αk”(a) = 0.

Hence from the definition of the set C2 and the limit relations

a = lim
n→∞

xn = lim
n→∞

yn

we obtain that (k”(ynl
, a)− k′(xnl

, a)) is even number if n sufficiently large. Thus p
in (6.19) is even, i.e., (6.13) is proved for the case when γ ∈ ⋂

ε∈R∗+

Cl(+Kε).

If γ ∈ ⋂
ε∈R∗+

Cl(−Kε), then the proof of (6.13) can be reduced to the previous

case by the isometry x 7→ 1− x. Indeed, the sets C and C2 are invariant under this
isometry and a < xn ∧ yn ⇔ (1− a) > (1− xn) ∨ (1− yn) and

a− xn

a− yn

=
(1− xn)− (1− a)

(1− yn)− (1− a)
.

Suppose now that γ is a positive real number having form (6.13). We must prove
(6.12). Write

l0 = l0(a) := 2|m|+ m0(a) + 1,

where 2m is the exponent in (6.13) and m0(a) is the constant from the definition of
the set C2, see (6.5). Note that

(6.20) αl0−2|m|(a) = . . . = αl0(a) = αl0+2(a) = αl0+4(a) = . . . = 0

and

(6.21) αl0−2|m|−1(a) = . . . = αl0+1(a) = αl0+3(a) = αl0+5(a) = . . . = 1.

For every n ∈ N define the natural numbers k′ and k” as

(6.22) k′(n) := l0(a) + 2n− 1, k”(n) := l0(a) + 2m + 2n− 1

and write

(6.23) xn =

k′(n)∑
j=1

2αj(a)

3j
+

2

3k′(n)
+

θ1

3k′(n)
, yn =

k”(n)∑
j=1

2αj(a)

3j
+

2

3k”(n)
+

θ2

3k”(n)
,

It is easy to see that xn, yn ∈ C for all n. Using (6.20)–(6.23) we obtain the inequal-
ities xn > a and yn > a and the equalities

a− xn

a− yn

= 3k”(n)−k′(n) 5 + 4θ1

5 + 4θ2

= 32m 5 + 4θ1

5 + 4θ2

= γ

for every n ∈ N. Consequently, we have

γ ∈
⋂

ε∈R∗+

Cl(+Kε)

that implies (6.12).
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(ii) The proof of the second statement of the present lemma is similar to the
proof of the first one. It should be noted only that for xn < a < yn, we have

a− xn

yn − a
=

2
3k′ +

(
0

3k′+1 + 2
3k′+2 + 0

3k′+3 + . . .
)
−

(
0

3k′ +
∞∑

m=k′+1

αm(xn)
3m

)

2
3k” + 1

3k” θ(yn)− 1
3k”

3
4

=
1

3k′
(

9
4
− θ(xn)

)
1

3k”

(
5
4

+ θ(yn)
) =

3k”

3k′
5 + 4(1− θ(xn))

5 + 4θ(yn)

instead of (6.18), so we obtain θ3 and θ4 as

θ3 := lim
l→∞

(1− θ(xnl
)), θ4 := lim

l→∞
θ(ynl

).

We omit here the other details of the proof of statement (ii). ¤
Now we are ready to prove the main result of the section.

Theorem 6.8. Let X = C and a be a point of C. The pretangent space ΩC
a,r̃ is

unique for every normalizing sequence r̃ if and only if a ∈ C1.

Proof. As has been shown, see Corollary 6.2, pretangent spaces are unique if
a ∈ C1. If a ∈ C0 \ C2 then, by Lemma 6.5, the membership relation

3 ∈
⋂

ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩ Cl(1Kε))

holds. Consequently, by Theorem 5.4, (C, a) /∈ U. Let a belong to C2. By Theorem
5.4 (C, a) 6∈ U if there is a positive number belonging to

⋂
ε∈R∗+

(Cl(+Kε ∪ −Kε) ∩
Cl(1Kε)). The last is possible if and only if there exist m,n ∈ Z and θ1, θ2, θ3, θ4 ∈ C
such that

(6.24) 32m 5 + 4θ1

5 + 4θ2

= 32n+1 5 + 4θ3

5 + 4θ4

,

see Lemma 6.7. The direct calculation shows that the sextuple (m,n, θ1, θ2, θ3, θ4) of
numbers

m = 0, n = 0, θ1 =
2

3
+

2

32
, θ2 = 0, θ4 = 1,

θ3 = 1−
(

2

3
+

2

32
+

∞∑
j=0

2

33+4j
+

∞∑
j=0

2

36+4j

)(6.25)

is a solution of equation (6.24). Thus (C, a) /∈ U for every a ∈ C0. ¤

Remark 6.9. In fact, solution (6.25) was obtained by the following way. For
m = n = θ2 = 0 and θ4 = 1 equation (6.24) can be reduced to the form

3θ1 + 5(1− θ3) =
15

2
.

Applying to the last equation a variant of the so-called Greaddy algorithm we obtain
the values of θ1 and θ4.
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Let us describe now the explicit form of the pretangent spaces ΩC
a,r̃ for a ∈ C1

and r̃ = {3−n}n∈N. Define a set Ce as the smallest subset of R which contains the
Cantor set C and satisfies the equality

(6.26) Ce = 3nCe

for every n ∈ Z where 3nCe := {3nx : x ∈ Ce}. It follows from (6.2) that a real
number t belongs to Ce if and only if t has a base 3 expansion with the digits 0 and
2 only, i.e.,

(6.27) t =
M∑

j=−∞
anj

3j

with M ∈ Z and anj
∈ {0, 2}.

Proposition 6.10. Let X = C be the Cantor set with the usual metric |·, ·| and
let r̃ = {3−n}n∈N. For every a ∈ C1 the pretangent space ΩX

0,r̃ is unique, tangent and
isometric to (Ce, |·, ·|).

Proof. Let X̃a,r̃ be a maximal self-stable family for which p(X̃a,r̃) = ΩX
a,r̃, see

diagram (1.4). The relation (C, a) ∈ U was proved above. It is clear that for every
a, b ∈ C1 there is ε > 0 such that the sets

C∩ ]a− ε, a + ε[ and C∩ ]b− ε, b + ε[

are isometric. Hence, without the loss of generality, put a = 0. Then, as in the proof
of Proposition 2.2, we see that for every x̃ = {xn}n∈N ∈ X̃a,r̃ there exists a finite
limit

(6.28) lim
n→∞

xn

3−n
= c(x̃)

and that the function f : Ωa,r̃ → R+ with

(6.29) f(β) = c(x̃) for x̃ ∈ β ∈ Ωa,r̃

is well-defined and distance-preserving. Consequently, ΩX
a,r̃ is isometric to (Ce, |·, ·|)

if the following two statements hold:
(i) c(x̃) belongs to Ce for every x̃ ∈ X̃a,r̃;
(ii) For every t ∈ Ce there is x̃ ∈ X̃a,r̃ such that c(x̃) = t.

To prove statement (i) note that

(6.30) Ce =
∞⋃
i=0

3iC

and that for every t > 0 we have the equalities

(6.31) [0, t] ∩ 3iC = [0, t] ∩ 3jC

if i ∧ j ≥ log3 t. Since C is closed, equalities (6.31) and (6.30) imply that Ce also is
closed. Moreover, using (6.2) and (6.27) we see that

xn

3−n
∈ Ce

for all xn ∈ C and all n ∈ N. Hence c(x̃) belongs to Ce for every x̃ ∈ X̃a,r̃, that is
statement (i) follows.
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Let t be an arbitrary point of Ce. Then 3−nt ∈ C if n > M , see (6.27). Write

xn :=

{
0 if n ≤ M,

3−nt if n > M

for n ∈ N and define x̃ := {xn}n∈N. It is clear that c(x̃) = t, so statement (ii) is
true.

It still remains to prove that ΩX
a,r̃ is tangent. Let {nk}k∈N be an infinite strictly

increasing sequence of natural numbers and let r̃′ := {3−nk}k∈N. As in the proof of
statement (i) we see that the equivalence

(
x̃ = {xk}k∈N ∈ X̃a,r̃′

) ⇔
(

lim
k→∞

xk

3−nk
∈ Ce

)

holds for every x̃ ∈ X̃. By statement (ii) we have f(ΩX
a,r̃) = Ce, where f is defined

in (6.29). Consequently, a function em′ : ΩX
a,r̃ → Ωa,r̃′ , see (1.4), is surjective. Hence,

by Proposition 1.5, ΩX
a,r̃ is tangent. ¤

7. Independence of uniqueness conditions

The main goal of the present section is the proof of the logical independence of
conditions (i) and (ii) of Theorem 2.4. We shall do it by construction of two examples
of metric spaces such that the condition related to the corresponding example is true
but another one is false.

Proposition 7.1. Condition (i) of Theorem 2.4 does not imply condition (ii) of
this theorem.

As we already know the pointed Cantor set (C, a) belongs to the class U if and
only if a ∈ C1. Hence to prove Proposition 7.1 it is sufficient to find a ∈ C \C1 = C0

such that the pointed space (C, a) satisfies condition (i) of Theorem 2.4. To this
end we shall describe this condition in terms of the ternary expansion of the marked
point a ∈ C0, see (6.2).

Let x be a point of the Cantor ternary set C. Define a sequence {Rx(n)}n∈N by
the rule

(7.1) Rx(n) :=

{
inf{m− n : αm 6= αn,m > n} if ∃m > n : αm 6= αn,

∞ if ∀m > n : αm = αn,

i.e.,

Rx(n) = 1 ⇔ (αn 6= αn+1),

Rx(n) = 2 ⇔ (αn = αn+1) and (αn+1 6= αn+2),

and so on.

Lemma 7.2. Let X = C and a be a point of the set C0. Condition (i) of
Theorem 2.4 holds at the point a if and only if

(7.2) lim sup
n→∞

Ra(n) < ∞.

Proof. Suppose

(7.3) lim sup
n→∞

Ra(n) = ∞.
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We must prove that condition (i) of Theorem 2.4 does not hold. For this purpose, in
accordance with Lemma 5.1, we will construct the sequences x̃ = {xn}n∈N ∈ X̃ and
ỹ = {yn}n∈N ∈ X̃ such that

xn < a < yn and lim
n→∞

xn = lim
n→∞

yn = a

and

(7.4) lim
n→∞

a− xn

yn − a
= 1

for all n ∈ N.
Recall that a ∈ C0. Consequently, both αm = 0 and αm = 1 are contained

infinitely many times in representation (6.2). Hence, it follows from (7.1), (7.3) and
from a ∈ C0, that there is an infinite, strictly increasing sequence of natural numbers
mn such that either

(7.5) αmn−1(a) = 1, αmn(a) = 0 and lim
n→∞

Ra(mn) = ∞
or

(7.6) αmn−1(a) = 0, αmn(a) = 1 and lim
n→∞

Ra(mn) = ∞.

We shall confine ourselves to the consideration of the case where relations (7.5) hold.
It is sufficient because the isometry f : C → C, f(x) = 1 − x, transfers the points
satisfying (7.6) to the points satisfying (7.5) and conversely. Let us define the points
xn, yn ∈ C by the rules

αm(xn) :=





αm(a) if m ≤ mn − 2,

0 if m = mn − 1,

1 if m ≥ mn,

αm(yn) :=

{
αm(a) if m ≤ mn − 1,

1 if m ≥ mn,

(7.7)

where αm(xn) and αm(yn) are digits of the ternary representation of xn and yn re-
spectively, see (6.2). It follows directly from (7.7), (7.5) that xn < a < yn and that
limn→∞ xn = a = limn→∞ yn and

a− xn

yn − a
=

∑∞
m=1

2αm(a)
3m −∑∞

m=1
2αm(xn)

3m∑∞
m=1

2αm(yn)
3m −∑∞

m=1
2αm(a)

3m

=
2

3mn−1 +
∑∞

m=mn

2αm(a)
3m −∑∞

m=mn

2
3m∑∞

m=mn

2
3m −

∑∞
m=mn

2αm(a)
3m

=
1

3mn−1 +
∑∞

m=mn

2αm(a)
3m

1
3mn−1 −

∑∞
m=mn

2αm(a)
3m

=
1 +

∑∞
m=1

2αm+mn−1(a)
3m

1−∑∞
m=1

2αm+mn−1(a)
3m

.

(7.8)

Using (7.1) and the equality αmn(a) = 0 we see that
∞∑

m=1

2αm+mn−1(a)

3m
=

∞∑

m=Ra(mm)+1

2αm+mn−1(a)

3m
≤

(1

3

)Ra(mn)

.

Consequently, (7.5) and (7.8) imply (7.4) so that, by Lemma 5.1, condition (i) of
Theorem 2.4 does not hold.
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Suppose now inequality (7.2) holds and x̃ = {xn}n∈N ∈ X̃, ỹ = {yn}n∈N ∈ X̃ are
sequences with xn < a < yn, n ∈ N, and with

lim
n→∞

xn = lim
n→∞

yn = a.

We shall prove that the limit relation (7.4) does not hold. By Lemma 5.1 it implies
condition (i) of Theorem 2.4. Let us define the quantities k′ = k′(xn, a) and k′′ =
k′′(yn, a) as

(7.9) k′ = min{m : αm(xn) 6= αm(a)}, k′′ = min{m : αm(yn) 6= αm(a)}.
Recall that triadic representation (6.2) is unique for the points of the Cantor set so
that k′ and k′′ are correctly defined. The double inequality xn < a < yn implies

{m : αm(xn) 6= αm(a)} 6= ∅ 6= {m : αm(yn) 6= αm(a)}.
Note also that

(7.10) (xn < a) ⇒ (αk′(xn) = 0 and αk′(a) = 1)

and similarly

(7.11) (yn < a) ⇒ (αk′′(xn) = 1 and αk′′(a) = 0),

thus k′ 6= k′′. We shall restrict ourselves to the case k′ < k′′. The case k′′ < k′ can
be analyzed analogously.

Suppose that k′′ = k′ + 1. Then using (7.10) and (7.11) we obtain

a− xn =
2

3k′ +
∞∑

m=k′+2

2αm(a)

3m
−

∞∑

m=k′+1

2αm(xn)

3m

≥ 2

3k′ +
∞∑

m=k′+2

2αm(a)

3m
− 1

3k′ =
1

3k′ +
∞∑

m=k′+2

2αm(a)

3m

(7.12)

and

yn − a =
2

3k′ + 1
+

∞∑

m=k′+2

2αm(yn)

3m
−

∞∑

m=k′+2

2αm(a)

3m

≤ 2

3k′ + 1
+

1

3k′ + 1
−

∞∑

m=k′+2

2αm(a)

3m
=

1

3k′ −
∞∑

m=k′+2

2αm(a)

3m
.

(7.13)

Write for n ∈ N

tn(a) := 3n

∞∑
m=n+2

2αm(a)

3m
.

It follows form (7.12) and (7.13) that

(7.14)
a− xn

yn − a
≥ 1 + tk′(a)

1− tk′(a)
.

The simple estimations show that (7.2) holds if and only if there are constants c1, c2

such that

0 < c1 ≤ 3n

∞∑
m=n

2αm(a)

3m
≤ c2 < 1
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for every n = 1, 2, . . . . Hence, by the definition of tn(a), we obtain

(7.15)
c1

9
≤ tn(a) ≤ c2

9
.

Since f(x) = 1+x
1−x

, x ∈ ]0, 1[, is an increasing function, inequalities (7.14) and (7.15)
imply

a− xn

yn − a
≥ 1 + c1

9

1− c1
9

> 1.

Thus (7.4) does not hold.
In the simpler case where k′′ ≥ k′ + 2 the similar arguments yield

a− xn

yn − a
≥ 3

that also contradicts (7.4). ¤
Proof of Proposition 7.1. If we choose the point a = 1

4
as marked point on

C, then Ra(n) = 1 for sufficiently large n, see (7.1) and (6.6). Consequently, by
Lemma 7.2, condition of Theorem 2.4 holds for the space (C, a). Since a = 1/4 ∈ C0,
Theorem 6.8 implies that condition (ii) of Theorem 2.4 does not hold with this a. ¤

Proposition 7.3. Condition (ii) of Theorem 2.4 does not imply condition (i) of
this theorem.

To prove Proposition 7.3 consider the following

Example 7.4. Let r̃ = {ri}i∈N and ε̃ = {εi}i∈N be two strictly decreasing
sequences of positive numbers such that

(7.16) ri+1 + εi+1 < ri

for all i ∈ N and

(7.17) lim
i→∞

εi+1

ri+1

= lim
i→∞

ri+1

ri

= 0.

Define the pointed metric space (X, a) with X ⊆ R and a = 0 as

X = {ri : i ∈ N} ∪ {0} ∪ {−ri − εi : i ∈ N},
i.e., X is the set consisting of the origin and the members of the sequences r̃ and
−r̃ − ε̃. It follows from (7.16) and (7.17) that in this space the equality

lim
i→∞

A0(ri, k)

ri

= 2

holds for each k > 1. Consequently, condition (i) of Theorem 2.4 does not hold for
this X.

By Proposition 5.3 condition (ii) of Theorem 2.4 holds if and only if

(7.18)
⋂

ε∈R∗+

(Cl(+Kε ∪− Kε) ∩ Cl(1Kε)) ⊆ {0, 1,∞}.

Let us prove the last inclusion. Suppose that {xn}n∈N, {yn}n∈N ∈ X̃ are sequences
such that xn and yn are positive for all n ∈ N and lim

n→∞
xn = lim

n→∞
yn = 0 and lim

i→∞
xn

yn

is finite. Then, for each n ∈ N, there are i, j ∈ N such that

xn = ri and yn = rj.
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These equalities and the second limit relation in (7.17) imply that

lim
n→∞

xn

yn

is either 1 or 0.

Hence

(7.19)
⋂

ε∈R∗+

Cl(+Kε) ⊆ {0, 1,∞}.

Similarly, replacing rn by rn + εn we obtain

(7.20)
⋂

ε∈R∗+

Cl(−Kε) ⊆ {0, 1,∞}.

Since
Cl(+Kε) ∪ Cl(−Kε) = Cl(+Kε ∪− Kε),

inclusions (7.19) and (7.20) implies (7.18). Thus condition (ii) of Theorem 2.4 holds.

Remark 7.5. It follows from (7.16) that 0 is local asymmetry point of X in the
previous example.

Acknowledgements. This paper was started in 2008 during a visit of the sec-
ond author to the Mersin University (Turkey) under the support of the TÜBİTAK-
Fellowships For Visiting Scientists Programme. The authors are very thankful to the
anonymous referee for the interesting and productive refereeing.

References

[1] Ambrosio, L.: Metric space valued functions of bounded variation. - Ann. Sc. Norm. Super.
Pisa Cl. Sci. (4) 17:3, 1990, 439–478.

[2] Ambrosio, L: Fine properties of sets of finite perimeter in doubling metric measure spaces. -
Set-Valued Anal. 10:2-3, 2002, 111–128.

[3] Ambrosio, L., and B. Kircheim: Rectifiable sets in metric and Banach spaces. - Math. Ann.
318:3, 2000, 527–555.

[4] Ambrosio, L., and B. Kircheim: Currents in mertic spaces. - Acta Math. 185:2, 2000, 1–80.

[5] Berger, M.: Géométrie. - Cedic, Paris, 1977, 1978; Nathan, Paris, 1977, 1978.

[6] Bourbaki, N.: General topology: Topological groups. Numbers and the groups and spaces
related to them. - Izdat. Nauka, Moscow, 1969 (in Russian).

[7] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. - Geom. Funct.
Anal. 9, 1999, 428–517.

[8] Collongwood, E. F., A. J. Lohwater: The theory of cluster sets. - Cambridge Univ. Press,
Cambridge, 1966.

[9] Dovgoshey, O.: Tangent spaces to metric spaces and to their subspaces. - Ukr. Math. Visn.
5:4, 2008, 470–487.

[10] Dovgoshey, O., F. Abdullayev, and M. Küçükaslan: Tangent metric spaces to convex
sets on the plane. - Univ. Helsinki, Reports in Math. 481, 2008, 1–31.

[11] Dovgoshey, O., F. Abdullayev, and M. Küçükaslan: Compactness and boundedness of
tangent spaces to metric spaces. - Beiträge Algebra Geom. 51:2, 2010, 547–576.

[12] Dovgoshey, O., and D. Dordovskyi: Ultrametricity and metric betweenness in tangent
spaces to metric spaces. - p-Adic Numbers, Ultrametric Analysis and Applications 2:2, 2010,
100–113.



392 Fahreddin Abdullayev, Oleksiy Dovgoshey and Mehmet Küçükaslan

[13] Dovgoshey, O., and D. Dordovskyi: Ultrametricity of tangent spaces to metric spaces. -
Dopov. Nats. Akad. Nauk Ukr. 3, 2010, 19–23 (in Russian).

[14] Dovgoshey, O., and O. Martio: Tangent spaces to metric spaces. - Univ. Helsinki, Reports
in Math. 480, 2008, 1–20.

[15] Hajlasz, P.: Sobolev spaces on an arbitrary metric space. - Potential Anal. 5, 1996, 403–415.

[16] Heinonen, J.: Lectures on analysis on metric spaces. - Springer-Verlag, NewYork, 2001.

[17] Heinonen, J., and P. Koskela: From local to global in quasiconformal structures. - Proc.
Natl. Acad. Sci. USA 93, 1996, 554–556.

[18] Kelley, J. R.: General topology. - D. Van Nostrand Company, Princeton, 1965.

[19] Pontrjagin, L. S.: Continuous groups. - The third corrected edition, Nauka, Moscow, 1979
(in Russian).

[20] Royden, H. L.: Real analysis. - The third edition, Macmillan Publ. Company, New York,
1988.

[21] Thomsom, B. S.: Symmetric properties of real functions. - Marcel Dekker, Inc., New York,
1994.

[22] Shanmugalingam, N.: Newtonian spaces: an extention of Sobolev spaces to metric measure
spaces. - Rev. Mat. Iberoamericana 16, 2000, 243–279.

Received 11 November 2008
Revised received 9 September 2010


