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Abstract. The 1982 conjecture due to Bank and Laine claims the following: If A(z) is a
transcendental entire function of order of growth ρ(A) ∈ [0,∞) \N, then max{λ(f1), λ(f2)} = ∞,
where f1, f2 are linearly independent solutions of f ′′ + A(z)f = 0 and λ(g) stands for the exponent
of convergence of the zeros of g. This conjecture has been verified in the case ρ(A) ≤ 1/2, while
counterexamples have been found in the cases ρ(A) ∈ N∪{∞}. The aim of this paper is to illustrate
that no growth condition on A(z) alone yields a unit disc analogue of the Bank–Laine conjecture.
The main discussion yields solutions to two open problems recently stated by Cao and Yi.

1. Introduction

The celebrated 1982 paper by Bank and Laine [3] opened up a new chapter in
the oscillation theory of solutions of

(1.1) f ′′ + A(z)f = 0,

where A(z) is entire [17]. Finding a growth condition on A(z) such that every fun-
damental solution base {f1, f2} of (1.1) satisfies

(1.2) max{λ(f1), λ(f2)} = ∞
has aroused wide interest during the last three decades. Here and in what follows,

λ(g) = inf

{
α > 0:

∞∑
n=1

|zn|−α < ∞
}

stands for the exponent of convergence of the zeros {zn} of an entire function g, while

ρ(g) = lim sup
r→∞

log T (r, f)

log r

is the order of growth of g. If A(z) is a polynomial, then it is well-known [3, 17]
that all solutions f of (1.1) are entire and satisfy λ(f) ≤ ρ(f) < ∞. Hence, in all
attempts to obtain (1.2), we need to assume that A(z) is transcendental.

Bank and Laine [3] introduced a method for constructing equations of the form
(1.1) with zero-free solution bases. This construction depends on a certain entire
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parameter function ϕ. If ϕ is a polynomial, then ρ(A) is a positive integer, while
if ϕ is transcendental, then ρ(A) = ∞. Hence it seems plausible that (1.2) holds
whenever A(z) is transcendental and satisfies ρ(A) ∈ [0,∞) \ N. This is widely
known as the Bank–Laine conjecture, which we abbreviate as the BL-conjecture.

To get an intuitive idea on the theory behind the BL-conjecture, we outline the
general approach from [3]: Let {f1, f2} be a fundamental solution base of (1.1) with
Wronskian W (f1, f2) = c 6= 0. Denote E = f1f2. Then

(1.3) 4A(z) =

(
E ′

E

)2

−
( c

E

)2

− 2
E ′′

E
.

A standard Nevanlinna theory reasoning applied to (1.3) results in

(1.4) 2T (r, E) = 2N

(
r,

1

E

)
+ T (r, A) + S(r, E).

Now, suppose that some growth condition on a finite-order entire A(z) forces ρ(E) =
∞. Then, by (1.4), it follows that λ(E) = ∞, which clearly yields (1.2).

The BL-conjecture was verified in [3] in the case ρ(A) < 1/2 by means of Wiman–
Valiron theory and the cos πρ-theorem. The case ρ(A) = 1/2 was proved indepen-
dently by Rossi [24] and Shen [27]. The method in [24] is based on the Beurling–Tsuji
estimate for harmonic measure, while the method in [27] relies on the Carleman in-
tegral inequality. We note that the BL-conjecture still remains unsolved [18].

Proceeding to the case of the unit disc D, we need the following definitions. Let
g be an analytic function in D. The exponent of convergence of the zeros {zn} of g
is given by

µ(g) = inf

{
β > 0:

∞∑
n=1

(1− |zn|)β+1 < ∞
}

,

while the order of growth of g is

σ(g) = lim sup
r→1−

log+ T (r, g)

− log(1− r)
.

Recall that the inequality σ(g) ≥ µ(g) always holds. If g has the growth rate

lim sup
r→1−

T (r, g)

− log(1− r)
= ∞,

then g is called admissible. The Nevanlinna error term S(r, g) is of growth o(T (r, g)),
provided that g is admissible. We say that g belongs to the Korenblum space A−∞

[15] if there exists a constant q ∈ [0,∞) such that

(1.5) sup
z∈D

(1− |z|2)q|g(z)| < ∞.

Further, g belongs to the Hardy space Hp [9], p ∈ (0,∞], if

sup
0≤r<1

∫ 2π

0

|g(reiθ|p dθ < ∞, p < ∞,

sup
z∈D

|g(z)| < ∞, p = ∞.

The harmonic counterpart of the Hp space is denoted by hp [9].
The space A−∞ includes the classical Hp-spaces, for if g ∈ Hp, 0 < p ≤ ∞, then

(1.5) holds for q = 1/p [9, p. 36]. Moreover, if g ∈ A−∞, then g is non-admissible, and
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so σ(g) = 0. While discussing differential equations in the unit disc, the functions in
the Korenblum space have sometimes been called H -functions since the appearance
of [12].

Next, let A(z) be analytic in D, and let {f1, f2} be a fundamental solution base
of (1.1). We wish to find a growth condition on A(z) such that

(1.6) max{µ(f1), µ(f2)} = ∞.

This would be a unit disc analogue of the BL-conjecture. If A(z) is an H -function,
then it is known that all solutions f of (1.1) satisfy µ(f) ≤ σ(f) < ∞ [12]. Hence,
for (1.6) to hold, A(z) cannot be an H -function.

The aim of this paper is, however, to illustrate that no growth condition on A(z)
alone implies (1.6). This discussion is carried out in Section 2. The main result is
Theorem 1 below, which will be proved in Section 4. The proof requires that we
compare the growth of characteristics T (r, ϕ) and T (r, eϕ) for a function ϕ analytic
in D. This comparison, to be presented in Section 3, is closely related to the well
known paper by Clunie [8] in the case of the complex plane. The main discussion
yields solutions to two open problems recently stated by Cao and Yi in [4], see
Section 2. Concluding remarks on zero-free solution bases are given in Section 5.

2. Construction of zero-free solution bases

Following the reasoning in [3, p. 356], let ϕ be an analytic function in D, and
let h denote a primitive function of eϕ, that is, h′ = eϕ. Set g = −(ϕ + h)/2. Then
a simple computation shows that the functions f1 = eg and f2 = eg+h are linearly
independent solutions of (1.1), where

(2.1) A = −1

4
(e2ϕ + (ϕ′)2 − 2ϕ′′)

is analytic in D. Note that the choice ϕ(z) = − log(1−z) implies A(z) ≡ 0 and gives
raise to linearly independent solutions f1(z) = 1 − z and f2(z) = 1 having no zeros
in D. Suppose more generally that ϕ belongs to the Bloch space B [1, 22], that is,

||ϕ||B = sup
z∈D

(1− |z|2)|ϕ′(z)| < ∞.

Then

(2.2) |ϕ(z)| ≤ ||ϕ||B
(

1 +
1

2
log

(
1 + |z|
1− |z|

))
and |ϕ(j)(z)| ≤ 24(j−1)||ϕ||B

(1− |z|2)j
,

where z ∈ D is arbitrary and j = 1, 2. A substitution to (2.1) now shows that A(z)
is an H -function, and hence every solution of (1.1) is of finite order of growth [12].
In the following example we consider cases where A(z) is not an H -function.

Example 1. (1) The choice ϕ(z) = 1+z
1−z

in (2.1) leads to a coefficient A(z)
growing exponentially, yet A(z) is of bounded characteristic. Indeed,

T (r, e2ϕ) = 2m(r, eϕ) =
1

π

∫ 2π

0

1− |z|2
|1− z|2 d arg(z) = 2, 0 < r = |z| < 1,

and therefore e2ϕ is of bounded characteristic. Moreover, (ϕ′)2 ∈ Hp for all p < 1/4
and ϕ′′ ∈ Hp for all p < 1/3 [9], and hence both (ϕ′)2 and ϕ′′ are of bounded
characteristic.
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(2) For k ∈ N \ {1} and c ∈ (−1, 0), let

ψ(z) =
∞∑

n=1

kcnzkn

be the function studied by Hayman [10] and Littlewood [20]. Since ψ is bounded in
D, it is analytic and of bounded characteristic in D. If k is large enough, then ψ′

is of unbounded characteristic. However, a calculation based on Cauchy’s integral
formula shows that

(2.3) sup
z∈D

(1− |z|2)j|ψ(j)(z)| < ∞

for all j ∈ N. Choose ϕ = ψ′, and suppose on the contrary that eϕ is of bounded
characteristic. By [11, p. 174] we have <ϕ ∈ h1. Kolmogorov’s theorem [9, p. 57]
now gives =ϕ ∈ hp for all p ∈ (0, 1). Hence ϕ ∈ Hp for all p ∈ (0, 1). This is a
contradiction, since all functions in the Hardy spaces have bounded characteristic.
Moreover, ϕ clearly maps [0, 1) onto [0,∞), and hence, by (2.3), the function A(z)
in (2.1) grows exponentially. In particular, A(z) is of unbounded characteristic.

(3) The choice ϕ(z) = 1+z
1−z

(
log 1

1−z
+ 1

)p, p ≥ 0, in (2.1) leads to a coefficient
A(z) of growth σlog(A) = p, where

σlog(A) = lim sup
r→1−

log+ T (r, A)

log(− log(1− r))

is the logarithmic order of A(z) [7]. This calculation requires a fair amount of work,
but the details are essentially worked out in [7, pp. 172–174].

(4) The choice ϕ(z) =
(

1+z
1−z

)p+1, p ≥ 0, in (2.1) leads to a coefficient A(z) of
growth σ(A) = p. The details can be worked out easily, see [6, p. 753].

By Example 1 it seems plausible that no growth condition on a finite-order A(z)
alone implies (1.6). The main result below shows that it is possible to construct a
function A(z) analytic in D and of arbitrarily rapid growth such that (1.1) possesses
two linearly independent solutions each having no zeros. This is a unit disc analogue
of the corresponding reasoning in [3, p. 356].

Theorem 1. Let Λ(r) be an increasing and continuous function defined on the
interval [0, 1) such that Λ′′(r) > 0 and

(2.4) lim
r→1−

Λ(r)

− log(1− r)
= ∞.

Then it is possible to construct a function A(z) analytic in D of growth

(2.5) lim
r→1−

T (r, A)

Λ(r)
= ∞

such that (1.1) possesses linearly independent solutions f1, f2 each having no zeros.
Moreover, the product function E = f1f2 satisfies

(2.6) lim
r→1−

T (r, E)

Λ(r)
= ∞.

In light of cases (3) and (4) in Example 1, the assumption (2.4) does not seem
too restrictive. When proving Theorem 1 in Section 4, we rely on a Linden–Shea
construction [19, 25] on an analytic function of prescribed asymptotic growth. This
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construction depends on (2.4). It may be possible that (2.4) can be weakened to
”Λ(r) is unbounded”, but this requires new results on asymptotic growth.

Remark 1. Let b ∈ (0, e−6) be an arbitrary constant. The proof of Theorem 1
shows that, in addition to (2.6), the product function E = f1f2 also satisfies

(2.7) lim sup
r→1−

T
(
r, E′

E

)

Λ(1− b(1− r))
≤ 1.

We note that the constant e−6 may not be the best possible.

We conclude that no growth condition on A(z) alone yields a unit disc analogue
of the BL-conjecture. This settles one open problem stated in a recent paper by Cao
and Yi [4]. Another open problem in [4] is stated as follows:

Let A(z) be a non-admissible analytic function in D. Suppose that
f1, f2 are two linearly independent solutions of (1.1), and set E = f1f2.
It is known that in this case σ(E) ≤ σ(f1) = σ(f2). Can we obtain an
equality instead of an inequality here?

We will demonstrate that a strict inequality σ(E) < σ(f1) = σ(f2) typically holds.
To begin with, recall that f1 = eg and f2 = eg+h are linearly independent solutions
of (1.1), where the coefficient A(z) is given by (2.1). Since h denotes a primitive
function of eϕ, and since

(2.8) E = f1f2 = e2g+h = e−ϕ,

our claim is intuitively clear. For example, suppose that ϕ is an unbounded analytic
function in D with its range in the right-half plane, say ϕ(z) = 1+z

1−z
. Then E is

bounded in D and A(z), as defined in (2.1), is of bounded characteristic (and hence
non-admissible). Meanwhile, σ(f1) = σ(f2) = ∞. Hence it is possible that the
solutions f1, f2 are of infinite order of growth, while their product E belongs to H∞.
A strict inequality may hold even in the finite-order case by [13, p. 1052]. Indeed,
for α ≥ 0 and for a fixed branch, the functions

(2.9) fj(z) = (1− z)
α+2

2 exp

(
(−1)j

(
1

1− z

)α+1
)

, j = 1, 2,

are linearly independent solutions of (1.1), where

(2.10) A(z) = −α(α + 2)

4(1− z)2
− (α + 1)2

(1− z)2α+4
.

It is clear that σ(f1) = σ(f2) = α, while the product function E is again in H∞.
We note that the example involving (2.9) and (2.10) illustrates the sharpness of

the main result in [16] and is more elementary than the examples in [16].

3. Comparison of T (r, ϕ) and T (r, eϕ)

The function A(z) in Theorem 1 will be constructed by means of (2.1). To prove
Theorem 1, we need to know how T (r, ϕ) and T (r, eϕ) are related to each other.
Referring to the paper by Clunie [8] for a parallel discussion in the case of complex
plane, we believe that the discussion below is also of independent interest.

We remind the reader that ϕ may be unbounded, with its range in the left-
half plane, while eϕ ∈ H∞. The Möbius transformation ϕ(z) = −1+z

1−z
is a typical
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example of such a case. For T (r, eϕ) to be unbounded, the range of ϕ should have
an unbounded intersection with the right half-plane. If p > 0, then the functions ϕ
in cases (3) and (4) of Example 1 satisfy

(3.1) sup
z∈D

(1− |z|2)|ϕ(z)| = ∞.

The growth rate (3.1) is, however, not necessary for T (r, eϕ) to be unbounded. Indeed,
let ϕ be the lacunary series

ϕ(z) =
∞∑

n=1

1√
n

z2n

studied by Pommerenke [22]. The reasoning in [22, p. 694] shows that ϕ ∈ B, and
that ϕ has radial limits almost nowhere on ∂D. This means that ϕ is of unbounded
characteristic [9, p. 17], and the reasoning in Example 1(2) shows that eϕ is of
unbounded characteristic as well. An alternative proof for the latter claim can be
achieved as follows: The function eϕ has the radial limit 0 almost nowhere on ∂D by
means of Privalov’s uniqueness theorem [23, p. 325]. All other radial limits of eϕ on
a set of positive Lebesgue measure are prevented by the properties of ϕ. Hence eϕ is
of unbounded characteristic.

Lemma 1. Let ϕ be analytic and admissible in D. Then eϕ is admissible, and

(3.2) lim sup
r→1−

T (r, eϕ)

T (r, ϕ)
= ∞.

In what follows, we will be dealing with exceptional sets. In the literature they
are typically handled with [2, Lemma C] due to Bank. However, in Section 4 we will
make full use of the following slight generalization of Bank’s lemma. The proof is an
easy modification of that in [2] and is therefore omitted.

Lemma 2. Let r0 ∈ [0, 1), and suppose that g(r) and h(r) are nondecreasing
functions on [r0, 1) such that g(r) ≤ h(r) for all r 6∈ F , where the set F ⊂ [r0, 1) has
a finite logarithmic measure lm(F ) =

∫
F

dr/(1− r). Set sb(r) = 1− b(1− r) for any
b ∈ (0, e− lm(F )). Then g(r) ≤ h(sb(r)) for all r ∈ [r0, 1).

Proof of Lemma 1. Let k ∈ N. Using the first and the second fundamental
theorems, we conclude that

(2k − 1)T (r, ϕ) ≤
k∑

n=−k

N

(
r,

1

ϕ− 2πni

)
+ S(r, ϕ)

≤ N

(
r,

1

eϕ − 1

)
+ S(r, ϕ) ≤ T (r, eϕ) + S(r, ϕ)

(3.3)

outside of a possible exceptional set F ⊂ [0, 1) for which lm(F ) < ∞. Hence

lim sup
r→1−

T (r, eϕ)

T (r, ϕ)
≥ lim sup

r→1−
r 6∈F

T (r, eϕ)

T (r, ϕ)
≥ 2k − 1.

Since k ∈ N can be chosen arbitrarily large, we deduce that (3.2) holds. To prove
that eϕ is admissible, let b ∈ (0, e− lm(F )). By Lemma 2 and (3.3), we have

(3.4)
(

2k − 3

2

)
T (r, ϕ) ≤ T (sb(r), e

ϕ), r ∈ [0, 1).
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Since log(1 − sb(r)) = (1 + o(1)) log(1− r) and ϕ is admissible, it follows that eϕ is
admissible as well. ¤

By letting k →∞ in (3.4), we deduce that

(3.5) lim
r→1−

T (sb(r), e
ϕ)

T (r, ϕ)
= ∞.

This is closely related to (3.2). We proceed to a more complicated approach that
allows us to replace ” lim sup” in (3.2) by ” lim”, or alternatively, to take b = 1 in (3.5).
We state this result as the following unit disc analogue of a well known plane result
[8, Theorem 2] due to Clunie.

Lemma 3. Suppose that ϕ is analytic in D and of unbounded characteristic.
Then eϕ is of unbounded characteristic, and

(3.6) lim
r→1−

T (r, eϕ)

T (r, ϕ)
= ∞.

In particular, if ϕ is admissible, then eϕ is admissible.

Proof. By the discussion in Example 1(2), eϕ is of unbounded characteristic.
Hence it remains to prove (3.6).

We require the following statement [21, p. 276]: If f is meromorphic in D and of
unbounded characteristic, then for all a ∈ C outside a set of zero capacity, depending
on f , we have

lim
r→1−

N
(
r, 1

f−a

)

T (r, f)
= 1.

It is known that a point set in C of zero capacity cannot have a continuum as its
subset, and that the set of all complex rational points in C forms a set of zero
capacity. Further, the union of two sets of zero capacity is also of zero capacity.

Let F ⊂ C be the exceptional set of zero capacity related to the functions ϕ and
eϕ of unbounded characteristic. Then a point a ∈ C \ {0} can be found such that
the point a itself and the points

wn = log |a|+ i(arg(a) + 2nπ), n ∈ Z,

all avoid the set F , for otherwise F would include a continuum. For such a the points
wn form an infinite zero sequence of eϕ − a. Moreover,

(3.7) lim
r→1−

N
(
r, 1

eϕ−a

)

T (r, eϕ)
= 1 and lim

r→1−

N
(
r, 1

ϕ−wn

)

T (r, ϕ)
= 1

for all n ∈ Z. Let k ∈ N be any constant. Then

(3.8) N

(
r,

1

eϕ − a

)
≥

k∑

n=−k

N

(
r,

1

ϕ− wn

)
.

Combining (3.7) and (3.8), we conclude that

lim inf
r→1−

T (r, eϕ)

T (r, ϕ)
≥ 2k + 1.

Since k can be chosen arbitrarily large, the assertion (3.6) follows. ¤
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4. Proof of Theorem 1

We require the following result on constructing an analytic function in D with a
prescribed asymptotic growth.

Theorem 2 ([19, 25]). Let Λ(r) be an increasing, convex and continuous function
defined on the interval [0, 1) such that (2.4) holds. Then there exists a function f
analytic in D such that T (r, f) ∼ Λ(r) as r → 1−.

Remark 2. An exceptional set F ⊂ [0, 1) typically appears after using either
the lemma on the logarithmic derivative (LLD) or the second main theorem (SMT).
In both cases lm(F ) is uniformly bounded from above. This can be seen by choosing
φ(r) = 1 − r and ψ(r) = log2 r in [5, Theorems 3.4.1 and 4.2.1]. More precisely, let
f be meromorphic in D and of unbounded characteristic, and let r0 ∈ [0, 1) be such
that T (r0, f) ≥ e. Then the inequalities in LLD and SMT hold for r 6∈ [0, r0] ∪ F ,
where F ⊂ [r0, 1) satisfies lm(F ) ≤ 2. Hence Lemma 2 would be applicable for any
choice of b ∈ (0, e−2).

We will make use of this reasoning. Due to (2.4), there exists a constant r0 ∈ [0, 1)
such that Λ(r0) ≥ e. In what follows, the constant r0 may not be the same each time
it occurs. Set sb(r) = 1− b(1− r) for b ∈ (0, e−4). Define Λ0(r) = Λ(sb(r)). Clearly
Λ0(r) is increasing and continuous on [0, 1), and satisfies

lim
r→1−

Λ0(r)

− log(1− r)
≥ lim

r→1−

Λ(sb(r))

− log(1− sb(r))

(
1 +

4

− log(1− r)

)
= ∞.

Moreover, Λ′′0(r) = Λ′′(sb(r))b
2 > 0, so that Λ0(r) is convex. By Theorem 2 there

exists a function ϕ analytic in D such that T (r, ϕ) ∼ Λ0(r) as r → 1−. For this
particular ϕ, define A(z) as in (2.1). Clearly ϕ is admissible, and hence by [5,
Theorem 3.4.1] and Remark 2, we have

(4.1) T (r, ϕ(j)) = m(r, ϕ(j)) ≤ m(r, ϕ) + m

(
r,

ϕ(j)

ϕ

)
= (1 + o(1))T (r, ϕ)

for all r ∈ [r0, 1) outside of respective exceptional sets Fj ⊂ [r0, 1) satisfying lm(Fj) ≤
2 for j = 1, 2. Denote F = F1 ∪ F2, so that lm(F ) ≤ 4. Combining (2.1) and (4.1)
with Lemma 3, we conclude that

T (r, A) ≥ 3

2
T (r, eϕ), r 6∈ [0, r0) ∪ F.

By Lemma 2, we have

(4.2)
T (sb(r), A)

Λ(sb(r))
≥ 3

2
· T (r, eϕ)

T (r, ϕ)
· T (r, ϕ)

Λ0(r)
≥ T (r, eϕ)

T (r, ϕ)
, r ∈ [r0, 1).

The assertion (2.5) now follows by means of (4.2) and Lemma 3. Using (2.8), we
deduce that

T (r, E)

Λ(r)
=

T (r, eϕ)

T (r, ϕ)
· T (r, ϕ)

Λ0(r)
· Λ0(r)

Λ(r)
≥ T (r, eϕ)

T (r, ϕ)
· T (r, ϕ)

Λ0(r)
.

The assertion (2.6) now follows by Lemma 3.

Proof of (2.7). We note that the formulas (2.8) and (4.1) yield

T

(
r,

E ′

E

)
= T (r, ϕ′) = (1 + o(1))T (r, ϕ) ∼ (1 + o(1))Λ0(r).
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To see that (2.7) holds, it remains to use Lemma 2 in the case lm(F ) ≤ 2. ¤

5. Concluding remarks on zero-free solution bases

The solutions f1, f2 in (2.9) are of the form

(5.1) fj(z) = exp
(
g(z) + (−1)jh(z)

)
, j = 1, 2,

where g and h are analytic in D. Indeed, by choosing g(z) = α+2
2

log(1 − z) and
h(z) = (1− z)−α−1, we see that (5.1) reduces to (2.9). In the general case, for f1, f2

in (5.1) to be linearly independent solutions of (1.1), the function h must be non-
constant. Moreover, by substituting f1, f2 in (1.1), we get, after a simplification, that
the functions g, h depend on each other by the equation

(5.2)
h′′

h′
= −2g′.

Hence h′ = Ce−2g for some C ∈ C \ {0}. The product function E = f1f2 = e2g and
the ratio G = f2/f1 = e2h are now easy to deal with. Recall that SG = 2A, where

SG =

(
G′′

G′

)′
− 1

2

(
G′′

G′

)2

is the Schwarzian derivative of G. Since G = e2h, an easy computation yields

(5.3) 2A = Sh − 2(h′)2.

In particular, if h is a (constant times) Möbius transformation, then Sh = 0, and so
A = −(h′)2. This is the theory behind [13, Example 5.3], for example. In the general
case, using (5.2), we may write (5.3) alternatively as

(5.4) A = −g′′ − (g′)2 − (h′)2.

Hence a zero-free solution base as well as the coefficient A(z) of (1.1) can be written
in terms of two parameter functions g, h by means of (5.1) and (5.4).

We note that the solutions f1, f2 in (5.1) can also be written in terms of the
BL-method described in Section 2, and hence this approach is not new. However,
sometimes this approach is easier to use in constructing examples of zero-free solution
bases. Suitable computer software is also useful.

Corresponding to the reasoning in the beginning of Section 2, we have the fol-
lowing claim: If g ∈ B, then the solutions f1, f2 in (5.1) are of finite order. To prove
this, we first observe that h′ = Ce−2g is an H -function by (2.2). Since

|h(z)| ≤ |h(0)|+
∫ |z|

0

|h′(ζ)||dζ|,

it follows that h is also an H -function. Let σM(f) be the maximum modulus order
of a function f analytic in D. The sharp estimates σ(f) ≤ σM(f) ≤ σ(f) + 1 are
well-known. We now conclude that σ(fj) ≤ σM(fj) < ∞ for j = 1, 2 [16].

In a private communication, Gröhn (University of Eastern Finland) pointed out
that if

(1− |z|2)|g′(z)| ≤ 1/2, z ∈ D,

then h is univalent in D. This claim follows by applying [23, p. 172] on (5.2).
The discussion above applies in the case of C as well. Indeed, if g is a polynomial,

then ρ(h) = deg(g) = ρ(A) by h′ = Ce−2g and (5.4). If h in turn is a polynomial,
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then so is h′, and hence g must be a constant function. In this case deg(h) = 1 and
A(z) is a constant function. The latter case is the only possibility for constructing
entire solutions of finite order. If g is transcendental entire, then so is h, and A(z)
in (5.4) is of infinite order of growth by [8, Theorem 2].

We note that if the starting point is a non-vanishing analytic function E (hence
a BL-function), then the method due to Shen in [26] can also be used in constructing
zero-free solution bases. Indeed, it turns out that E is then a product of two linearly
independent zero-free solutions. This method is originally written in the case of C,
but it is clearly valid in the case of D as well. For example, the choice E(z) = (1−z)α+2

2(α+1)

for a fixed α ≥ 0 in [26] yields

A(z) = −1

4

(
1

E(z)2
+ 2

E ′′(z)

E(z)
−

(
E ′(z)

E(z)

))
= −α(α + 2)

4(1− z)2
− (α + 1)2

(1− z)2α+4

as in (2.10). The functions in the corresponding zero-free solution base

gj(z) = E(z)
1
2 exp

(
(−1)j

2

∫ z

0

dζ

E(ζ)

)
, j = 1, 2,

then reduce to constant multiples of the functions f1, f2 in (2.9), respectively.
We have seen that it is possible to construct zero-free solutions bases {f1, f2} for

(1.1) in the cases of C and D. It has recently been proved [14] in both cases that
arbitrary linear combinations f = C1f1 + C2f2 typically have the maximal quantity
of zeros when compared to the growth of f1, f2.
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