PRESCRIBING THE PRESCHWARZIAN IN SEVERAL COMPLEX VARIABLES

Rodrigo Hernández

Universidad Adolfo Ibáñez, Facultad de Ciencias y Tecnología Av. Balmaceda 1625 Recreo, Viña del Mar, Chile; rodrigo.hernandez@uai.cl

Abstract. We solve the several complex variables preSchwarzian operator equation $[Df(z)]^{-1}$ $D^2f(z) = A(z), z \in \mathbb{C}^n$, where A(z) is a bilinear operator and f is a \mathbb{C}^n valued locally biholomorphic function on a domain in \mathbb{C}^n . Then one can define a several variables $f \to f_\alpha$ transform via the operator equation $[Df_\alpha(z)]^{-1}D^2f_\alpha(z) = \alpha[Df(z)]^{-1}D^2f(z)$, and thereby, study properties of f_α . This is a natural generalization of the one variable operator $f_\alpha(z)$ in [6] and the study of its univalence properties, e.g., the work of Royster [23] and many others. Möbius invariance and the multivariables Schwarzian derivative operator of Oda [17] play a central role in this work.

1. Introduction

Consider the class \mathscr{S} of functions f holomorphic and univalent in the disk $\mathbf{D} = \{z : |z| < 1\}$ with the normalization f(0) = 0 and f'(0) = 1. Let $\alpha \in \mathbf{C}$, $f \in \mathscr{S}$ and define the integral transform

(1.1)
$$f_{\alpha}(z) = \int_{0}^{z} [f'(w)]^{\alpha} dw,$$

where the power is defined by the branch of the logarithm for which $\log f'(0) = 0$, [6]. A question considered in [6] is to determinate the values of α for which $f_{\alpha} \in \mathscr{S}$. In [23] Royster exhibited non-univalent mappings f_{α} for each complex $\alpha \neq 1$ with $|\alpha| > 1/3$. In fact, consider functions of the form

(1.2)
$$f(z) = \exp(\mu \log(1-z)),$$

which are univalent if and only if μ lies in ones of the closed disks

$$|\mu + 1| \le 1$$
, $|\mu - 1| \le 1$.

Royster showed that for any such value of μ , the function in (1.1) is not univalent for each α with $|\alpha| > 1/3$ and $\alpha \neq 1$. Moreover, Pfaltzgraff using the Ahlfors univalence criterion [1] proved that for any $f \in \mathscr{S}$, if $|\alpha| \leq 1/4$, then f_{α} is univalent in **D**, see [19].

Let f be a locally univalent mapping in **D** and f_{α} defined by equation (1.1). Then $f'_{\alpha}(z) = [f'(z)]^{\alpha}$, which implies that

$$\frac{f_{\alpha}''}{f_{\alpha}'}(z) = \alpha \frac{f''}{f'}(z).$$

doi:10.5186/aasfm.2011.3621

²⁰¹⁰ Mathematics Subject Classification: Primary 32H02, 32W99; Secondary 32A10. Key words: PreSchwarzian derivative, holomorphic mapping, univalence. The author was partially supported by Fondecyt Grants # 11070055.

If f and g satisfy that g''/g'(z) = f''/f'(z), then $\log(g'(z)) = \log(f'(z))$ when f'(0) = g'(0). Therefore g = f if f(0) = g(0). Thus

(1.3)
$$f_{\alpha}(z) = \int_0^z [f'(w)]^{\alpha} dw \iff \frac{f''_{\alpha}}{f'_{\alpha}}(z) = \alpha \frac{f''}{f'}(z).$$

This equivalence in one variable suggests our idea to define the several variables generalization of f_{α} via the operator equation

(1.4)
$$[Df_{\alpha}(z)]^{-1}D^{2}f_{\alpha}(z)(\cdot,\cdot) = \alpha [Df(z)]^{-1}D^{2}f(z)(\cdot,\cdot)$$

Yoshida [25] developed a complete description of prescribing Oda's Schwarzian derivatives [17] in terms of a completely integrable system of differential equations. The description involves operators $S_{ij}^k f$ and $S_{ij}^0 f$ of orders two and three respectively, coefficients of the system and Möbius invariants. In fact, the $S_{ij}^k f$ operators are the operator of least order that vanish for Möbius mappings. This is a strong difference with one complex variable where the third order Schwarzian operator is the lowest order operator annihilated by all Möbius mappings. For n = 1, the Möbius group has dimension 3, which allows to set $f(z_0), f'(z_0)$ and $f''(z_0)$ of a holomorphic mapping f at a given point z_0 arbitrarily. It would therefore be pointless to seek a Möbius invariant differential operator of order 2. But for n > 1 the number of parameters involved in the value and all derivatives of order 1 and 2 of a locally biholomorphic mapping is $n^2(n+1)/2 + n^2 + n$, and exceeds the dimension of the corresponding Möbius group in \mathbb{C}^n , which is n^2+2n . By the definition of the Schwarzian derivatives, we have that $S_{ij}^k F = S_{ji}^k F$ for all k and $\sum_{j=1}^n S_{ij}^j F = 0$ and we see there are exactly n(n-1)(n+2)/2 independent terms $S_{ij}^k F$, which is equal to the excess mentioned above.

A different approach to obtain the invariant operators S_{ij}^k , S_{ij}^0 has been developed by Molzon and Tamanoi [14]. In addition, Molzon and Pinney had earlier developed equivalent invariant operators in the context of complex manifolds [13].

The operator

$$P_f(z) = [Df(z)]^{-1} D^2 f(z)(\cdot, \cdot)$$

introduced by Pfaltzgraff in [18] is the "natural" way to extend the classical one variable operator preSchwarzian f''/f'. Furthermore, the author in [18] extended the classical univalence criterion of Becker [2] to several variables. The question now is how to extend the equation (1.1) to \mathbb{C}^n . It is necessary to understand when one can recover the function f from a given P_f . We shall show a strong connection between this operator and the Schwarzian derivatives operator $SF(z)(\cdot, \cdot)$, introduced in [11]. Indeed, the problem of prescribing P_f can be reduced to understanding how to prescribe $S_{ij}^k f$ in terms of P_f . This is achieved via completely integrable system generated by $S_{ij}^k f$ and corresponding "new differential conditions" on the elements of P_f . We then use this theory to extend the classical single variable problem about the univalence of f_{α} by using equation (1.4) to define f_{α} in several complex variables.

2. Oda Schwarzian and Möbius invariants

Let $f: \Omega \subset \mathbf{C}^n \to \mathbf{C}^n$ be a locally biholomorphic mapping defined on some domain Ω . Oda in [17] defined the Schwarzian derivatives of $f = (f_1, \ldots, f_n)$ as

(2.1)
$$S_{ij}^{k}f = \sum_{l=1}^{n} \frac{\partial^{2} f_{l}}{\partial z_{i} \partial z_{j}} \frac{\partial z_{k}}{\partial f_{l}} - \frac{1}{n+1} \left(\delta_{i}^{k} \frac{\partial}{\partial z_{j}} + \delta_{j}^{k} \frac{\partial}{\partial z_{i}} \right) \log J_{f},$$

where i, j, k = 1, 2, ..., n, J_f is the jacobian determinant of the differential Df and δ_i^k are the Kronecker symbols. For n > 1 the Schwarzian derivatives have the following properties:

(2.2)
$$S_{ij}^k f = 0 \text{ for all } i, j, k = 1, 2, \dots, n \text{ iff } f(z) = M(z)$$

for some Möbius transformation

$$M(z) = \left(\frac{l_1(z)}{l_0(z)}, \dots, \frac{l_n(z)}{l_0(z)}\right),$$

where $l_i(z) = a_{i0} + a_{i1}z_1 + \cdots + a_{in}z_n$ with $\det(a_{ij}) \neq 0$. Furthermore, for a composition

(2.3)
$$S_{ij}^k(g \circ f)(z) = S_{ij}^k f(z) + \sum_{l,m,r=1}^n S_{lm}^r g(w) \frac{\partial w_l}{\partial z_i} \frac{\partial w_m}{\partial z_j} \frac{\partial z_k}{\partial w_r}, \ w = f(z).$$

From this chain rule it can be shown that $S_{ij}^k f = S_{ij}^k g$ for all i, j, k = 1, ..., n if and only if $g = T \circ f$ for some Möbius transformation. The $S_{ij}^0 f$ coefficients are given by

$$S_{ij}^{0}f(z) = J_{f}^{1/(n+1)} \left(\frac{\partial^{2}}{\partial z_{i}\partial z_{j}} J_{f}^{-1/(n+1)} - \sum_{k=1}^{n} \frac{\partial}{\partial z_{k}} J_{f}^{-1/(n+1)} S_{ij}^{k} f(z) \right).$$

In his work, Oda gives a description of the functions with prescribed Schwarzian derivatives $S_{ij}^k f$ ([17]). Consider the following overdetermined system of partial differential equations,

(2.4)
$$\frac{\partial^2 u}{\partial z_i \partial z_j} = \sum_{k=1}^n P_{ij}^k(z) \frac{\partial u}{\partial z_k} + P_{ij}^0(z)u, \quad i, j = 1, 2, \dots, n,$$

where $z = (z_1, z_2, ..., z_n) \in \Omega \subset \mathbb{C}^n$ and $P_{ij}^k(z)$ are holomorphic functions for i, j, k = 0, ..., n. The system (2.4) is called *completely integrable* if there are at most n + 1 linearly independent solutions, and is said to be in *canonical form* (see [24]) if the coefficients satisfy

$$\sum_{j=1}^{n} P_{ij}^{j}(z) = 0, \quad i = 1, 2, \dots, n.$$

Oda proved that (2.4) is a completely integrable system in canonical form if and only if $P_{ij}^k = S_{ij}^k f$ for a locally biholomorphic mapping $f = (f_1, \ldots, f_n)$, where $f_i = u_i/u_0$ for $1 \le i \le n$ and u_0, u_1, \ldots, u_n is a set of linearly independent solutions of the system. For a given mapping f, $u = (J_f)^{-\frac{1}{n+1}}$ is always a solution of (2.4) with $P_{ij}^k = S_{ij}^k f$.

Definition 2.1. We define the Schwarzian derivative operator as the operator $S_f(z): T_z\Omega \to T_{f(z)}\Omega$ given by

$$S_f(z)(\vec{v},\vec{w}) = \left(\vec{v}^t S^1 f(z) \vec{w}, \dots, \vec{v}^t S^n f(z) \vec{w}\right),$$

where $S^k f$ is the $n \times n$ matrix defined by $(S_{ij}^k f)_{ij}$ and $\vec{v} \in T_z \Omega$.

The Schwarzian derivative operator [12] can be rewritten as

(2.5)
$$S_f(z)(\vec{v}, \vec{w}) = [Df(z)]^{-1} D^2 f(z)(\vec{v}, \vec{w}) - \frac{1}{n+1} \left(\nabla \log J_f(z) \cdot \vec{v} \right) \vec{u} - \frac{1}{n+1} \left(\nabla \log J_f(z) \cdot \vec{w} \right) \vec{v},$$

and the system (2.4) as

(2.6)
$$\operatorname{Hess} u(z)(\cdot, \cdot) = \nabla u(z) \cdot S_f(z)(\cdot, \cdot) + S_f^0(z)(\cdot, \cdot)u(z),$$

where S_f^0 is a $n \times n$ matrix defined by $(S_{ij}^0 f)_{ij}$. We include in this section two lemmas that complement the work of Oda.

Lemma 2.2. Let $f: \Omega \subset \mathbf{C}^n \to \mathbf{C}^n$ be a locally biholomorphic mapping and $u_0 = J_f^{-1/n+1}$. Then

$$f = \frac{\vec{u}}{u_0} = \left(\frac{u_1}{u_0}, \dots, \frac{u_n}{u_0}\right),$$

where u_0, u_1, \ldots, u_n are linearly independent solutions of (2.4)

Proof. We will prove that $\vec{u} = fu_0$ is solution of the equation (2.6). It follows that $Dfu_0 + f\nabla u_0 = Du$, from where

$$D^2 f \cdot u_0 + 2D f \cdot \nabla u_0 + f \cdot \text{Hess}\, u_0 = D^2 u_0$$

Using the system we have that

$$D^2 f \cdot u_0 + 2Df \cdot \nabla u_0 - Df \cdot u_0 \cdot S_f + Du \cdot S_f + S_f^0 \cdot u = D^2 u.$$

Considering the equation (2.5) with $u_0 = J_f^{-1/n+1}$ we have that

$$D^2 f \cdot u_0 + 2Df \cdot \nabla u_0 - Df \cdot Sf \cdot u_0 = 0,$$

and $D^2u(\cdot, \cdot) = Du(S_f(\cdot, \cdot)) + S_f^0(\cdot, \cdot)u$, hence u_i with $i = 1, \ldots, n$ and u_0 are independent solutions of the system (2.4).

Lemma 2.3. Let u_0 be a solution of the system (2.4). Then there exists a function $f = \vec{u}/u_0$ where $\vec{u} = (u_1, \ldots, u_n)$ and u_i with $i = 0, 1, \ldots, n$ are independent solutions of the system (2.4) where $u_0 = J_f^{-1/n+1}$. The function f will be holomorphic away from the zero set of u_0 .

Proof. According to the previous lemma we can find $F = \vec{v}/v_0$ where $\{v_0, v_1, \ldots, v_n\}$ are a linearly independent solutions of the system (2.4) with $P_{ij}^k = S_{ij}^k$ and $v_0 = J_F^{-1/n+1}$. As u_0 is solution of the system we have that $u_0 = \alpha_0 v_0 + \cdots + \alpha_n v_n$. We need to find a Möbius mapping T such that

$$T \circ F = \left(\frac{u_1}{u_0}, \dots, \frac{u_n}{u_0}\right) = f,$$

and $J_{T \circ F}^{-1/n+1} = u_0$. We have

$$J_{T \circ F}^{-1/n+1}(z) = J_T^{-1/n+1}(F(z))J_F^{-1/n+1}(z)$$

= $(\lambda_0 + \lambda_1 F_1(z) + \dots + \lambda_n F_n(z))J_F^{-1/n+1}(z)$
= $\lambda_0 v_0 + \lambda_1 v_1 + \dots + \lambda_n v_n$,

which will be equal to u_0 if we choose $\lambda_i = \alpha_i$ for all i = 0, 1, ..., n.

3. Results

Let $\Omega \subset \mathbf{C}^n$ be domain.

Theorem 3.1. Let $f: \Omega \to \mathbb{C}^n$ be a locally biholomorphic mapping. The following statements are equivalent:

- (i) $S_{ij}^0 f(z) \equiv 0.$
- (ii) There exists a locally biholomorphic mapping $g: \Omega \to \mathbb{C}^n$ with $S_g = S_f$ and J_a constant.
- (iii) There exists a locally biholomorphic mapping $h: \Omega \to \mathbb{C}^n$ such that $S_h = S_f$ and $J_h^{-1/n+1} = 1/L(h)$, where $L(w) = \alpha_0 + \alpha_1 w_1 + \dots + \alpha_n w_n$. (iv) Locally there exists a biholomorphic change of variables such that the system
- (2.4) with $P_{ij}^k = S_{ij}^k f$ reduces to Hess(u) = 0.

Proof. (i) \Rightarrow (ii). As $S_{ij}^0 f \equiv 0$, the system (2.4) reduces to

$$u_{ij} = \sum_{k=1}^{n} S_{ij}^{k} u_k.$$

Therefore $u \equiv c$ is solution, thus by Lemma (2.3) there exists a function g such that $J_g \equiv C.$

(ii) \Rightarrow (iii). Let $g = T \circ h$ for some Möbius T to be determined. Then $J_g^{-1/n+1}(z) = J_T^{-1/n+1}(h(z))J_h^{-1/n+1}(z)$. Since $J_g^{-1/n+1} \equiv C$, we have that

$$C = (a_0 + a_1 h_1 + \dots + a_n h_n) J_h^{-1/n+1}(z),$$

from where the result obtains after scaling h. (iii) \Rightarrow (iv). Suppose h has $J_h^{-1/n+1} = 1/L(h)$. The previous argument shows that by choosing T appropriately, we can produce $g = T \circ h$ with $J_g \equiv 1$. Hence $S_g(z)(\cdot, \cdot) = (Dg(z))^{-1}D^2g(z)(\cdot, \cdot)$, and the system (2.4) reduces to

$$\operatorname{Hess} u(z)(\cdot, \cdot) = \nabla u(z) \cdot S_g(z)(\cdot, \cdot).$$

We consider $D(\nabla u(z)(Dg(z))^{-1})(\cdot, \cdot)$:

$$D(\nabla u(z)(Dg(z))^{-1}(\cdot, \cdot) = \text{Hess } u(z)((Dg(z))^{-1}(\cdot), \cdot) - \nabla u(z) \cdot (Dg(z))^{-1}D^2g(z)((Dg(z))^{-1}(\cdot), \cdot) = \nabla u(z) \cdot S_g(z)((Dg(z))^{-1}(\cdot), \cdot) - \nabla u(z) \cdot (Dg(z))^{-1}D^2g(z)((Dg(z))^{-1}(\cdot), \cdot) = 0.$$

Let φ a local inverse of q. Therefore $U(w) = u(\varphi(w))$ satisfies that $\nabla U = \nabla u \cdot D\varphi =$ $\nabla u(z)(Dg(z))^{-1}$, thus Hess $U(w) \equiv 0$.

(iv) \Rightarrow (i). Since Hess $u(s) \equiv 0$, then $u \equiv c$ is a solution of this system (2.4), therefore $S_{ij}^0 f \equiv 0$. \square

Theorem 3.2. Let $f: \Omega \to \mathbb{C}^n$ be a locally biholomorphic mapping. There exists a function $g: \Omega \to \mathbf{C}^n$ locally biholomorphic such that

(3.1)
$$Dg(z) = Df(z)J_f^{-\frac{2}{n+1}}$$

if and only if $S_{ij}^0 f \equiv 0$ for all *i* and *j*. The function *g* will have $S_g = S_f$.

Proof. Suppose (3.1) holds. A straightforward calculation shows that

$$(Dg(z))^{-1}D^2g(z)(v,v) = S_f(z)(v,v).$$

The coordinate functions g^i of function g satisfy

$$dg^i = J_f^{-2/n+1} df^i \,.$$

Since $0 = d^2g^i = d^2f^i$ we conclude that J_f must be a constant. By Theorem 3.1 we conclude that $S_{ij}^0 f \equiv 0$ for all i and j. Reciprocally, if $S_{ij}^0 f \equiv 0$, then there exists a constant solution of the system (2.4), and by Lemma 2.2 there exists a mapping g with $S_g = S_f$ and $J_g^{-1/n+1} \equiv C$. By (2.5), $S_g = P_g = S_f$.

Remark 3.3. Considering $S_{ij}^0 f \equiv 0$ then cDf = Dg for some constant c. When $c = J_f^{-2/n+1}$, we have that

$$P_g(z) = S_f(z) = P_f(z).$$

Goldberg in [7] showed that, in terms of our operator,

(3.2)
$$\operatorname{tr}\{Df(z)^{-1}D^2f(z)(\vec{v}_i,\cdot)\} = \frac{\partial}{\partial z_i}\log J_f(z),$$

where $\vec{v}_i = (0, \ldots, 1, \ldots, 0)$ with 1 in position *i*. We use this result to prove the next theorem of uniqueness.

Theorem 3.4. Let f, g be locally biholomorphic mappings defined in Ω . Then $P_f(z)(\cdot, \cdot) = P_g(z)(\cdot, \cdot)$ if and only if $f = T \circ g$, where T(z) = Az + b with A is a $n \times n$ constant matrix and $b \in \mathbb{C}^n$.

Proof. Let f and g be locally biholomorphic mappings in Ω . As $P_f(z)(\vec{v}_i, \cdot) = P_g(z)(\vec{v}_i, \cdot)$ for all $i = 1, \ldots, n$, then by equation (3.2) we have that

(3.3)
$$\nabla \log J_f(z) = \nabla \log J_g(z) \,.$$

Using equation (2.5) we can conclude that $S_f(z) = S_g(z)$ for all z. Hence $g = T \circ f$ for some Mobius mapping T. But $\log J_g(z) = \log J_T(f(z)) + \log J_f(z)$ and equation (3.3) we have that $\log J_T(z)$ is a constant, therefore T(z) = Az + b for some $n \times n$ matrix A and $b \in \mathbb{C}^n$. Reciprocally, if $f = T \circ g$ with T(z) = Az + b for some $n \times n$ matrix A and $b \in \mathbb{C}^n$, it is easy to see that Df(z) = DT(f(z))Df(z) = ADf(z), which implies that $P_f(z) = P_g(z)$.

Theorem 3.5. Let A(z) be a bilinear operator defined in Ω by

where $a_{ij}^k = a_{ij}^k(z)$ and $\vec{v} = (v_1 \dots, v_n)$. Then there exists a function $f: \Omega \to \mathbb{C}^n$ locally biholomorphic such that $P_f(z) = A(z)$ if and only if the following statements hold:

(i)
$$a_{ij}^k(z) = a_{ji}^k(z)$$
 for all $i, j, k = 1, ..., n$;

(ii) there exists a holomorphic function $\varphi \colon \Omega \to \mathbf{C}$ such that

$$a_{1j}^1(z) + a_{2j}^2(z) + \dots + a_{nj}^n(z) = \frac{\partial \varphi}{\partial z_j}(z) \quad \forall j = 1, \dots, n;$$

(iii) $\exp(-\frac{\varphi}{n+1})$ is a solution of the system (2.4) with $P_{ij}^k(z)$ given by

$$P_{ij}^k(z) = a_{ij}^k(z) - \frac{1}{n+1} \left(\delta_i^k \operatorname{tr} \{ A(z)(\vec{v}_j, \cdot) + \delta_j^k \operatorname{tr} \{ A(z)(\vec{v}_i, \cdot) \} \right),$$

i, j, k = 1, ..., n, and $P_{ij}^0(z)$ are defined in terms of $P_{ij}^k(z)$ such that the integrable condition of the system [25, pages 129–130] holds.

Proof. Using (i) and (ii) we have that

$$\operatorname{tr}\{A(z)(\lambda,\cdot)\} = \nabla \varphi(z) \cdot \lambda_{+}$$

For given A(z) we can construct a bilinear mapping $\Lambda(z)(\lambda,\mu)$ as

$$\Lambda(z)(\lambda,\mu) = A(z)(\lambda,\mu) - \frac{1}{n+1}\operatorname{tr}\{A(z)(\lambda,\cdot)\}\mu - \frac{1}{n+1}\operatorname{tr}\{A(z)(\mu,\cdot)\}\lambda.$$

Each component of $\Lambda(z)$ is P_{ij}^k defined by

$$a_{ij}^k(z) - \frac{1}{n+1} \left(\delta_i^k \operatorname{tr} \{ A(z)(\vec{v}_j, \cdot) + \delta_j^k \operatorname{tr} \{ A(z)(\vec{v}_i, \cdot) \right) \right)$$

These coefficients satisfy $\sum_{i} P_{ik}^{k} = 0$ for all k = 1, ..., n. Now we define coefficients P_{ij}^{0} in terms of P_{ij}^{k} with k = 1, ..., n such that the integrability conditions in [25, pages 129–130] hold. Thus, the system (2.4) is completely integrable and in canonical form. Hence we can construct a function f such that $S_{f}(z) = \Lambda(z)$. By (iii) we have that

$$J_f^{-1/n+1} = \exp(-\frac{\varphi}{n+1}).$$

As S_f is defined by equation (2.5) we conclude that

$$\operatorname{tr}\{A(z)(\lambda,\cdot)\} = \frac{1}{n+1} \nabla J_f(z) \cdot \lambda,$$

which implies that

$$P_f(z) = (Df(z))^{-1} D^2 f(z)(\cdot, \cdot) = A(z)(\cdot, \cdot).$$

Reciprocally, it is easy to see that $P_f(z)$ satisfies (i), (ii) and (iii).

Observe that $\alpha [Df(z)]^{-1} D^2 f(z)(\vec{v}, \cdot)$ for a locally biholomorphic function f satisfies (i), (ii) and (iii) of Theorem 3.4.

Definition 3.6. Let f be a locally biholomorphic mapping in Ω such that f(0) = 0 and Df(0) = Id. We define f_{α} in Ω as the locally biholomorphic mapping for which

(3.4)
$$[Df_{\alpha}(z)]^{-1}D^{2}f_{\alpha}(z)(\cdot,\cdot) = \alpha [Df(z)]^{-1}D^{2}f(z)(\cdot,\cdot),$$

and $f_{\alpha}(0) = 0$, $Df_{\alpha}(0) = \text{Id.}$

As a generalization of the problem raised in [6], one can ask the question of determining the values of α for which the mapping f_{α} is univalent when f is univalent or even just locally univalent. A partial answer is given below when f is convex in the unit ball \mathbf{B}^n . Theorem 3.5 shows another partial result for compact linear invariant families. Since the class of univalent mappings in \mathbf{B}^n fails to be compact (n > 1), we

think it is unlikely that there exists an $\alpha_0 > 0$ small enough so that f_{α} is univalent for any $|\alpha| \leq \alpha_0$ and f univalent in \mathbf{B}^n . An interesting compact family of univalent mappings to consider would be the class S_0 of univalent mappings in \mathbf{B}^n that have a parametric representation.

Example 3.7. Let $f(z_1, z_2) = (\phi_{\alpha}(z_1), \psi_{\alpha}(z_2))$ be a locally univalent mapping defined in \mathbf{B}^2 such that $\phi_{\alpha}(z_1)$ and $\psi_{\alpha}(z_2)$ are defined by the equation (1.1) where ϕ and ψ are locally univalent analytic mappings defined in the unit disc such that $\phi(0) = \psi(0) = 0, \ \phi'(0) = \psi'(0) = 1$ and suppose that $z = (z_1, z_2) \in \mathbf{B}^2$. Its Schwarzian derivatives satisfy

$$S_{11}^{1}f(z_{1},z_{2}) = \frac{\phi_{\alpha}''}{\phi_{\alpha}'}(z_{1}) = \alpha \frac{\phi''}{\phi'}(z_{1}), \quad S_{22}^{2}f(z_{1},z_{2}) = \frac{\psi_{\alpha}''}{\psi_{\alpha}'}(z_{2}) = \alpha \frac{\psi''}{\psi'}(z_{2}),$$

$$S_{22}^{1}f(z_{1},z_{2}) = S_{11}^{2}f(z_{1},z_{2}) = 0.$$

Now, let $f(z) = (\psi(z_1), \phi(z_2))$. Then the corresponding mapping f_{α} has the property that its Schwarzian derivatives are

$$S_{11}^{1} f_{\alpha}(z_{1}, z_{2}) = \alpha S_{11}^{1} f(z_{1}, z_{2}) = \alpha \frac{\phi''}{\phi'}(z_{1}),$$

$$S_{22}^{2} f_{\alpha}(z_{1}, z_{2}) = \alpha S_{22}^{2} f(z_{1}, z_{2}) = \alpha \frac{\psi''}{\psi'}(z_{2}),$$

$$S_{22}^{1} f_{\alpha}(z_{1}, z_{2}) = S_{11}^{2} f_{\alpha}(z_{1}, z_{2}) = 0.$$

Therefore $S_{ij}^k f = S_{ij}^k f_\alpha$ which implies that there exists a Möbius mapping M such that $M \circ f = f_\alpha$. But $f(0) = 0 = f_\alpha(0)$, $DF(0) = Id = Df_\alpha(0)$ and $\nabla \log J_f = \nabla \log J_{f_\alpha} = \alpha \nabla \log J_f$, then $f = f_\alpha$. Thus

$$f(z) = (\phi(z_1), \psi(z_2)) \Longrightarrow f_{\alpha}(z) = (\phi_{\alpha}(z_1), \psi_{\alpha}(z_2)),$$

where ϕ_{α} and ψ_{α} are defined by (1.1). By the way, in this example, if $|\alpha| < 1/4$, then f_{α} will be univalent in \mathbf{B}^2 . Moreover, if $\phi(z_1)$ is a univalent mapping defined by (1.2) and $\psi(z_2) = z_2$, then the mapping $f(z) = (\phi(z_1), \psi(z_2))$ is univalent and the corresponding mapping f_{α} is not univalent if $|\alpha| > 1/3$ and $\alpha \neq 1$.

In [9] the author proved that a locally biholomorphic mapping $f: \mathbf{B}^n \to \mathbf{C}^n$ is convex if and only if $1 - \operatorname{Re}\langle [Df(z)]^{-1}D^2f(z)(u, u), z \rangle > 0$ for all $z \in \mathbf{B}^n$ and $u \in \mathbf{C}^n$ with ||u|| = 1. Thus, if $0 \le \alpha \le 1$, then f_{α} is a convex mapping when f is a convex mapping since

(3.5)
$$1 - \operatorname{Re}\langle [Df_{\alpha}(z)]^{-1}D^{2}f_{\alpha}(z)(u,u), z \rangle = 1 - \alpha \operatorname{Re}\langle [Df(z)]^{-1}D^{2}f(z)(u,u), z \rangle > 0.$$

Example 3.8. Let f be a univalent function in **D**. We consider the Roper–Suffridge extension (see [21]) to \mathbf{B}^2 of f to the function

$$\Phi_f(z) = \left(f(z_1), \sqrt{f'(z_1)}z_2\right).$$

Thus,

$$[D\Phi_f(z)]^{-1}[D^2\Phi_f(z)](\vec{v},\cdot) = \begin{pmatrix} \frac{f''}{f'}(z_1)v_1 & 0\\ \frac{1}{2}z_2Sf(z_1)v_1 + \frac{1}{2}\frac{f''}{f'}(z_1)v_2 & \frac{1}{2}\frac{f''}{f'}(z_1)v_1 \end{pmatrix}.$$

A straightforward calculation shows that

$$(\Phi_f)_{\alpha}(z) = \left(f_{\alpha}(z_1), z_2\sqrt{f'_{\alpha}(z_1)} + y(z_1)\right),$$

where f_{α} is defined by equation (1.1) and y satisfies that

$$y'' - \alpha \frac{f''}{f'} y' = \frac{\alpha(\alpha - 1)}{4} \left(\frac{f''}{f'}\right)^2 (f')^{\alpha/2}.$$

Moreover, Φ_f is univalent when f is univalent, in fact, if f is convex, then Φ_f is convex. On the other hand, $(\Phi_f)_{\alpha}$ is univalent if f_{α} is univalent which holds for $|\alpha| \leq 1/4$ for all univalent mappings f.

Theorem 3.9. Let $f: \mathbf{B}^n \to \mathbf{C}^n$ be a locally biholomorphic mapping such that the norm order of the linear invariant family generated by f is $\beta < \infty$. Then f_{α} is univalent if $|\alpha| \leq \frac{1}{2\beta + 1}$.

Proof. Let ϕ be a automorphism of \mathbf{B}^n such that $\phi(0) = \zeta$. The mapping $g(z) = D\phi(0)^{-1}Df(\phi(0))^{-1}(f(\phi(z)) - f(\phi(0)))$ belongs to the family generated by f, therefore $\|D^2g(0)\| \leq \beta$. But

$$D^{2}g(0)(\cdot, \cdot) = D\phi(0)^{-1}Df(\zeta)^{-1}Df(w)D^{2}\phi(0)(\cdot, \cdot) + D\phi(0)^{-1}Df(\zeta)^{-1}D^{2}f(\zeta)(D\phi(0)(\cdot), D\phi(0)(\cdot)).$$

Evaluating in $D\phi(0)^{-1}(\zeta) = \zeta/(1 - \|\zeta\|^2)$, multiplication by α and using (3.4) we have that

$$\alpha D^2 g(0)(\zeta, \cdot) = \alpha D \phi(0)^{-1} D f(\zeta)^{-1} D f(\zeta) D^2 \phi(0)(\zeta, \cdot) + (1 - \|\zeta\|^2) D \phi(0)^{-1} D f_\alpha(\zeta)^{-1} D^2 f_\alpha(\zeta)(\zeta, D \phi(0)(\cdot)),$$

where $D\phi(0)^{-1}D^2\phi(\zeta, \cdot) = -\|\zeta\|^2(\cdot) - \zeta\zeta^*(\cdot)$. Thus, for all vectors $v = D\phi(0)^{-1}(u)$ it follows that

$$(1 - \|\zeta\|^2) Df_{\alpha}(\zeta)^{-1} D^2 f_{\alpha}(\zeta)(\zeta, u) = \alpha D\phi(0) D^2 g(0)(\zeta, v) - \alpha \|\zeta\|^2 u - \alpha (1 - \|\zeta\|^2) \zeta \zeta^* v.$$

Then taking the supremum over all vectors u with norm ||u|| = 1, we have that

$$\|(1 - \|\zeta\|^2) Df_{\alpha}(\zeta)^{-1} D^2 f_{\alpha}(\zeta)(\zeta, \cdot) + \alpha \|\zeta\|^2 I\| \le |\alpha|(2\beta + 1).$$

Hence by the generalization of the Ahlfors and Becker result (see [10, page 350]) we conclude that f_{α} satisfies the hypothesis of this theorem, so it is univalent in \mathbf{B}^n . \Box

The last corollary is an immediate consequence.

Corollary 3.10. Let \mathscr{F} be a linearly invariant family of locally biholomorphic mappings defined in \mathbf{B}^n of finite order β . Then f_{α} is univalent in \mathbf{B}^n for every $f \in \mathscr{F}$ when $|\alpha| \leq \frac{1}{2\beta + 1}$.

Acknowledgements. I would like to thank Martin Chuaqui and John Pfaltzgraff for their useful suggestions and valuable discussions.

References

- AHLFORS, L. V.: Sufficient conditions for quasi-conformal extension. In: Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Studies 79, 1974, 23–29.
- [2] BECKER, J.: Löwnersche Differentialgleichung und quasi-konform forttsetzbare schlichte Funktionen. - J. Reine Angew. Math. 225, 1972, 23–43.

- [3] CHUAQUI, M., and B. OSGOOD: Sharp distortion theorems associated with the Schwarzian derivative. - J. London Math. Soc. (2) 48, 1993, 289–298.
- [4] CHUAQUI, M., and B. OSGOOD: Ahlfors-Weill extensions of conformal mappings and critical points of the Poincaré metric. - Comment. Math. Helv. 69, 1994, 659–668.
- [5] DUREN, P.: Univalent functions. Springer-Verlag, 1983.
- [6] DUREN, P., H. S. SHAPIRO, and A. L. SHIELDS: Singular measures and domains not of Smirnov type. - Duke Math. J. 33:2, 1966, 247–254.
- [7] GOLDBERG, M. A.: The derivative of a determinant. Amer. Math. Monthly, 79, 1972, 1124– 1126.
- [8] KIM, Y. J., and E. P. MERKES: On an integral of poers of spirallike function. Kyungpook Math. J. 12, 1972, 249–253.
- [9] KIKUCHI, K.: Starlike and convex mappings in several complex variables. Pacif. J. Math. 44, 1973, 569–580.
- [10] GRAHAM, I., and G. KOHR: Geometric function theory in one and higher dimensions. -Monogr. Textbooks Pure Appl. Math. 255, Marcel Dekker, 2003.
- [11] HERNÁNDEZ, R.: Schwarzian derivatives and a linearly invariant family in \mathbb{C}^n . Pacific J. Math. 228:2, 2006, 201–218.
- [12] HERNÁNDEZ, R.: Schwarzian derivatives and some criteria for univalence in \mathbb{C}^n . Complex Var. Elliptic Equ. 52:5, 2007, 397–410.
- [13] MOLZON, R., and K. P. MORTENSEN: Univalence of holomorphic mappings. Pacific J. Math. 180:1, 1997, 125–133.
- [14] MOLZON, R., and H. TAMANOI: Generalized Schwarzians in several variables and Möbius invariant differential operators. - Forum Math. 14, 2002, 165–188.
- [15] NEHARI, Z.: The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 1949, 545–551.
- [16] NEHARI, Z.: Some criteria of univalence. Proc. Amer. Math. Soc. 5, 1954, 700–704.
- [17] ODA, T.: On Schwarzian derivatives in several variables. Kokyuroku of R.I.M. 226, Kioto Univ., 1974 (in Japanese).
- [18] PFALTZGRAFF, J. A.: Subordination chains and univalence of holomorphic mappings in Cⁿ. -Math. Ann. 210, 1974, 55-68.
- [19] PFALTZGRAFF, J. A.: Univalence of the integral of $f'(z)^{\lambda}$. Bull. London Math. Soc. 7, 1975, 254–256.
- [20] POMMERENKE, CH.: Linear-invarinte Familien analytischer Funktionen I. Math. Ann. 155, 1964, 108–154.
- [21] ROPER, K., and T. SUFFRIDGE: Convex mappings on the unit ball in \mathbb{C}^n . J. Anal. Math. 65, 1995, 333–347.
- [22] SUFFRIDGE, T.: Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. - In: Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), Lecture Notes in Math. 599, Springer-Verlag, New York, 1976, 146–159.
- [23] ROYSTER, W. C.: On the univalence of a certain integral. Michigan Math. J. 12, 1965, 385–387.
- [24] YOSHIDA, M.: Canonical forms of some system of linear partial differential equations. Proc. Japan Acad. 52, 1976, 473–476.
- [25] YOSHIDA, M.: Orbifold-uniformizing differential equations. Math. Ann. 267, 1984, 125–142.

Received 5 August 2010