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Abstract. We solve the several complex variables preSchwarzian operator equation [Df(z)]−1

D2f(z) = A(z), z ∈ Cn, where A(z) is a bilinear operator and f is a Cn valued locally biholomorphic
function on a domain in Cn. Then one can define a several variables f → fα transform via the
operator equation [Dfα(z)]−1D2fα(z) = α[Df(z)]−1D2f(z), and thereby, study properties of fα.
This is a natural generalization of the one variable operator fα(z) in [6] and the study of its
univalence properties, e.g., the work of Royster [23] and many others. Möbius invariance and the
multivariables Schwarzian derivative operator of Oda [17] play a central role in this work.

1. Introduction

Consider the class S of functions f holomorphic and univalent in the disk D =
{z : |z| < 1} with the normalization f(0) = 0 and f ′(0) = 1. Let α ∈ C, f ∈ S and
define the integral transform

(1.1) fα(z) =

∫ z

0

[f ′(w)]α dw,

where the power is defined by the branch of the logarithm for which log f ′(0) = 0,
[6]. A question considered in [6] is to determinate the values of α for which fα ∈ S .
In [23] Royster exhibited non-univalent mappings fα for each complex α 6= 1 with
|α| > 1/3. In fact, consider functions of the form

(1.2) f(z) = exp(µ log(1− z)),

which are univalent if and only if µ lies in ones of the closed disks

|µ + 1| ≤ 1, |µ− 1| ≤ 1.

Royster showed that for any such value of µ, the function in (1.1) is not univalent for
each α with|α| > 1/3 and α 6= 1. Moreover, Pfaltzgraff using the Ahlfors univalence
criterion [1] proved that for any f ∈ S , if |α| ≤ 1/4, then fα is univalent in D,
see [19].

Let f be a locally univalent mapping in D and fα defined by equation (1.1).
Then f ′α(z) = [f ′(z)]α, which implies that

f ′′α
f ′α

(z) = α
f ′′

f ′
(z).
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If f and g satisfy that g′′/g′(z) = f ′′/f ′(z), then log(g′(z)) = log(f ′(z)) when f ′(0) =
g′(0). Therefore g = f if f(0) = g(0). Thus

(1.3) fα(z) =

∫ z

0

[f ′(w)]α dw ⇔ f ′′α
f ′α

(z) = α
f ′′

f ′
(z).

This equivalence in one variable suggests our idea to define the several variables
generalization of fα via the operator equation

(1.4) [Dfα(z)]−1D2fα(z)(·, ·) = α[Df(z)]−1D2f(z)(·, ·).
Yoshida [25] developed a complete description of prescribing Oda’s Schwarzian deriva-
tives [17] in terms of a completely integrable system of differential equations. The
description involves operators Sk

ijf and S0
ijf of orders two and three respectively,

coefficients of the system and Möbius invariants. In fact, the Sk
ijf operators are the

operator of least order that vanish for Möbius mappings. This is a strong difference
with one complex variable where the third order Schwarzian operator is the lowest
order operator annihilated by all Möbius mappings. For n = 1, the Möbius group has
dimension 3, which allows to set f(z0), f

′(z0) and f ′′(z0) of a holomorphic mapping
f at a given point z0 arbitrarily. It would therefore be pointless to seek a Möbius
invariant differential operator of order 2. But for n > 1 the number of parameters
involved in the value and all derivatives of order 1 and 2 of a locally biholomorphic
mapping is n2(n + 1)/2 + n2 + n, and exceeds the dimension of the corresponding
Möbius group in Cn, which is n2+2n. By the definition of the Schwarzian derivatives,
we have that Sk

ijF = Sk
jiF for all k and

∑n
j=1 Sj

ijF = 0 and we see there are exactly
n(n − 1)(n + 2)/2 independent terms Sk

ijF , which is equal to the excess mentioned
above.

A different approach to obtain the invariant operators Sk
ij, S0

ij has been developed
by Molzon and Tamanoi [14]. In addition, Molzon and Pinney had earlier developed
equivalent invariant operators in the context of complex manifolds [13].

The operator
Pf (z) = [Df(z)]−1D2f(z)(·, ·)

introduced by Pfaltzgraff in [18] is the “natural” way to extend the classical one
variable operator preSchwarzian f ′′/f ′. Furthermore, the author in [18] extended
the classical univalence criterion of Becker [2] to several variables. The question
now is how to extend the equation (1.1) to Cn. It is necessary to understand when
one can recover the function f from a given Pf . We shall show a strong connection
between this operator and the Schwarzian derivatives operator SF (z)(·, ·), introduced
in [11]. Indeed, the problem of prescribing Pf can be reduced to understanding how
to prescribe Sk

ijf in terms of Pf . This is achieved via completely integrable system
generated by Sk

ijf and corresponding “new differential conditions” on the elements of
Pf . We then use this theory to extend the classical single variable problem about the
univalence of fα by using equation (1.4) to define fα in several complex variables.

2. Oda Schwarzian and Möbius invariants

Let f : Ω ⊂ Cn → Cn be a locally biholomorphic mapping defined on some
domain Ω. Oda in [17] defined the Schwarzian derivatives of f = (f1, . . . , fn) as
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(2.1) Sk
ijf =

n∑

l=1

∂2fl

∂zi∂zj

∂zk

∂fl

− 1

n + 1

(
δk
i

∂

∂zj

+ δk
j

∂

∂zi

)
log Jf ,

where i, j, k = 1, 2, . . . , n, Jf is the jacobian determinant of the differential Df and δk
i

are the Kronecker symbols. For n > 1 the Schwarzian derivatives have the following
properties:

(2.2) Sk
ijf = 0 for all i, j, k = 1, 2, . . . , n iff f(z) = M(z)

for some Möbius transformation

M(z) =

(
l1(z)

l0(z)
, . . . ,

ln(z)

l0(z)

)
,

where li(z) = ai0+ai1z1+· · ·+ainzn with det(aij) 6= 0. Furthermore, for a composition

(2.3) Sk
ij(g ◦ f)(z) = Sk

ijf(z) +
n∑

l,m,r=1

Sr
lmg(w)

∂wl

∂zi

∂wm

∂zj

∂zk

∂wr

, w = f(z).

From this chain rule it can be shown that Sk
ijf = Sk

ijg for all i, j, k = 1, . . . , n if and
only if g = T ◦ f for some Möbius transformation. The S0

ijf coefficients are given by

S0
ijf(z) = J

1/(n+1)
f

(
∂2

∂zi∂zj

J
−1/(n+1)
f −

n∑

k=1

∂

∂zk

J
−1/(n+1)
f Sk

ijf(z)

)
.

In his work, Oda gives a description of the functions with prescribed Schwar-
zian derivatives Sk

ijf ([17]). Consider the following overdetermined system of partial
differential equations,

(2.4)
∂2u

∂zi∂zj

=
n∑

k=1

P k
ij(z)

∂u

∂zk

+ P 0
ij(z)u, i, j = 1, 2, . . . , n,

where z = (z1, z2, . . . , zn) ∈ Ω ⊂ Cn and P k
ij(z) are holomorphic functions for i, j, k =

0, . . . , n. The system (2.4) is called completely integrable if there are at most n + 1
linearly independent solutions, and is said to be in canonical form (see [24]) if the
coefficients satisfy

n∑
j=1

P j
ij(z) = 0, i = 1, 2, . . . , n.

Oda proved that (2.4) is a completely integrable system in canonical form if and only
if P k

ij = Sk
ijf for a locally biholomorphic mapping f = (f1, . . . , fn), where fi = ui/u0

for 1 ≤ i ≤ n and u0, u1, . . . , un is a set of linearly independent solutions of the
system. For a given mapping f , u = (Jf )

− 1
n+1 is always a solution of (2.4) with

P k
ij = Sk

ijf .

Definition 2.1. We define the Schwarzian derivative operator as the operator
Sf (z) : TzΩ → Tf(z)Ω given by

Sf (z)(~v, ~w) =
(
~v tS1f(z)~w, . . . , ~v tSnf(z)~w

)
,

where Skf is the n× n matrix defined by (Sk
ijf)ij and ~v ∈ TzΩ.
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The Schwarzian derivative operator [12] can be rewritten as

Sf (z)(~v, ~w) = [Df(z)]−1D2f(z)(~v, ~w)− 1

n + 1
(∇ log Jf (z) · ~v) ~w

− 1

n + 1
(∇ log Jf (z) · ~w)~v,

(2.5)

and the system (2.4) as

(2.6) Hess u(z)(·, ·) = ∇u(z) · Sf (z)(·, ·) + S0
f (z)(·, ·)u(z),

where S0
f is a n×n matrix defined by (S0

ijf)ij. We include in this section two lemmas
that complement the work of Oda.

Lemma 2.2. Let f : Ω ⊂ Cn → Cn be a locally biholomorphic mapping and
u0 = J

−1/n+1
f . Then

f =
~u

u0

=

(
u1

u0

, . . . ,
un

u0

)
,

where u0, u1, . . . , un are linearly independent solutions of (2.4)

Proof. We will prove that ~u = fu0 is solution of the equation (2.6). It follows
that Dfu0 + f∇u0 = Du, from where

D2f · u0 + 2Df · ∇u0 + f · Hess u0 = D2u.

Using the system we have that

D2f · u0 + 2Df · ∇u0 −Df · u0 · Sf + Du · Sf + S0
f · u = D2u.

Considering the equation (2.5) with u0 = J
−1/n+1
f we have that

D2f · u0 + 2Df · ∇u0 −Df · Sf · u0 = 0,

and D2u(·, ·) = Du(Sf (·, ·)) + S0
f (·, ·)u, hence ui with i = 1, . . . , n and u0 are inde-

pendent solutions of the system (2.4). ¤

Lemma 2.3. Let u0 be a solution of the system (2.4). Then there exists a
function f = ~u/u0 where ~u = (u1, . . . , un) and ui with i = 0, 1, . . . , n are independent
solutions of the system (2.4) where u0 = J

−1/n+1
f . The function f will be holomorphic

away from the zero set of u0.

Proof. According to the previous lemma we can find F = ~v/v0 where {v0, v1, . . . , vn}
are a linearly independent solutions of the system (2.4) with P k

ij = Sk
ij and v0 =

J
−1/n+1
F . As u0 is solution of the system we have that u0 = α0v0 + · · · + αnvn. We

need to find a Möbius mapping T such that

T ◦ F =

(
u1

u0

, . . . ,
un

u0

)
= f,

and J
−1/n+1
T◦F = u0. We have

J
−1/n+1
T◦F (z) = J

−1/n+1
T (F (z))J

−1/n+1
F (z)

= (λ0 + λ1F1(z) + · · ·+ λnFn(z))J
−1/n+1
F (z)

= λ0v0 + λ1v1 + · · ·+ λnvn,

which will be equal to u0 if we choose λi = αi for all i = 0, 1, . . . , n. ¤
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3. Results

Let Ω ⊂ Cn be domain.

Theorem 3.1. Let f : Ω → Cn be a locally biholomorphic mapping. The fol-
lowing statements are equivalent:

(i) S0
ijf(z) ≡ 0.

(ii) There exists a locally biholomorphic mapping g : Ω → Cn with Sg = Sf and
Jg constant.

(iii) There exists a locally biholomorphic mapping h : Ω → Cn such that Sh = Sf

and J
−1/n+1
h = 1/L(h), where L(w) = α0 + α1w1 + · · ·+ αnwn.

(iv) Locally there exists a biholomorphic change of variables such that the system
(2.4) with P k

ij = Sk
ijf reduces to Hess(u) = 0.

Proof. (i)⇒ (ii). As S0
ijf ≡ 0, the system (2.4) reduces to

uij =
n∑

k=1

Sk
ijuk.

Therefore u ≡ c is solution, thus by Lemma (2.3) there exists a function g such that
Jg ≡ C.

(ii)⇒ (iii). Let g = T ◦h for some Möbius T to be determined. Then J
−1/n+1
g (z)

= J
−1/n+1
T (h(z))J

−1/n+1
h (z). Since J

−1/n+1
g ≡ C, we have that

C = (a0 + a1h1 + · · ·+ anhn)J
−1/n+1
h (z),

from where the result obtains after scaling h.
(iii) ⇒ (iv). Suppose h has J

−1/n+1
h = 1/L(h). The previous argument shows

that by choosing T appropriately, we can produce g = T ◦ h with Jg ≡ 1. Hence
Sg(z)(·, ·) = (Dg(z))−1D2g(z)(·, ·), and the system (2.4) reduces to

Hess u(z)(·, ·) = ∇u(z) · Sg(z)(·, ·).
We consider D(∇u(z)(Dg(z))−1)(·, ·):

D(∇u(z)(Dg(z))−1(·, ·) = Hess u(z)((Dg(z))−1(·), ·)
−∇u(z) · (Dg(z))−1D2g(z)((Dg(z))−1(·), ·)

= ∇u(z) · Sg(z)((Dg(z))−1(·), ·)
−∇u(z) · (Dg(z))−1D2g(z)((Dg(z))−1(·), ·) = 0.

Let ϕ a local inverse of g. Therefore U(w) = u(ϕ(w)) satisfies that ∇U = ∇u ·Dϕ =
∇u(z)(Dg(z))−1, thus Hess U(w) ≡ 0.

(iv) ⇒ (i). Since Hess u(s) ≡ 0, then u ≡ c is a solution of this system (2.4),
therefore S0

ijf ≡ 0. ¤

Theorem 3.2. Let f : Ω → Cn be a locally biholomorphic mapping. There
exists a function g : Ω → Cn locally biholomorphic such that

(3.1) Dg(z) = Df(z)J
− 2

n+1

f

if and only if S0
ijf ≡ 0 for all i and j. The function g will have Sg = Sf .
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Proof. Suppose (3.1) holds. A straightforward calculation shows that

(Dg(z))−1D2g(z)(v, v) = Sf (z)(v, v).

The coordinate functions gi of function g satisfy

dgi = J
−2/n+1
f df i .

Since 0 = d2gi = d2f i we conclude that Jf must be a constant. By Theorem 3.1 we
conclude that S0

ijf ≡ 0 for all i and j. Reciprocally, if S0
ijf ≡ 0, then there exists a

constant solution of the system (2.4), and by Lemma 2.2 there exists a mapping g

with Sg = Sf and J
−1/n+1
g ≡ C. By (2.5), Sg = Pg = Sf . ¤

Remark 3.3. Considering S0
ijf ≡ 0 then cDf = Dg for some constant c. When

c = J
−2/n+1
f , we have that

Pg(z) = Sf (z) = Pf (z).

Goldberg in [7] showed that, in terms of our operator,

(3.2) tr{Df(z)−1D2f(z)(~vi, ·)} =
∂

∂zi

log Jf (z),

where ~vi = (0, . . . , 1, . . . , 0) with 1 in position i. We use this result to prove the next
theorem of uniqueness.

Theorem 3.4. Let f, g be locally biholomorphic mappings defined in Ω. Then
Pf (z)(·, ·) = Pg(z)(·, ·) if and only if f = T ◦ g, where T (z) = Az + b with A is a
n× n constant matrix and b ∈ Cn.

Proof. Let f and g be locally biholomorphic mappings in Ω. As Pf (z)(~vi, ·) =
Pg(z)(~vi, ·) for all i = 1, . . . , n, then by equation (3.2) we have that

(3.3) ∇ log Jf (z) = ∇ log Jg(z) .

Using equation (2.5) we can conclude that Sf (z) = Sg(z) for all z. Hence g = T ◦ f
for some Mobius mapping T . But log Jg(z) = log JT (f(z)) + log Jf (z) and equation
(3.3) we have that log JT (z) is a constant, therefore T (z) = Az + b for some n × n
matrix A and b ∈ Cn. Reciprocally, if f = T ◦ g with T (z) = Az + b for some n× n
matrix A and b ∈ Cn, it is easy to see that Df(z) = DT (f(z))Df(z) = ADf(z),
which implies that Pf (z) = Pg(z). ¤

Theorem 3.5. Let A(z) be a bilinear operator defined in Ω by

A(z)(~v, ·) =




a1
11v1 + · · ·+ a1

1nvn · · · · a1
n1v1 + · · ·+ a1

nnvn

· · · · · ·
· · · · · ·
· · · · · ·

an
11v1 + · · ·+ an

1nvn · · · · an
n1v1 + · · ·+ an

nnvn




where ak
ij = ak

ij(z) and ~v = (v1 . . . , vn). Then there exists a function f : Ω → Cn

locally biholomorphic such that Pf (z) = A(z) if and only if the following statements
hold:

(i) ak
ij(z) = ak

ji(z) for all i, j, k = 1, . . . , n;
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(ii) there exists a holomorphic function ϕ : Ω → C such that

a1
1j(z) + a2

2j(z) + · · ·+ an
nj(z) =

∂ϕ

∂zj

(z) ∀j = 1, . . . , n;

(iii) exp(− ϕ

n + 1
) is a solution of the system (2.4) with P k

ij(z) given by

P k
ij(z) = ak

ij(z)− 1

n + 1

(
δk
i tr {A(z)(~vj, ·) + δk

j tr {A(z)(~vi, ·)
)
,

i, j, k = 1, . . . , n, and P 0
ij(z) are defined in terms of P k

ij(z) such that the
integrable condition of the system [25, pages 129–130] holds.

Proof. Using (i) and (ii) we have that

tr{A(z)(λ, ·)} = ∇ϕ(z) · λ.

For given A(z) we can construct a bilinear mapping Λ(z)(λ, µ) as

Λ(z)(λ, µ) = A(z)(λ, µ)− 1

n + 1
tr{A(z)(λ, ·)}µ− 1

n + 1
tr{A(z)(µ, ·)}λ.

Each component of Λ(z) is P k
ij defined by

ak
ij(z)− 1

n + 1

(
δk
i tr{A(z)(~vj, ·) + δk

j tr{A(z)(~vi, ·)
)
.

These coefficients satisfy
∑

i P
k
ik = 0 for all k = 1, . . . , n. Now we define coefficients

P 0
ij in terms of P k

ij with k = 1, . . . , n such that the integrability conditions in [25,
pages 129–130] hold. Thus, the system (2.4) is completely integrable and in canonical
form. Hence we can construct a function f such that Sf (z) = Λ(z). By (iii) we have
that

J
−1/n+1
f = exp(− ϕ

n + 1
).

As Sf is defined by equation (2.5) we conclude that

tr{A(z)(λ, ·)} =
1

n + 1
∇Jf (z) · λ,

which implies that

Pf (z) = (Df(z))−1D2f(z)(·, ·) = A(z)(·, ·).
Reciprocally, it is easy to see that Pf (z) satisfies (i), (ii) and (iii). ¤

Observe that α[Df(z)]−1D2f(z)(~v, ·) for a locally biholomorphic function f sat-
isfies (i), (ii) and (iii) of Theorem 3.4.

Definition 3.6. Let f be a locally biholomorphic mapping in Ω such that f(0) =
0 and Df(0) = Id. We define fα in Ω as the locally biholomorphic mapping for which

(3.4) [Dfα(z)]−1D2fα(z)(·, ·) = α[Df(z)]−1D2f(z)(·, ·),
and fα(0) = 0, Dfα(0) = Id.

As a generalization of the problem raised in [6], one can ask the question of
determining the values of α for which the mapping fα is univalent when f is univalent
or even just locally univalent. A partial answer is given below when f is convex in the
unit ball Bn. Theorem 3.5 shows another partial result for compact linear invariant
families. Since the class of univalent mappings in Bn fails to be compact (n > 1), we
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think it is unlikely that there exists an α0 > 0 small enough so that fα is univalent
for any |α| ≤ α0 and f univalent in Bn. An interesting compact family of univalent
mappings to consider would be the class S0 of univalent mappings in Bn that have a
parametric representation.

Example 3.7. Let f(z1, z2) = (φα(z1), ψα(z2)) be a locally univalent mapping
defined in B2 such that φα(z1) and ψα(z2) are defined by the equation (1.1) where
φ and ψ are locally univalent analytic mappings defined in the unit disc such that
φ(0) = ψ(0) = 0, φ′(0) = ψ′(0) = 1 and suppose that z = (z1, z2) ∈ B2. Its
Schwarzian derivatives satisfy

S1
11f(z1, z2) =

φ′′α
φ′α

(z1) = α
φ′′

φ′
(z1), S2

22f(z1, z2) =
ψ′′α
ψ′α

(z2) = α
ψ′′

ψ′
(z2),

S1
22f(z1, z2) = S2

11f(z1, z2) = 0.

Now, let f(z) = (ψ(z1), φ(z2)). Then the corresponding mapping fα has the property
that its Schwarzian derivatives are

S1
11fα(z1, z2) = αS1

11f(z1, z2) = α
φ′′

φ′
(z1),

S2
22fα(z1, z2) = αS2

22f(z1, z2) = α
ψ′′

ψ′
(z2),

S1
22fα(z1, z2) = S2

11fα(z1, z2) = 0.

Therefore Sk
ijf = Sk

ijfα which implies that there exists a Möbius mapping M such
that M ◦ f = fα. But f(0) = 0 = fα(0), DF (0) = Id = Dfα(0) and ∇ log Jf =
∇ log Jfα = α∇ log Jf , then f = fα. Thus

f(z) = (φ(z1), ψ(z2)) =⇒ fα(z) = (φα(z1), ψα(z2)),

where φα and ψα are defined by (1.1). By the way, in this example, if |α| < 1/4,
then fα will be univalent in B2. Moreover, if φ(z1) is a univalent mapping defined
by (1.2) and ψ(z2) = z2, then the mapping f(z) = (φ(z1), ψ(z2)) is univalent and the
corresponding mapping fα is not univalent if |α| > 1/3 and α 6= 1.

In [9] the author proved that a locally biholomorphic mapping f : Bn → Cn is
convex if and only if 1−Re〈[Df(z)]−1D2f(z)(u, u), z〉 > 0 for all z ∈ Bn and u ∈ Cn

with ‖u‖ = 1. Thus, if 0 ≤ α ≤ 1, then fα is a convex mapping when f is a convex
mapping since

(3.5) 1−Re〈[Dfα(z)]−1D2fα(z)(u, u), z〉 = 1−αRe〈[Df(z)]−1D2f(z)(u, u), z〉 > 0.

Example 3.8. Let f be a univalent function in D. We consider the Roper–
Suffridge extension (see [21]) to B2 of f to the function

Φf (z) =
(
f(z1),

√
f ′(z1)z2

)
.

Thus,

[DΦf (z)]−1[D2Φf (z)](~v, ·) =

(
f ′′
f ′ (z1)v1 0

1
2
z2Sf(z1)v1 + 1

2
f ′′
f ′ (z1)v2

1
2

f ′′
f ′ (z1)v1

)
.

A straightforward calculation shows that

(Φf )α(z) =
(
fα(z1), z2

√
f ′α(z1) + y(z1)

)
,
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where fα is defined by equation (1.1) and y satisfies that

y′′ − α
f ′′

f ′
y′ =

α(α− 1)

4

(
f ′′

f ′

)2

(f ′)α/2.

Moreover, Φf is univalent when f is univalent, in fact, if f is convex, then Φf is
convex. On the other hand, (Φf )α is univalent if fα is univalent which holds for
|α| ≤ 1/4 for all univalent mappings f .

Theorem 3.9. Let f : Bn → Cn be a locally biholomorphic mapping such that
the norm order of the linear invariant family generated by f is β < ∞. Then fα is

univalent if |α| ≤ 1

2β + 1
.

Proof. Let φ be a automorphism of Bn such that φ(0) = ζ. The mapping
g(z) = Dφ(0)−1Df(φ(0))−1(f(φ(z)) − f(φ(0))) belongs to the family generated by
f , therefore ‖D2g(0)‖ ≤ β. But

D2g(0)(·, ·) = Dφ(0)−1Df(ζ)−1Df(w)D2φ(0)(·, ·)
+ Dφ(0)−1Df(ζ)−1D2f(ζ)(Dφ(0)(·), Dφ(0)(·)).

Evaluating in Dφ(0)−1(ζ) = ζ/(1 − ‖ζ‖2), multiplication by α and using (3.4) we
have that

αD2g(0)(ζ, ·) = αDφ(0)−1Df(ζ)−1Df(ζ)D2φ(0)(ζ, ·)
+ (1− ‖ζ‖2)Dφ(0)−1Dfα(ζ)−1D2fα(ζ)(ζ, Dφ(0)(·)),

where Dφ(0)−1D2φ(ζ, ·) = −‖ζ‖2(·) − ζζ∗(·). Thus, for all vectors v = Dφ(0)−1(u)
it follows that

(1−‖ζ‖2)Dfα(ζ)−1D2fα(ζ)(ζ, u) = αDφ(0)D2g(0)(ζ, v)−α‖ζ‖2u−α(1−‖ζ‖2)ζζ∗v.

Then taking the supremum over all vectors u with norm ‖u‖ = 1, we have that

‖(1− ‖ζ‖2)Dfα(ζ)−1D2fα(ζ)(ζ, ·) + α‖ζ‖2I‖ ≤ |α|(2β + 1).

Hence by the generalization of the Ahlfors and Becker result (see [10, page 350]) we
conclude that fα satisfies the hypothesis of this theorem, so it is univalent in Bn. ¤

The last corollary is an immediate consequence.

Corollary 3.10. Let F be a linearly invariant family of locally biholomorphic
mappings defined in Bn of finite order β. Then fα is univalent in Bn for every f ∈ F

when |α| ≤ 1

2β + 1
.
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