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Abstract. We study conformal metrics dρ on the Euclidean unit ball Bn . We assume that
either the density ρ associated with the metric dρ satisfies a logarithmic volume growth condition
for small balls or that ρ satisfies a Harnack inequality and a suitable sub-Euclidean volume growth
condition. We prove that the ρ-boundary ∂ρ Bn is homeomorphic to Sn−1 if and only if ∂ρ Bn is
compact. In the planar case, the compactness of ∂ρ B2 is further equivalent to local connectivity of
the ρ-boundary together with the boundedness of (B2, dρ).

1. Introduction

Let Ω ⊂ R2 be a bounded simply connected domain. A conformal map f of the
unit disc B2 onto Ω can be extended to a homeomorphism of B

2 onto Ω if and only
if Ω is a Jordan domain (cf. [Po]). Because Ω := B2 \({0}× [0, 1]) is not Jordan, any
conformal map from the unit disk onto Ω will not have a homeomorphic extension to
the closed disk. If we equip Ω with the internal metric dI—that is the path metric in
the Euclidean sense—then the homeomorphic extension onto ΩI can be accomplished,
where ΩI is the metric completion of Ω in the sense of the internal metric dI .

On the other hand, given a path γ ⊂ Ω and letting γ̃ = f−1 ◦ γ we have that the
Euclidean length of the path γ is

`(γ) =

ˆ

γ

|dz| =
ˆ

f(γ̃)

|dz| =
ˆ

γ̃

|f ′(z)| |dz|.

Hence by defining a new metric dρ on the unit disc B2,

dρ(u, v) = inf

ˆ

γ̂

|f ′(z)| |dz|,

where the infimum is taken over all paths γ̂ joining points u, v ∈ B2, we deduce that
for each pair of points x, y ∈ Ω,

dI(x, y) = dρ(f
−1(x), f−1(y)).

Thus we can identify the metric spaces (Ω, dI) and (B2, dρ), and also their metric
boundaries ∂IΩ and ∂ρ B2 .

The density ρ(z) = |f ′(z)| is a special case of the concept of a conformal de-
formation introduced by Bonk, Koskela and Rohde in [BKR]. A continuous density
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ρ : Bn → (0,∞) is conformal provided it satisfies two simple conditions (cf. con-
ditions HI(A) and VG(B) below). The first condition requires that the density ρ is
roughly constant on Whitney type balls, and the second condition says that the mea-
sure µρ of balls in the metric dρ should not grow faster than the Euclidean volume
of balls in Rn . The measure µρ is associated with ρ in the usual way by using the
volume element ρn dmn. Recent papers on conformal deformations include [BKR],
[BHR], [BK], [Her] and [KL]. There are also some studies concerning the boundary
behavior of conformal deformations, see [HKT], [NT1] and [NT2].

In this paper we give necessary and sufficient conditions on the density ρ to
guarantee that the metric boundary ∂ρ Bn is homeomorphic to the sphere Sn−1 .
We restrict our attention to densities ρ whose associated measure µρ has allowable
growth; see Section 2 for precise details, and we prove that the compactness of the
ρ-boundary ∂ρ Bn implies that ∂ρ Bn and Sn−1 are homeomorphic.

Theorem 1.1. Let ρ : Bn → (0,∞) be a density whose associated measure µρ

has allowable growth. Then the following conditions are equivalent:
(i) (∂ρ Bn, dρ) is compact.
(ii) (Bn ∪ ∂ρ Bn, dρ) is compact.
(iii) The identity map id : (Bn, dρ) → (Bn, | · |) has a homeomorphic extension to

i : (Bn ∪ ∂ρ Bn, dρ) → (Bn ∪Sn−1, | · |).
In addition, when n = 2 the above are also equivalent to

(iv) Bn
ρ is bounded and ∂ρ Bn is locally connected.

However, when n ≥ 3, there are examples where (iv) holds but none of (i,ii,iii) are
true.

The proof of Theorem 1.1 is in Section 4, and in Example 4.1 we show that
condition (iv) is not sufficient in higher dimensions.

This Theorem 1.1 is new even when µρ has Euclidean growth. Moreover, some
growth condition on µρ is necessary because otherwise it can happen that ∂ρ Bn is
compact but diamρ(∂ρ Bn) = 0 (cf. [HKT]).

2. Definitions

We denote by |x| the Euclidean norm of x ∈ Rn, by |x−y| the Euclidean distance
between two points x, y ∈ Rn, by diam(E) the diameter of a set E ⊂ Rn and by
d(E,F ) = inf{|x − y| : x ∈ E, y ∈ F} the distance between two sets E, F ⊂ Rn .
Furthermore, Bn(a, r) = {x ∈ Rn : |a − x| < r} for a ∈ Rn and r > 0 is the open
ball with centre a and radius r and Sn−1(a, r) = {x ∈ Rn : |a − x| = r} for a ∈ Rn

and r > 0 is the sphere with centre a and radius r. We omit the subscript n if the
dimension of the ball or the sphere is clear. We abbreviate the unit ball Bn(0, 1) to
Bn and the Euclidean boundary of Bn to Sn−1 .

Let (Ω, | · |) ⊂ Rn be a domain. The boundary ∂Ω of Ω is ∂Ω := Ω \ Ω, where Ω
is the metric completion of Ω. A curve in Ω is a continuous mapping γ : I → Ω from
an interval I ⊂ R to Ω. The interval I may be open, half-open, closed, bounded or
unbounded. We identify the curve γ and the image set γ(I) by denoting both by γ.
We denote by `(γ) ∈ [0,∞] the Euclidean length of γ. If `(γ) < ∞, then the curve
is called rectifiable. The curve γ is locally rectifiable if `(γ|[a,b]) < ∞ for every closed
interval [a, b] ⊂ I.
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In this paper, we assume that the parameter interval I is [0, 1] or [0, 1). The
inverse of a curve γ : [0, 1] → Ω is the curve γ : [0, 1] → Ω, γ(t) = γ(1 − t). If
γ : [0, 1) → Ω is rectifiable, then there is a continuous extension γ : [0, 1] → Ω, and
thus γ has a terminal endpoint γ(1) := limt↗1 γ(t) ∈ Ω. If γ1, γ2 : [0, 1] → Ω are curves
such that γ1(1) = γ2(0), then we define a concatenation γ := γ1 ? γ2 : [0, 1] → Ω by
setting

γ(t) =

{
γ1(2t), when 0 ≤ t ≤ 1

2
,

γ2(2t− 1), when 1
2

< t ≤ 1.

Let ρ : Ω → (0,∞) be a continuous function, a density. The ρ-length of a locally
rectifiable curve γ in Ω is

`ρ(γ) =

ˆ

γ

ρ(x) |dx|,

where |dx| denotes integration with respect to Euclidean length. If `ρ(γ) < ∞ we
say that the curve γ is ρ-rectifiable. Furthermore, the ρ-metric

dρ(x, y) = inf
γ

`ρ(γ) for x, y ∈ Ω,

where the infimum is taken over all curves γ in Ω joining points x and y, is well-
defined. For clarity, the usual metric notations which refer to the metric dρ will have
the additional subscript ρ. For example, diamρ(E) is the diameter of a set E in the
metric dρ. We also abbreviate the metric space (Ω, dρ) to Ωρ.

The ρ-boundary ∂ρΩ of Ωρ can be defined by standard constructions using Cauchy
sequences. An equivalent definition for ∂ρΩ is ∂ρΩ := Ωρ \Ωρ, where Ωρ is the metric
completion of Ωρ.

For ρ-rectifiable curves α, β : [0, 1) → Ω,

α ∼ β ⇐⇒ lim
t↗1

dρ(α(t), β(t)) = 0

defines an equivalence relation. We may also define the ρ-boundary ∂ρΩ as the set of
equivalence classes of ρ-rectifiable curves γ ⊂ Ωρ that do not have an endpoint γ(1)
in Ωρ. We leave the proof to the reader. In some cases this characterisation of the
ρ-boundary ∂ρΩ is more useful than the standard definition.

When ρ ≡ 1, we obtain a special case of the metric dρ, which we denote by dI and
call the inner metric. Notice that dI is the Euclidean path metric. We abbreviate
(Ω, dI) to ΩI and call the boundary ∂ρΩ = ∂IΩ the inner boundary.

We restrict our attention to the unit ball Bn and its deformations Bn
ρ for the

rest of the paper. A continuous and positive function ρ on Bn is called a conformal
density (cf. [BKR]) if it satisfies both a Harnack type inequality HI(A) for some
constant A ≥ 1 :

HI(A)
1

A
≤ ρ(x)

ρ(y)
≤ A for all x, y ∈ B(z, (1− |z|)/2) and all z ∈ Bn

and a volume growth condition VG(B) for some constant B > 0:

µρ(Bρ(x, r)) ≤ Brn for all x ∈ Bn and r > 0.VG(B)

Here µρ is the Borel measure on Bn defined by

µρ(E) =

ˆ

E

ρn dmn for a Borel set E ⊂ Bn,
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where mn denotes n-dimensional Lebesgue measure.
In this paper we relax these strong conditions, HI(A) and VG(B), on the density

ρ but still need some volume growth to prove our theorems. A (general) volume
growth condition VG is

µρ(Bρ(x, r)) ≤ ϕ(r) for all x ∈ Bn and r > 0,VG

where ϕ is an increasing homeomorphism of (0,∞). In this paper we consider espe-
cially a couple of particular conditions. If ρ satisfies VG, where ϕ(r) = Drn| log r|n−1

for some D > 0 and for every 0 < r < e−1, then we say that ρ satisfies the (loga-
rithmic) volume growth condition log-VG. We also say that µρ has allowable growth
if the density ρ satisfies log-VG or the density ρ satisfies both conditions HI(A) and
VG, where ϕ(r) = Brn−ε for some B > 0 and 0 < ε < 1

1+log A
.

Let Γ be a family of locally rectifiable curves in Bn . The modulus mod Γ ∈ [0,∞]
is defined by

mod Γ = inf
ρ̃

ˆ

Bn

ρ̃n dmn,

where the infimum is taken over all Borel measurable densities ρ̃ : Bn → [0,∞] that
are admissible. The density ρ̃ is admissible if `ρ̃(γ) ≥ 1 for every γ ∈ Γ. We denote by
mod(E,F ;Bn) the modulus of the family of all rectifiable curves in Bn which connect
subsets E and F of Bn. The curve γ connects E and F if the closure of γ intersects
both E and F. If E and F are disjoint continua in Bn, that is, non-degenerate,
compact and connected sets, then

φn(t) ≤ mod(E,F ;Bn),(2.1)

where

t =
dist(E,F )

min{diam(E), diam(F )}
and

φn(t) =
ωn−1

2[log(λ(1 + t))]n−1
.

Here ωn−1 is the surface area of Sn−1 and λ = λ(n) ≥ 1 is a constant depending
on n, see [Ge, Va]. We will also need the fact that mod(E, F ;Bn) = ∞ whenever
E and F are connected non-degenerate sets in B

n whose closures have non-empty
intersection. See, for example, [Va] for the basic properties of the modulus.

One can generalize these concepts to the setting of families of locally rectifiable
curves which lie on a sphere Sn−1(a, r) for some a ∈ Rn and r > 0. If Γ is a curve
family on Sn−1(a, r), then the modulus of Γ with respect to Sn−1(a, r) is defined by

modSn−1(a,r)(Γ) = inf
ρ̃

ˆ

Sn−1(a,r)

ρ̃n dmn−1,

where the infimum is taken over all Borel measurable densities ρ̃ : Sn−1(a, r) → [0,∞]
for which `ρ̃(γ) ≥ 1 for every γ ∈ Γ. Here the integration is with respect to n − 1-
dimensional Lebesgue measure mn−1 on Sn−1(a, r).

From [Va, Theorem 10.2] we obtain a lower bound for the modulus modSn−1(a,r)(E,
F ; K) of the family of all rectifiable curves which connect disjoint non-empty subsets
E and F of K ⊂ Sn−1(a, r). Here K is a cap, which is an intersection of the sphere
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Sn−1(a, r) and an open half space in Rn, and K means the closure of K. The estimate
[Va, Theorem 10.2] says that

modSn−1(a,r)(E,F ; K) ≥ C

r
,(2.2)

where C = C(n) > 0 is a constant.

3. Proofs of lemmas

Let us start with one technical lemma, where we compute an upper bound for
the modulus of certain curve families. This lemma is an analogue of Lemma 3.2 in
[BKR].

Lemma 3.1. Let 0 < δ ≤ 1
16

. Let ρ be a continuous and positive density on Bn

that satisfies log-VG at some point x0 ∈ E ⊂ Bn, where E is a non–empty set with
diamρ(E) ≤ δ. Let Γ be the family of curves γ in Bn that have one endpoint in E
and that the ρ-distance of the other endpoint from E is at least 1

2
. Then

mod(Γ) ≤ 25nD
( 2

log
( | log δ|

3 log 2

)
)n−1

.

Proof. Let γ ∈ Γ be arbitrary. We may assume that γ(0) ∈ E and dρ(γ(1), E) ≥
1
2
. Let x0 ∈ E be a point as in our assumption. Let j0 ∈ N be a number such that

2−(j0+1) < δ ≤ 2−j0 . Let Aj = Bρ(x0, 2
−j) \ Bρ(x0, 2

−(j+1)), j = 0, 1, . . . , j0 − 1 and
Aj0 = Bρ(x0, 2

−j0). Now E ⊂ Aj0 .
Define ρ̃ : Bn → [0,∞),

ρ̃(x) =





4 log 2(
log

(
| log δ|
3 log 2

))
(δ+dρ(x,E))| log(δ+dρ(x,E))|

ρ(x), when dρ(x,E) < 1
e
− δ,

0, elsewhere.

Because γ ∩ A0 6= ∅ and ρ̃(x) > 0 for every x ∈ Bρ(x0, 2
−2), we have

`ρ̃(γ) ≥ 4 log 2

log
(
| log δ|
3 log 2

)
j0∑

j=2

ˆ

γ∩Aj

ρ(x)

(δ + dρ(x,E))| log(δ + dρ(x,E))| ds

≥ 4 log 2

log
(
| log δ|
3 log 2

)
j0−1∑
j=2

ˆ

γ∩Aj

ρ(x)

(δ + 2−j)| log 2−(j+1)| ds

≥ 4 log 2

log
(
| log δ|
3 log 2

)
j0−1∑
j=2

2−(j+1)

2−j+1 log(2j+1)

≥ 1

log
(
| log δ|
3 log 2

)
j0−1∑
j=2

1

j + 1
≥ 1

log
(
| log δ|
3 log 2

) log
(j0 + 1

3

)

≥ 1

log
(
| log δ|
3 log 2

) log
( | log δ|

3 log 2

)
= 1.

In the last inequality we used the definition of j0.
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Thus

mod(Γ) ≤
ˆ

Bn

ρ̃n dmn

≤
( 4 log 2

log
(
| log δ|
3 log 2

)
)n[ j0∑

j=1

ˆ

Aj

ρ(x)n

(δ + dρ(x,E))n| log(δ + dρ(x,E))|n dx
]

≤
( 4 log 2

log
(
| log δ|
3 log 2

)
)n[ j0∑

j=2

ˆ

Aj

ρ(x)n

2−(j+1)n| log(δ + 2−j)|n dx+

ˆ

A1

ρ(x)n

2−2n| log e−1|n dx
]

log-VG
≤ D

( 4 log 2

log
(
| log δ|
3 log 2

)
)n[ j0∑

j=2

2−jn| log(2−j)|n−1

2−(j+1)n| log(2−j+1)|n +
e−n| log e−1|n−1

2−2n

]

≤ D

log 2

( 8 log 2

log
(
| log δ|
3 log 2

)
)n[ j0∑

j=2

jn−1

(j − 1)n
+ log 2

]

(i)
≤ 2n−1D

log 2

( 8 log 2

log
(
| log δ|
3 log 2

)
)n[ j0∑

j=2

1

j − 1
+ 1

]

≤ D

log 2

( 16 log 2

log
(
| log δ|
3 log 2

)
)n

log(j0 − 1) ≤ D

log 2

( 16 log 2

log
(
| log δ|
3 log 2

)
)n

log
( | log δ|

log 2

)

(ii)
≤ 5D16n

( log 2

log
(
| log δ|
3 log 2

)
)n−1

≤ 25nD
( 2

log
( | log δ|

3 log 2

)
)n−1

.

Above we used the facts
(i) ( j

j−1
)n−1 ≤ 2n−1 for every j = 2, 3, . . .,

(ii) log
(
| log δ|
log 2

)
≤ 5 log

(
| log δ|
3 log 2

)
, when δ ≤ 1

16
. ¤

In the previous lemma we assumed that the logarithmic growth condition log-VG
holds only at one point in E and only for small ρ-balls, meaning radius less than e−1.
For larger balls we actually do not need any growth condition.

Through Lemma 3.1 we obtain some information about the relation between the
boundaries ∂ρ Bn and Sn−1 .

Lemma 3.2. Let ρ be a density that satisfies the volume growth condition log-
VG. Then every dρ-Cauchy sequence is also a Euclidean Cauchy sequence. In partic-
ular, for each ξ ∈ ∂ρ Bn there is a unique natural identification point ξ̂ ∈ Sn−1 .

Proof. Let (xk) ⊂ Bn be a dρ-Cauchy sequence. We may assume that dρ(xk, xk+1)
≤ 2−k. Now we can construct a curve γ : [0, 1) → Bn such that for every k ∈ N,
γ(tk) = xk for some tk ∈ [0, 1), tk < tk+1, tk ↗ 1 as k → ∞, and `ρ(γ|[tk,tk+1]) ≤
2dρ(xk, xk+1). Let us denote γk := γ|[tk,1). Then diamρ(γk) → 0, when k →∞.

We may assume that diamρ(B
n) ≥ 2. If not, we choose ρ̃ = 2

diamρ(Bn)
ρ and do the

following calculations with ρ̃. There is N ∈ N such that diamρ(γk) < 1
16

for every
k > N. There is also a continuum F ⊂ Bn which contains more than one point and
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satisfies dρ(γk, F ) ≥ 1
2
for every k > N. Then by Lemma 3.1

(RHS) mod(γk, F ;Bn) ≤ 25nD
( 2

log
(
| log diamρ(γk)|

3 log 2

)
)n−1

.

On the other hand, we have 0 < diam(F ) =: c ≤ 2 and so

t̃ =
dist(γk, F )

min{diam(γk), diam(F )} ≤
2

c diam(γk)
2

=
4

c diam(γk)
.

Hence from (2.1) we obtain

(LHS) mod(γk, F ;Bn) ≥
1
2
ωn−1

(log(λ(1 + 4
c diam(γk)

)))n−1
.

Since limk→∞ diamρ(γk) = 0, we conclude that both (RHS) and (LHS) go to zero
and therefore limk→∞ diam(γk) = 0. Thus (xk) is a Euclidean Cauchy sequence.

Consequently, each dρ-Cauchy sequence, which converges to a given point ξ ∈
∂ρ Bn, is also a Euclidean Cauchy sequence, and the limit of these Euclidean Cauchy
sequences must be same. Thus the identification point ξ̂ ∈ Sn−1 is unique. ¤

Hence, under the certain condition of ρ every point in the ρ-boundary ∂ρ Bn has
a natural identification point in Sn−1 . What about the other way around? When
does each point in Sn−1 have a natural identification point in ∂ρ Bn? Our next lemma
gives a simple condition under which for each ξ̂ ∈ Sn−1 there exists a curve γ in Bn

that ends up ξ̂ in the Euclidean sense, is ρ-rectifiable, and whose endpoint is in the
ρ-boundary ∂ρ Bn in the dρ-metric.

Lemma 3.3. Let ρ be a density such that ρ ∈ Ln(Bn) and assume that Bn
ρ is

bounded. Then for each ξ̂ ∈ Sn−1 there exists a curve γ : [0, 1) → Bn with

`ρ(γ) < ∞, lim
t↗1

|γ(t)− ξ̂| = 0 and ξ := lim
t↗1

γ(t) ∈ ∂ρ Bn;

moreover, the ρ-boundary point ξ is uniquely determined by ξ̂ and does not depend
on the curve γ.

Proof. Suppose that diamρ(B
n) < ∞ and let ξ̂ ∈ Sn−1 . Let us construct a curve

which has the desired properties.
Let Aj = (B(ξ̂, 2−j)\B(ξ̂, 2−(j+1)))∩Bn, j = 1, 2, . . . , be a Euclidean ‘semi’-ring

in Bn . Because ρ ∈ Ln(Bn), we have that
ˆ

Aj

ρn dmn → 0, when j →∞.

Let us first assume that n = 2. Then we obtain by Hölder’s inequality that
ˆ

Aj

ρ dm2 ≤ 2−j
√

π
( ˆ

Aj

ρ2 dm2

) 1
2 for every j ∈ N .(3.1)

On the other hand ˆ

Aj

ρ dm2 =

ˆ

]2−(j+1),2−j [

ˆ

S1(ξ̂,t)∩B2

ρ ds dt.
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Hence there exists tj ∈]2−(j+1), 2−j[ such that
ˆ

Aj

ρ dm2 ≥
ˆ

]2−(j+1),2−j [

ˆ

S1(ξ̂,tj)∩B2

ρ ds dt = 2−(j+1)

ˆ

S1(ξ̂,tj)∩B2

ρ ds,

and by inequality (3.1)

(3.2)
ˆ

S1(ξ̂,tj)∩B2

ρ ds ≤ 2j+1

ˆ

Aj

ρ dm2 ≤ 2
√

π
(ˆ

Aj

ρ2 dm2

) 1
2
.

Let us choose j1 ∈ N such that

2
√

π
(ˆ

Aj1

ρ2 dm2

) 1
2 ≤ 1

2
,

and furthermore for every k ∈ N we choose jk+1 > jk such that

2
√

π
(ˆ

Ajk+1

ρ2 dm2

) 1
2 ≤ 1

2k+1
.(3.3)

Combining (3.3) with inequality (3.2) we get that

(3.4)
ˆ

Sk

ρ ds ≤ 1

2k
for every k ∈ N,

where Sk := S1(ξ̂, tjk
) ∩B2 .

Let xk = (1 − 2−(jk+1))ξ̂. Then xk is a point in the ‘inner arc’ of the ‘semi’-ring
Ajk

for every k ∈ N . Let us choose for every k ∈ N a curve γk : [0, 1] → B2 such
that γk(0) = 0, γk(1) = xk and

`ρ(γk) ≤ dρ(0, xk) +
1

2k
.(3.5)

Now it would be tempting to use curves γk and apply the Arzela–Ascoli Theorem
to define the curve γ, but in that case it may happen that γ(1) 6= ξ̂. Hence we have
to construct the curve γ in a more clever way. In the following we concatenate the
subcurves of curves γk, k = 1, 2, . . . , joining Sk−1 and Sk through the subarcs of Sk

to obtain the desired curve γ.
So, for every k ∈ N let α1

k be the subcurve of γk that joins 0 to the first point
of γk ∩ S1. Furthermore, for every i ∈ N, 1 ≤ i ≤ k, let αi

k be the subcurve of γk

that joins the last point of γk ∩Si−1 to the next point of γk ∩Si. Then let βi
k,l be the

subarc of Si that joins the points αi
k(1) to αi+1

l (0), where k ≥ i, l ≥ i + 1. Then by
inequality (3.4) we have that

(3.6) `ρ(β
i
k,l) ≤

ˆ

Si

ρ ds ≤ 1

2i
for every k ≥ i, l ≥ i + 1.

Next let us construct the concatenation γk for every k ∈ N,

γk := α1
1 ? β1

1,2 ? α2
2 ? β2

2,3 ? . . . ? αk
k ? βk

k,k+1.

The curve γk is well-defined. The path sequence (γk) has a limit as k → ∞ and we
claim that this limit is the desired curve γ.

Firstly, limt↗1 |γ(t) − ξ̂| = 0 because, by construction, for every j ∈ N there is
t ∈ [0, 1) such that γ|(t,1) ⊂ B(ξ̂, 2−j).
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Secondly, the curve γ is ρ-rectifiable because the curve γk is ρ-rectifiable for every
k ∈ N with uniformly bounded length:

`ρ(γ
k) = `ρ(α

1
1 ? β1

1,2 ? α2
2 ? β2

2,3 ? . . . ? αk
k ? βk

k,k+1) =
k∑

i=1

`ρ(α
i
i ? βi

i,i+1)

(∗)
≤ `ρ(α

1
k ? β

1

1,k ? β1
1,2) +

1

2
+

k∑
i=2

(`ρ(β
i−1
i,k ? αi

k ? β
i

i,k ? βi
i,i+1) +

1

2i
)

(3.6)

≤ `ρ(γk) + 3
k∑

i=1

1

2i
+

k∑
i=2

1

2i−1

(3.5)

≤ dρ(0, xk) + 4(1− 1

2k
)

≤ diamρ(B
2) + 4 < ∞,

and hence `ρ(γ) < ∞. In the inequality (*) we used the triangle inequality and
inequality (3.5).

Finally, because `ρ(γ) < ∞, the limit limt↗1 γ(t) exists in the sense of dρ, and
we denote it by ξ. The limit ξ must belong to the ρ-boundary ∂ρ Bn . Otherwise
ξ̂ /∈ Sn−1 .

When n > 2, the proof is similar, but in inequality (3.6) we have to be more
careful because the curve βi

k,l is now a curve in the n − 1-dimensional sphere Si :=

Sn−1(ξ̂, tji
) ∩Bn .

First, inequality (3.2) takes the formˆ

Sn−1(ξ̂,tj)∩Bn

ρn dmn−1 ≤ 2j+1

ˆ

Aj

ρn dmn.(3.7)

For every k ∈ N we choose jk ∈ N such thatˆ

Ajk

ρn dmn ≤ 1

2k
,

and from inequality (3.7) we obtain
ˆ

Sk

ρn dmn−1 ≤ 2jk+1

2k
.(3.8)

Then, let for every k, l ≥ i, i, k, l ∈ N,

Γi
k,l = {β : β joins points αi

k(1) and αi+1
l (0) on the surface Si}

and denote
ai

k,l = inf
β∈Γi

k,l

`ρ(β) = inf
β∈Γi

k,l

ˆ

β

ρ ds.

If ai
k,l = 0 for some i, k, l ∈ N, then there exists a curve βi

k,l ∈ Γi
k,l such that

`ρ(β
i
k,l) ≤ 1

2i . If ai
k,l > 0, then

ˆ

β

ρ

ai
k,l

ds ≥ 1 for every β ∈ Γi
k,l.

By (2.2) there is a constant C = C(n) > 0 such that
C

tji

≤ modSn−1(ξ̂,tji
)(Γi

k,l) ≤
ˆ

Si

( ρ

ai
k,l

)n

dmn−1.



12 Päivi Lammi

By (3.8) we conclude that

(ai
k,l)

n ≤ tji

C

ˆ

Si

ρn dmn−1 ≤ 2ji+1

2ji+iC
=

1

2i−1C
.

Thus there exists a curve βi
k,l ∈ Γi

k,l such that

(3.9) `ρ(β
i
k,l) ≤

1

2
i−2
n C

1
n

.

Now we can apply the planar argument and the lemma is proven when we conclude
that for every k ∈ N,

`ρ(γ
k) ≤ diamρ(B

n) +
3 · 2 2

n

(2
1
n − 1)C

1
n

+ 1 < ∞.

The last step is to prove uniqueness. Suppose that there exist two ρ-rectifiable
curves, γ and γ′, with γ(1) = ξ̂ = γ′(1) in the Euclidean sense. When n = 2, we
deduce from inequality (3.4) that

lim
t↗1

dρ(γ(t), γ′(t)) ≤ lim
k→∞

ˆ

Sk

ρ ds ≤ lim
k→∞

1

2k
= 0.

When n > 2, we obtain by the same argument as for inequality (3.9) that

lim
t↗1

dρ(γ(t), γ′(t)) ≤ lim
k→∞

1

2
k−2

n C
1
n

= 0.

Thus the identification point ξ in the ρ-boundary is uniquely determined by ξ̂. ¤

Remark 3.4. (i) In Lemma 3.3, instead of assuming ρ ∈ Ln(Bn) it would suffice
to assume that for every ξ̂ ∈ Sn−1 there exists jξ̂ ∈ N such that ρ ∈ Lp(B(ξ̂, 2−jξ̂) ∩
Bn), where p > n− 1 whenever n > 2, and p ≥ 1 when n = 2. The idea of the proof
is the same as in Lemma 3.3, but the proof is a bit more technical and we leave it to
the reader. In this case the point ξ̂ may determine more than one ρ-boundary point
in ∂ρ Bn, as shown by simple examples.

(ii) If ρ is a density which satisfies the volume growth condition VG for some
function ϕ, and if diamρ(B

n) < ∞, then
ˆ

Bn

ρn dmn ≤
ˆ

Bρ(0,M)

ρn dmn ≤ ϕ(M) < ∞

for some M > 0. Hence ρ ∈ Ln(Bn). Furthermore, if we could choose ϕ(r) = Brn

for some B > 0 (thus our density ρ satisfies the condition VG(B)), and if HI(A) held
too, we would have the Gehring–Hayman theorem ([BKR], Theorem 3.1) to use.
Consequently, we would have that `ρ([0, ξ̂)) < ∞ for each radius [0, ξ̂). This does not
need to hold in the setting of Lemma 3.3. Indeed, fix ξ̂ ∈ S1 and define

ρ(x) =





1, when x ∈ B2 \B(ξ̂, 1
4
) or

x ∈ S1(0, 1− 1
2j ) ∩B(ξ̂, 1

4
), j = 3, 4, . . . ,

1

|x− ξ̂|| log |x− ξ̂|| , “elsewhere” in B2,
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such that in each ‘semi’-ring, (B2(0, 1− 1
2j ) \B

2
(0, 1− 1

2j−1 )) ∩B(ξ̂, 1
4
), j = 3, 4, . . . ,

ρ grows very fast from 1 to 1

|x−ξ̂|| log |x−ξ̂|| so that ρ is continuous and that ‘most’ of
the time ρ(x) = 1

|x−ξ̂|| log |x−ξ̂|| . Then diamρ(B
2) < ∞ and

µρ(B
2) =

ˆ

B2

ρ2 dm2 ≤
ˆ

B2 \B(ξ̂,1/4)

dx +

ˆ

B(ξ̂,1/4)

1

|x− ξ̂|2| log |x− ξ̂||2 dx

≤ C1 +

ˆ 2π

0

ˆ 1/4

0

t

t2| log t|2 dt = C2 < ∞,

but

`ρ([0, ξ̂[) ≈ 3

4
+

ˆ 1

3/4

1

(1− t)| log(1− t)| dt = ∞.

When we combine Lemma 3.3 with Lemma 3.2, we obtain the following conclu-
sion.

Corollary 3.5. Let ρ satisfy log-VG. If diamρ(B
n) < ∞, then the homeomor-

phic identity map id : (Bn, dρ) → (Bn, | · |) has a continuous and bijective extension
i : (Bn ∪ ∂ρ Bn, dρ) → (Bn ∪Sn−1, | · |).

Proof. From Lemma 3.2 we know that we can identify every ξ ∈ ∂ρ Bn uniquely
with some point ξ̂ ∈ Sn−1 . The identity map i is well-defined, and by the same
argument used for inequalities (RHS) and (LHS) in Lemma 3.2 it follows that this
map is also continuous. From Lemma 3.3 we deduce that i is surjective and injective
because ρ ∈ Ln(Bn). ¤

If we assume that the density ρ satisfies the Harnack type inequality HI(A), we
can relax the logarithmic volume growth condition log-VG, and the previous result
still holds.

Theorem 3.6. Let ρ satisfy HI(A) and VG, where ϕ(r) = Brn−ε for some
0 < ε < 1

1+log A
and for some B > 0. If diamρ(B

n) < ∞, then the homeomor-
phic identity map id : (Bn, dρ) → (Bn, | · |) has a continuous and bijective extension
i : (Bn ∪ ∂ρ Bn, dρ) → (Bn ∪Sn−1, | · |).

Proof. The hard part is to prove that the map i is well-defined. Let ξ ∈ ∂ρ Bn

and let (xk) ⊂ Bn be a dρ-Cauchy sequence which converges to the point ξ. Because
Bn ∪Sn−1 is compact, switching to a subsequence, we may assume that (xk) converges
in the Euclidean sense to some point in Sn−1 . Let this limit point be ξ̂.

Let (yk) ⊂ Bn be another dρ-Cauchy sequence that converges to ξ and let us
assume that (yk) converges in the Euclidean sense to a point η̂ 6= ξ̂. Let δ > 0
be so small that 0 /∈ Bρ(ξ, 14δ), and let N ∈ N be so large that when k > N,

xk, yk ∈ Bρ(ξ, δ), xk ∈ B(ξ̂, |ξ̂ − η̂|/10) and yk ∈ B(η̂, |ξ̂ − η̂|/10). Let k > N and let
γk ⊂ Bn be a curve which joins points xk and yk so that `ρ(γk) ≤ 2dρ(xk, yk). Then
γk ⊂ Bρ(ξ, 2δ) and `(γk) ≥ |xk − yk| ≥ 4

5
|ξ̂ − η̂|.

Denote `ρ(γk) = r. Let x ∈ γk, and let us consider the ρ-ball Bρ(x, 3r). Let
E = {ω ∈ Sn−1 : [0, ω) ∩ γk 6= ∅}, where [0, ω) is the radius that joins 0 and ω. Let
E1 = {ω ∈ E : dρ(z, ω) ≤ r for some z ∈ γk} and E2 = E \ E1 = {ω ∈ E : dρ(z, ω) >
r for every z ∈ γk}.
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We give the rest of the proof in detail when n = 2 and give the idea when n > 2.
Thus, let n = 2. Because the 1-dimensional Lebesgue measure of E is m1(E) ≥
4
5
|ξ̂ − η̂|, it follows that m1(Ei) ≥ 2

5
|ξ̂ − η̂| for i = 1 or i = 2.

Suppose m1(E1) ≥ 2
5
|ξ̂ − η̂|. Only in a null set Ê ⊂ E1 it is possible that

`ρ([tω, ω)) = ∞, where ω ∈ Ê, and 0 < t < 1 is such that [tω, ω) ⊂ Bρ(x, 3r).

Otherwise, if m1(Ê) > 0, it would hold that

µρ(Bρ(x, 3r)) =

ˆ

Bρ(x,3r)

ρ2 dm2 ≥
ˆ

Ê

ˆ 1

t

ρ2(sω) ds dω = ∞.

This is a contradiction because of the volume growth condition VG.
Let ω ∈ E1 \ Ê and let tω ∈]0, 1[ be such that `ρ([tωω, ω)) = r. Because of the

choice of δ and the previous discussion, such a tω exists. Now [tωω, ω) ⊂ Bρ(x, 3r)
and from Hölder’s inequality we obtain

r =

ˆ

[tωω,ω)

ρ ds =

ˆ 1

tω

ρ(tω) dt ≤
(ˆ 1

tω

ρ2(tω) dt
) 1

2
(1− tω)

1
2 .

Furthermore, using this we deduce that

µρ(Bρ(x, 3r)) =

ˆ

Bρ(x,3r)

ρ2 dm2 ≥
ˆ

E1\Ê

ˆ 1

tω

ρ2(tω) dt dω

≥
ˆ

E1\Ê

r2

1− tω
dω ≥ 2r2

5 maxω∈E1\Ê(1− tω)
|ξ̂ − η̂|.

(3.10)

Because one can cover every line segment [0, y] ⊂ B2 with no more than 1 + log 1
1−|y|

balls Bz = B(z, 1
2
(1− |z|)), z ∈ B2, by HI(A), we have that for every ω ∈ S1 and for

every 0 < t < 1

(3.11) ρ(0) ≤ A1+log 1
1−t ρ(tω) = A

( 1

1− t

)log A

ρ(tω).

Thus for each w ∈ E1 \ Ê we obtain

r =

ˆ 1

tω

ρ(tω) dt ≥
ˆ 1

tω

ρ(0)

A
(1− t)log A dt =

ρ(0)

A(1 + log A)
(1− tω)1+log A,

and combining this with (3.10) we get

µρ(Bρ(x, 3r)) ≥ 2

5

( ρ(0)

A(1 + log A)

) 1
1+log A |ξ̂ − η̂|r2− 1

1+log A .

For any choice of 0 < ε < 1
1+log A

the volume growth condition VG will not hold for
each r > 0.

Suppose m1(E2) ≥ 2
5
|ξ̂ − η̂|. Let ω ∈ E2. Let tω, t′ω ∈ (0, 1) be such that tω < t′ω,

tωω ∈ γk, [tωω, t′ωω] ⊂ [0, ω)∩Bρ(x, 3r) and `ρ([tωω, t′ωω]) = r. Now as in the previous
case we have

r ≤
(ˆ t′ω

tω

ρ2(tω) dt
) 1

2
(t′ω − tω)

1
2

and moreover

(3.12) µρ(Bρ(x, 3r)) ≥ 2r2

5 maxω∈E2(t
′
ω − tω)

|ξ̂ − η̂| ≥ 2r2

5 maxω∈E2(1− tω)
|ξ̂ − η̂|.
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Because of the choices at the beginning of the proof, the curve γk is not a subset of
B(y, 1/2(1− |y|)) for any y ∈ γk, and this yields with HI(A) that for each ω ∈ E2

r =

ˆ

γk

ρ ds ≥ 1

A
ρ(tωω)`(γk ∩Btωω) ≥ 1

2A
ρ(tωω)(1− tω).

Hence this with (3.11) gives us

r ≥ 1

2A
max
ω∈E2

(ρ(tωω)(1− tω)) ≥ ρ(0)

2A2
max
ω∈E2

(1− tω)1+log A.

Furthermore, combining this with (3.12) we obtain

µρ(B(x, 3r)) ≥ 2

5

(ρ(0)

2A2

) 1
1+log A |ξ̂ − η̂|r2− 1

1+log A .

Again, for any choice of 0 < ε < 1
1+log A

the volume growth condition VG will not
hold for each r > 0. Hence the identity map i is well-defined.

When n > 2, the proof is more technical, because the set E may have zero
n − 1-dimensional Lebesgue measure. We use here the same technique as in [KL,
Theorem 1.1]. Let W be a Whitney decomposition of Bn—that is, a collection of
dyadic cubes Q ⊂ Bn having pairwise disjoint interiors and satisfying the condition

diam(Q) ≤ d(Q,Sn−1) ≤ 4 diam(Q)

(see [St] for the existence and properties of Whitney decompositions). Cubes that
intersect the line segment [tωω, ω), ω ∈ E1, or the line segment [tωω, t′ωω], ω ∈ E2,
are included in the ρ-ball Bρ(x, (3 + 2A3)r). Hence we can estimate the µρ-measure
of Bρ(x, (3+2A3)) from below with the help of these intersecting cubes. Because the
Hausdorff 1-content of E is H 1

∞(E) ≥ diam(γk)
2

≥ 2
5
|ξ̂ − η̂|, using Frostman’s Lemma

([Ma], [KL]) we obtain that

µρ(Bρ(x, (3 + 2A3)r)) ≥ C|ξ̂ − η̂|rn− 1
1+log A ,

where C = C(A, n) > 0 is a constant. As in the case n = 2, the same choice of ε
leads us to a contradiction.

The proof above also tells us that the map i is continuous. From Lemma 3.3 we
obtain that it is both surjective and injective. ¤

For the rest of the paper we combine these two conditions of the density ρ,
Corollary 3.5 and Theorem 3.6, and we consider densities ρ whose associated measure
µρ has allowable growth.

What about the continuity of the inverse map (i|∂ρ Bn)−1 : (Sn−1, |·|)→(∂ρ Bn, dρ)?
Here is an example where it is not continuous:

Example 3.7. As pictured in Figure 1, we consider the simply connected plane
domain

Ω = (0, 1)× (0, 1) \
∞⋃

k=1

({ 1

2k

}
× [0,

1

2
]
)

equipped with its internal metric dI . Let ρ(x) := |f ′(x)|, where f : (B2, | · |) → (Ω, | · |)
is a conformal map. Then for each pair of points x, y ∈ B2,

dρ(x, y) = dI(f(x), f(y)),

as we saw in the introduction. Thus (B2, dρ) is bounded.
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(Ω, dI) = (B2, dρ)

(0, 1
2
)

Figure 1. Example of a domain (Ω, dI) = (B2, dρ), whose ρ-boundary is not homeomorphic to
S1.

The density ρ satisfies the volume growth condition VG(π). Hence (B2, dρ) sat-
isfies the assumptions of Corollary 3.5 (or even the assumptions of Theorem 3.6).
The boundary ∂ρ B2 = ∂IΩ is closed and bounded but not compact. Indeed, let
(xk) ⊂ ∂IΩ be the sequence of the “midpoints”,

xk =
( 3

2k+2
, 0

)
.

This sequence cannot have a convergent subsequence because

dI(xk, xk+1) ≥ 1

for every k ∈ N . Hence the identity map i|∂ρ Bn is not a homeomorphism.

We need to assume something about the ρ-boundary ∂ρ Bn to obtain a homeo-
morphic identity map. In fact, it is enough to assume that ∂ρ Bn is compact, as the
next section shows.

4. Proof of the main theorem

Now we are able to prove the equivalences (i)⇔ (ii)⇔ (iii) of our main theorem,
Theorem 1.1.

Proof of Theorem 1.1. The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are clear,
because (Bn ∪Sn−1, |·|) is compact and ∂ρ Bn = B

n

ρ\Bn
ρ is closed. The implication (ii)

⇒ (iii) follows from Corollary 3.5 and Theorem 3.6 through a well-known fact that a
continuous bijection from a compact space to a Hausdorff space is a homeomorphism
(see for example [Mu]).

Let us prove (i)⇒ (ii). Assume that ∂ρ Bn is compact. Let {Aα}α∈I be a dρ-open
cover of the set Bn ∪ ∂ρ Bn . Let J ⊂ I be a maximal index set such that for each
α ∈ J it holds that Aα ∩ ∂ρ Bn 6= ∅. Because ∂ρ Bn is compact, there exists a finite
index set J ′ ⊂ J such that

∂ρ Bn ⊂
⋃

α∈J ′
Aα.

Now W := (Bn ∪ ∂ρ Bn)\⋃
α∈J ′ Aα is dρ-closed and W ⊂ Bn . Because id : Bn

ρ → Bn

is always a homeomorphism, W is closed also in the Euclidean sense and thus W is
compact. Consequently, W is compact in the ρ-metric. Moreover, there is a finite
index set I ′ ⊂ I such that

W ⊂
⋃

α∈I′
Aα,
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and hence we find a finite subcover I ′ ∪ J ′ such that

Bn ∪ ∂ρ Bn ⊂
⋃

α∈I′∪J ′
Aα,

as desired. ¤
In the planar case there is another equivalent statement as given in Theorem 1.1

(iv). For this, recall that a set A is locally connected at a point a ∈ A, if for every
neighborhood U ⊂ A of a there exists a connected neighborhood V ⊂ U of a. A set
A is locally connected, if it is locally connected at every point a ∈ A. Notice also that
∂IΩ in the example 3.7 is not locally connected at (0, 1

2
).

Proof of Theorem 1.1. (iii) ⇔ (iv). If the identity map i : (B2 ∪ ∂ρ B2, dρ) →
(B2 ∪S1, | · |) is a homeomorphism, then ∂ρ B2 is locally connected because a home-
omorphism preserves this property.

We assume that ∂ρ B2 is locally connected and diamρ(B
2) < ∞. From Corol-

lary 3.5 and Theorem 3.6 it follows that the identity map i : (B2 ∪ ∂ρ B2, dρ) →
(B2 ∪S1, | · |) is a continuous bijection. Thus it is enough to show that i−1 is con-
tinuous. For that, let ξ̂ ∈ S1 and let ξ ∈ ∂ρ B2 be the identification point of ξ̂. Let
ε > 0 and let us first search for δ > 0 such that i−1(B(ξ̂, δ) ∩ S1) ⊂ Bρ(ξ, ε) ∩ ∂ρ B2 .

The ball Bρ(ξ, ε) ∩ ∂ρ B2 contains a connected neighborhood U of ξ and thus
i(U) = Û ⊂ S1 is a connected subarc of S1 . Let us prove that ξ̂ is an interior point
of Û . In other words, we prove that ξ̂ is not an endpoint of Û .

Let r = dρ(ξ, ∂ρ B2 \U) > 0 and let γ : [0, 1) → Bn be the ρ-rectifiable curve
constructed in Lemma 3.3 with γ(1) = ξ. Let t0 ∈ [0, 1) be such that γ|(t0,1) ⊂
Bρ(ξ,

r
2
) ⊂ B2 ∪ ∂ρ B2 . If ξ̂ were an endpoint of Û , then there would exist a non–

degenerate connected set E ⊂ S1 \Û such that ξ̂ ∈ E and therefore

mod(γ|(t0,1), E;B2) = ∞.

On the other hand the ρ-length of any curve α that connects γ|(t0,1) and i−1(E)
is at least r

2
. Hence, when we choose ρ̃ = 2

r
ρ, we have that `ρ̃(α) ≥ 1. Because µρ has

allowable growth and B2
ρ is bounded, we conclude that ρ ∈ L2(B2) and therefore

mod(γ|(t0,1), E;B2) ≤
ˆ

B2

ρ̃2 dm2 =
4

r2

ˆ

B2

ρ2 dm2 < ∞,

which is a contradiction. Thus ξ̂ ∈ Û is an interior point and there exists δ =
δ(ε, ξ̂) > 0 such that B(ξ̂, δ) ∩ S1 ⊂ Û . Thus (i|∂ρ B2)−1 : S1 → ∂ρ B2 is continuous.
Furthermore, ∂ρ B2 is compact, and so from Theorem 1.1 (i) ⇔ (iii) we deduce that
i : (B2 ∪ ∂ρ B2, dρ) → (B2 ∪S1, | · |) is a homeomorphism. ¤

The assumption of the boundedness of (B2, dρ) is crucial. Indeed, let H+ =
{x = (x1, x2) ∈ R2 : x2 > 0} and f : B2 → H+ be a conformal mapping. Then
∂ρ B2 = ∂H+ = R×{0} which is locally connected, but the identity map i is not
even bijective. Here our density is again ρ(x) = |f ′(x)|.

We close this paper by showing that Theorem 1.1 (iii) ⇔ (iv) holds only in
dimension two. For simplicity we give an example in dimension three; it can easily
be extended to higher dimensions.
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Example 4.1. There exists a domain Ω ⊂ R3 such that equipping it with its
internal metric dI we obtain that ΩI corresponds to B3

ρ for the conformal density ρ,

and the boundary ∂ρ B3 is locally connected but not compact. In fact, B3
ρ is also

locally connected at each ξ ∈ ∂ρ B3 .

(0, 0, 0)

(0, 0,−1)

(0, 0, 1)

Ω′

(Ω, dI)

Cj

(x1, x2, 0)j

Figure 2. Example of a domain ΩI , whose boundary ∂IΩ is locally connected but not compact.

As pictured in Figure 2, let Ω ⊂ R3 be the domain that is the union of an open
triangular prism Ω′ and open cylinders

⋃∞
j=1 Cj. The length of each cylinder Cj is one

and the sequence (Cj)
∞
1 converges with respect to the Euclidean Hausdorff distance

to the line segment {0} × {0} × (−1, 0). The boundary ∂IΩ is locally connected and
Ω is locally connected along ∂IΩ—also at the origin—but ∂IΩ is not compact. Thus
ΩI is not homeomorphic to B

3
. For example, if xj is a point chosen from the bottom

of Cj, then the sequence (xj)
∞
1 does not have a convergent subsequence because

dI(xj, xj+1) ≥ 2 for every j ∈ N.
Let us assume that there is a K-quasiconformal mapping f : B3 → Ω. Setting

ρ(x) =
dist(f(x), ∂Ω)

1− |x|
we obtain a density that satisfies the assumptions of Theorem 1.1. In fact, ρ even
satisfies the conditions HI(A) and VG(B) (cf. [BKR, §2.4]). Moreover there exists a
constant C = C(K) ≥ 1 such that

1

C
dI(f(x), f(y)) ≤ dρ(x, y) ≤ CdI(f(x), f(y)).

It follows that ∂ρ B3 is locally connected and B3
ρ is locally connected at each ξ ∈

∂ρ B3 .
It remains to verify that there really is such a map f. There exists a quasiconfor-

mal mapping f1 that maps the unit ball B3 onto the triangular prism Ω′. Then there
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is a bi-Lipschitz map g1 which maps a half ball

B3
+(y, r) = {x = (x1, x2, x3) ∈ R3 : |x− y| < r, x3 − y3 > 0}

to a half ball with a small dent B3
+(y, r) \ B3

+(y, tr), r > 0, 0 < t < 1. The bi-
Lipschitz constant depends only on 0 < t < 1, and thus it is same for every y ∈ R3

and every r > 0. We can map the set B3
+(y, r) \ B3

+(y, tr) quasiconformally by g2

to a cylinder B2(y, r) × (y3, y3 − 1) (cf. [GV]). Here the quasiconformality constant
depends only on 0 < t < 1. We further have a bi-Lipschitz map g3 which maps the
cylinder with a dent

(B2(y, r)× (y3, y3 + 2r)) \B3
+(y, r)

to the cylinder B2(y, r) × (y3, y3 + 2r) so that the boundary values of g3 coincide
with those of g2 on the boundary of B3

+(y, r) \B3
+(y, tr). Figure 3 clarifies how maps

gj, j = 1, 2, 3, work.

g1

tr

g3

g2

2r

2r

r

1

Figure 3. How to map a half ball to a cylinder quasiconformally?

Thus let
⋃∞

j=1 B3
j ⊂ Ω′ be the collection of half balls, B3

j = B3
+((x1, x2, 0)j, rj),

in the bottom of the triangular prism so that the half ball B3
j is above the desired

cylinder Cj and the radius rj is the same as the radius of Cj. Fix 0 < t < 1. Now we
define a map, f2 : Ω′ → Ω′ \⋃∞

j=1 B3
+((x1, x2, 0)j, trj) by setting

f2(x) =

{
x, when x ∈ Ω′ \ (⋃∞

j=1 B3
j

)
,

g1(x), when x ∈ ⋃∞
j=1 B3

j .

Our map f2 is clearly quasiconformal; the constants above depend only on t, which
is fixed. Then we define, f3 : Ω′ \⋃∞

j=1 B3
+((x1, x2, 0)j, trj) → Ω,

f3(x) =





x, when x ∈ Ω′ \⋃∞
j=1 B2((x1, x2, 0)j, rj)× (0, 2rj),

g3(x), when x ∈ ⋃∞
j=1(B

2((x1, x2, 0)j, rj)× (0, 2rj)) \B3
j ,

g2(x), when x ∈ ⋃∞
j=1

(
B3

j \B3
+((x1, x2, 0)j, trj)

)
.

This is also a quasiconformal mapping when we glue maps g2 and g3 naturally to-
gether. Then the quasiconformal mapping f = f3 ◦f2 ◦f1 maps the unit ball B3 onto
Ω.
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