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Abstract. In this article we prove regularity results for locally bounded minimizers u : Rn ⊃
Ω → RN of functionals of the typeˆ

Ω

[
(1 + |∇1u|2)

p(x)
2 + (1 + |∇2u|2)

q(x)
2

]
dx,

where p and q are Lipschitz-functions and ∇u = (∇1u,∇2u) is an arbitrary decompositon of the
gradient of u. Related functionals are the topic of the paper [Br3], but the situation here is not
covered.

1. Introduction

The study of regularity properties for minimizers u : Ω → RN of energies

I[u, Ω] :=

ˆ

Ω

F (∇u) dx,(1.1)

where Ω denotes an open set in Rn and where F : RnN → [0,∞) satisfies an
anisotropic growth condition, i.e.,

C1|Z|p − c1 ≤ F (Z) ≤ C2|Z|q + c2, Z ∈ RnN

with constants C1, C2 > 0, c1, c2 ≥ 0 and exponents 1 < p ≤ q < ∞, was introduced
by Marcellini (see [Ma1] and [Ma2]) and was widely investigated by many authors in
the last years, see the references at the end of the paper. Starting from the research
of Esposito, Leonetti and Mingione [ELM1] it is known that in general minimizers
of (1.1) stay not regular if one allows an additional x-dependence and considers
minimizers of functionals

J [u, Ω] :=

ˆ

Ω

F (·,∇u) dx(1.2)

for F : Ω×RnN → [0,∞). Already in the autonomous situation it is well-known that
we have no hope for regularity for minimizers of (1.1) if p and q are too far apart
(compare the counterexamples of [Gi2] and [Ho]). The best known bound is

q < p + 2,

proven in [BF1] and [ELM2]. To get better results additional assumptions are neces-
sary. Thus Fuchs and Bildhauer consider decomposable integrands which means we
have

F (Z) = f(Z̃) + g(Zn)
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for Z = (Z1, . . . , Zn) with Zi ∈ RN and Z̃ = (Z1, . . . , Zn−1) (note that this condition
is only an example, we could consider every other decomposition of ∇u into two
parts). Bildhauer, Fuchs and Zhong assume power growth conditions for the C2-
functions f and g with exponents p ≤ q and get a very general regularity theory in
case p ≥ 2 (see [BF3], [BF4] and [BFZ]). In [Br2] we generalize these statements
under the assumption

f(Z̃) = a(|Z̃|) and g(Zn) = b(|Zn|)
where a and b are N -functions. Here the main assumptions are (h stands for a or b)

h′(t)
t

≈ h′′(t)

and superquadratic growth of h. In [Br3] we extend the results for an x-dependence
without severe restrictions. In this paper we focus our attention on the regularity
properties for minimizers of functionals of the following type

F [u] :=

ˆ

Ω

[
(1 + |∇̃u|2) p(x)

2 + (1 + |∂nu|2)
q(x)
2

]
dx.(1.3)

Now the functions

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1

satisfy all conditions assumed in [Br3] (if p, q ≥ 2) except

|∂γh
′(x, t)| ≤ ch′(x, t) for all (x, t) ∈ Ω×R+

0(1.4)

and all γ ∈ {1, . . . , n} for a constant c ≥ 0. Note that (1.4) is the main hypothesis
to handle the terms involving derivatives with respect to x in [Br3]. The functions a
and b in the functional above do not fulfill (1.4), here the best estimation is

|∂γh
′(x, t)| ≤ c(ε)(1 + t2)

ε
2 h′(x, t) for all (x, t) ∈ Ω×R+

0(1.5)

for every ε > 0 with a constant c(ε) > 0.
Let us state our new result.

Theorem 1.1. Let u ∈ L∞loc(Ω,RN) be a local minimizer of (1.3) in the class
W 1,2

loc (Ω,RN) and p, q ∈ W 1,∞
loc (Ω, [2,∞)). Then we have

(a) partial C1,α-regularity if p ≤ q < p + 2 on Ω (for n ≥ 5 we additionally need
p > ‖q − p‖∞ (n− 2)/2);

(b) full C1,α-regularity for n = 2;
(c) full C1,α-regularity for N = 1 if ‖p− q‖∞ < 2.

Remark 1.1. Results due to minimizers of functionals like in (1.3) are not found
in literature. A similar problem is minimizing

ˆ

Ω

(1 + |∇w|2) p(x)
2 dx.

Regularity results are stated in [CM].
Our result is not restricted to the special integrand in (1.3). We can also consider

functions a, b : Ω × [0,∞) → [0,∞) which satisfy all assumptions from [Br3] except
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(A5) together with (1.5). This means the theorem above covers functionals of the
type

F [u] :=

ˆ

Ω

[
a(·, |∇̃u|) + b(·, |∂nu|)

]
dx

provided we have for h ∈ {a, b} and all x ∈ Ω:
(A1) h(x, ·) is a N -function (in the sense of [Ad]);
(A2) h

′
(x,t)
t

≈ h
′′
(x, t) for all t ≥ 0;

(A3) a(x, t) ≤ cb(x, t) for large t (can be weakened if n = 2 or N = 1);
(A4) h

′
(x,t)
t

≥ h0 > 0 for all t ≥ 0;
(A5)* for every ε > 0 we can find c(ε) > 0 such that

|∂γh
′
(x, t)| ≤ c(ε)(1 + t2)

ε
2 h

′
(x, t)

for large t;
(A6) b(x, t) ≤ ctωa(x, t) for large t for an ω > 0 (ω arbitrary if n = 2 and ω < 2 if

n ≥ 3);
(A7) h′(x,t)

t
≤ h′′(x, t) for t ≥ 0, if ω < 1;

(A8) a(x, t) ≥ ϑt
ω+2ε

2
(n−2) for large t and ϑ > 0;

(A9) argminy∈B a(y, t) is independent of t for all B b Ω;
(A10) a(x, t) ≤ θ1 tθ2|x−y|a(y, t) for large t and all x, y ∈ B (θ1, θ2 > 0).
Note that the assumptions (A7)–(A10) disappear if n = 2 or N = 1 and (A7) and
(A8) are only important for n ≥ 5. Further functionals which are covered by the
theory in this paper but not by [Br3] are given if we define

a(x, t) :=

ˆ t

0

(1 + s2)
p(x)−2

2 s ds or a(x, t) :=

ˆ t

0

(1 + s)p(x)−2Θ(s) ds

and b(x, t) replacing p by q. Here Θ ∈ C1([0,∞), [0,∞)) has to perform Θ′(t)t ≈ Θ(t),
Θ(0) = 0 and Θ′(t) ≥ Θ0 > 0.

Remark 1.2. Let us compare the statements of Theorem 1.1 with the power
growth situation: Fuchs and Bildhauer [BF3] proved full regularity for n = 2 in the
superquadratic situation which we can exactly reproduce. In [BF4] they analyse the
general vector case and get partial regularity under the assumptions p ≤ q ≤ p + 2
and q ≤ pn/(n − 2). The first one is nearly the same as in Theorem 1.1, we can
not allow an equality. If we have a look at the second one this corresponds to
p > ‖q − p‖∞ (n− 2)/2 in case of constants p and q but without equality, too. Only
the scalar case is a real restriction: In [BFZ] no condition between p and q is needed,
but we have to suppose ‖p− q‖∞ < 2.

The bound q < p + 2 for functionals with (p, q)-growth firstly appears in [ELM2]
(in the autonomous situation).

Remark 1.3. If n = 2 then we do not have to assume local boundedness of the
minimizer. The idea to remove this is outlined in [Bi] (section 4). In 2D it is possible
to consider subquadratic problems with restriction between p and q. In this case one
can follow the approach of [BF6] and [Br4].

From our proof follows that we do not need superquadratic growth if N = 1.
We only have to suppose p > 1 on Ω. Then the regularized problem (compare
Lemma 2.2) has a Lipschitz-solution by [BF2] (Thm. 1.2).
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If n ≤ 4, then we can deduce from p ≥ 2 and p ≤ q < p + 2 the inequality
p > ‖q − p‖∞ (n− 2)/2.

2. Proof of Theorem 1.1

Let

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1.

It is easy to prove that these functions satisfy the assumptions (A1)–(A4) from [Br3]
as well as (A9) and (A10) (compare the list in the introduction). Hence we define
the regularization as there (originally it was introduced in [BF6]): for h ∈ {a, b} let

hM(x, t) :=

ˆ t

0

sgM(x, s) ds

where M À 1 and

gM(x, t) := g(x, 0) +

ˆ t

0

η(s)g′(x, s) ds, g(x, t) :=
h
′
(x, t)

t
.

Here η ∈ C1([0,∞)) denotes a cut-off function with the properties 0 ≤ η ≤ 1, η
′ ≤ 0,

|η′| ≤ c/M , η ≡ 1 on [0, 3M/2] and η ≡ 0 on [2M,∞). From [Br3] we quote the
following properties of hM .

Lemma 2.1. For the sequence (hM) we have:

(i) hM ∈ C2(Ω× [0,∞)) is a N -function, h′M (x,t)

t
≥ h0 > 0 for all x ∈ Ω, all t ≥ 0

and uniformly in M ;
(ii) hM ≤ h and h

′′
M ≤ c(M) on Ω×R+

0 ;
(iii) we have for positive constants ε, h

ε
h
′
M(x, t)

t
≤ h

′′
M(x, t) ≤ h

h
′
M(x, t)

t
uniformly in M ;

(iv) if we have p ≤ q, then

aM(x, t) ≤ cbM(x, t) for all x ∈ Ω and all t ≥ 0;

(v) (1.5) extends to hM uniformly in M :

|∂γh
′
M(x, t)| ≤ c(ε)(1 + t2)

ε
2 h

′
M(x, t) for all (x, t) ∈ Ω×R+

0

and all γ ∈ {1, . . . , n};
(vi) from q − p ≤ ω for a positive number ω follows

bM(x, t) ≤ ctωaM(x, t) uniformly in M ;

(vii) hM and h−1
M satisfy uniform ∆2-conditions, which follows from (iii);

(viii) we get from (iii) and monotonicity of h′M
λh′M(x, t)t ≤ hM(x, t) ≤ h′M(x, t)t uniformly in M.

Only (v) is not the same as in [Br3] and need a slight comment: the estimation
follows from

h′M(x, t)

t
= η(t)

h′(x, t)

t
+

ˆ t

0

{
−η′(s)

s

}
h′(x, s) ds

and (1.5) using η′(s) ≤ 0.
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Letting FM(x, Z) := aM(x, |Z̃|) + bM(x, |Zn|) we define for B b Ω

FM [w] :=

ˆ

B

FM(·,∇w) dx

and uM as the unique minimizer of FM in u + W 1,2
0 (B,RN). We obtain for uM the

following regularity properties.

Lemma 2.2. (i) uM belongs to the space W 2,2
loc (B,RN);

(ii) aM(·, |∇ũM |)|∇̃uM |2 and bM(·, |∂nuM |)|∂nuM |2 are elements of L1
loc(B);

(iii) if n = 2 or N = 1 then we have uM ∈ W 1,∞
loc (B,RN);

(iv) for γ ∈ {1, . . . , n} ∂γuM solves
ˆ

B

D2
P FM(·,∇uM)(∇w,∇ϕ) dx +

ˆ

B

∂γDP FM(·,∇uM) : ∇ϕdx = 0

for all ϕ ∈ W 1,2
0 (B,RN) with spt(ϕ) b B;

(v) uM is in W 1,2(B,RN) uniformly bounded and we have

sup
M

ˆ

B

FM(·,∇uM) dx < ∞;

(vi) if we have u ∈ L∞loc(Ω,RN), then supM ‖uM‖∞ < ∞.

Proof. By construction of FM we obtain the following growth conditions (compare
Lemma 2.2)

λ|X|2 ≤ D2
P FM(x, Z)(X,X) ≤ ΛM(1 + |Z|2) ε

2 |X|2,
|∂γDP FM(x, Z)| ≤ ΛM(1 + |Z|2) 1+ε

2

for all X,Z ∈ RnN , all γ ∈ {1, . . . , n} and all x ∈ B for positive constants λ, ΛM .
If we follow the approach of [BF2] (Lemma 2.8 with α = 0) for p = 2 and q =
2 + ε, we see ∇uM ∈ L4

loc(B,RnN). Note that in case α = 0 modulus dependence
is not necessary. From the same proof we deduce uM ∈ W 2,2

loc (B,RN) and so the
first two statements of the Lemma. If we quote [BF2] (Thm. 1.1), then follows
uM ∈ W 1,∞

loc (B,RN) for n = 2 or N = 1 (we can choose ε small enough to reach
q < p(n + 1)/n). By approximation we get (iv), which is of course valid for ϕ ∈
C∞

0 (B,RN). We can adopt the last two statements from [Br3]. ¤
Partial regularity. Now we have to prove the higher integrability stated in

[Br3] (Theorem 1.1). This means we have to show

aM(·, |∇ũM |)|∇̃uM |2, bM(·, |∂nuM |)|∂nuM |2 ∈ L1
loc(B) uniformly.(2.1)

If we follow the lines of [Br3] (Section 2), we get by Young’s inequality and Lemma 2.2
(v) for a suitable cut-off function η ∈ C∞

0 (B) and k ∈ N large enoughˆ

B

η2kbM(·, |∂nuM |)|∂nuM |2 dx ≤ c(η) + c(η)

ˆ

B

η2kaM(·, |∇̃uM |)|∇̃uM |2ε dx

≤ c(η, τ) + τ

ˆ

B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx.

(2.2)

This is a consequence of an integration-by-parts argument, a Caccioppoli-type in-
equality, following by standard calculations from Lemma 2.2 (iv), and finally (1.5)
resp. Lemma 2.1 (v) (of course we also need the uniform bounds from Lemma 2.2 (v)).
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We remark that (2.2) is the analogy of inequality (2.5) in [Br3]. Whereas (2.7) of
[Br3] now reads as

(2.3)
ˆ

B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx ≤ c(η) + c(η)

ˆ

B

η2kbM(·, |∂nuM |)|∂nuM |2 dx.

If we combine (2.2) and (2.3) and choose τ small enough we get (2.1) and can pass
to the limit (details can be found in [Br3]).

As usual the key to the partial regularity is the following lemma.

Lemma 2.3. Assume the assumptions of Theorem 1.1 and fix L > 0. Then
there is a C∗(L) such that for every τ ∈ (0, 1/4) exists an κ = κ(τ, L) > 0 with the
following property: If

(2.4) |(∇u)x,r| ≤ L and E(x, r) + rγ∗ ≤ κ

for a ball Br(x) b Ω, this implies

(2.5) E(x, τr) ≤ C∗τ 2[E(x, r) + rγ∗ ],

where γ∗ ∈ (0, 2) is arbitrary and (f)x,r denotes the mean value of a function f over
the ball Br(x).

Here we have

E(x, r) :=

 

Br(x)

|∇u− (∇u)x,r|2 dy +

 

Br(x)

a(·, |∇u− (∇u)x,r|) dy

for a small radius r, where a(x, t) := a(x, t)tω+2ε and ω := ‖p− q‖∞ < 2. The
ε-term in the definition of a is the modification of the excess function in [Br3] and
compensates the additional power ε in (1.5). Since ε > 0 is arbitrary and ω < 2, we
can reach ω + 2ε < 2 and the well-definedness of the excess function follows from
(2.1) by the lines of [Br3] (section 3).

Proof of Lemma 2.3. Thanks to the modification of a in the excess function we
can prove Lemma 2.3 as in [Br3]. In the proof of the strong convergence of the scaled
functions we need the convergence (letting AK(r) := Br ∩ [λm|∇̃um| > K], K > 3L,
Br b B1)

(2.6) λ−2
m

ˆ

AK(r)

a(λm|∇um|) dy −→ 0, m →∞.

Here um as a scaling of u on the unit ball and λm converge to zero, details, also for
(2.6), can be found in [Br2] and [Br3]. Since (compare [Fu], after (3.25))

λ−2
m

ˆ

AK(r)

a(λm|∇̃um|) dy ≤ c(r)

(ˆ

AK(r)

|λm∇̃um|ω+2ε
2

n dz

)2/n

,

we conclude (2.6) by
a(x, t) ≥ ϑt

ω+2ε
2

(n−2),

which follows from p > ‖p− q‖∞ (n−2)/2 for a suitable choice of ε and the definition
of ω. Now we have

λ−2
m

ˆ

AK(r)

a(λm|∇̃um|) dy ≤ c(r)

(ˆ

AK(r)

a(·, |λm∇̃um|)
n

n−2 dz

)2/n
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and the r.h.s. vanishes for m →∞, for details we refer again to [Br2] and [Br3]. For

λ−2
m

ˆ

AK(r)

b(|λm∂num|)|λm∂num|ω dy

the same arguments are applicable. This finally leads to (2.6), the last missing step
in the contradiction of the proof of Lemma 2.3 from which the claim of Theorem 1.1
follows by standard arguments. ¤

Full regularity for n = 2. In [BF6], (2.5), the authors prove an inequality of
the form (sum over γ ∈ {1, 2})ˆ

Br(z)

D2
P FM(·,∇uM)(∂γ∇uM , ∂γ∇uM) dx

≤ c(τ)(R− r)−β + τ

ˆ

BR(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx.

(2.7)

Here is Br(z) b BR(z) b B, τ > 0 arbitrary and β > 0 a suitable exponent. On
account of the x-dependence we have additionally to the terms in [BF6] the integral

−
ˆ

BR(z)

η2∂γDP FM(·,∇uM) : ∂γ∇uM dx,

where η ∈ C∞
0 (BR(z)) is a suitable cut-off function. Using (1.5) and the splitting-

structure we estimate this by

c

ˆ

BR(z)

η2a′M(·, |∂1uM |)(1 + |∂1uM |2) ε
2 |∂γ∂1uM | dx

+ c

ˆ

BR(z)

η2b′M(·, |∂2uM |)(1 + |∂2uM |2) ε
2 |∂γ∂2uM | dx.

As a consequence of Young’s inequality we can bound the first term by (compare
Lemma 2.1 (viii))

τ ′
ˆ

BR(z)

η2a′M(·, |∂1uM |)
|∂1uM | |∂γ∂1uM |2 dx + c(τ ′)

ˆ

BR(z)

η2aM(·, |∂1uM |)(1 + |∂1uM |2)ε dx.

For τ ′ ¿ 1 one can absorb the first integral in the l.h.s. of (2.7). Here we used the
inequality

a′M(·, |Z̃|)
|Z̃|

|P̃ |2 ≤ cD2
P FM(x, Z)(P, P )

for Z, P ∈ RnN (compare Lemma 2.1, part (iii)). For the second one we obtain

c(τ ′)
ˆ

BR(z)

η2aM(·, |∂1uM |)(1 + |∂1uM |2)ε dx

≤ τ ′′
ˆ

BR(z)

aM(·, |∂1uM |)2 dx + c(τ ′′)
ˆ

BR(z)

(1 + |∂1uM |2)2ε dx.

We can handle the r.h.s. conveniently, since we may assume ε ≤ 1/2 and receive
(compare Lemma 2.2, part (v))ˆ

BR(z)

(1 + |∂1uM |2)2ε dx ≤ c +

ˆ

BR(z)∩[|∂1uM |>1]

aM(·, |∂1uM |) dx ≤ c.
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Analogously we can incorporate the term
ˆ

BR(z)

η2b′M(·, |∂2uM |)(1 + |∂2uM |2) ε
2 |∂γ∂2uM | dx,

hence (2.7) follows. In [BF6] we can find the inequality
ˆ

Bρ(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx

≤ c(R− ρ)−2 + c

ˆ

Br(z)

D2
P FM(·,∇uM)(∂γ∇uM , ∂γ∇uM) dx

(2.8)

for ρ ∈ (0, R), and r = (ρ + R)/2. In order to show this the authors of [BF6] use
an additional cut-off function and Sobolev’s embedding W 1,1 ↪→ L2, valid for n = 2,
as well as the uniform growth conditions for aM and bM (compare Lemma 2.1). In
our approach we obtain on the r.h.s. of this inequality additionally the term (if we
estimate ∇xaM and ∇xbM using (1.5))
[ˆ

Br(z)

aM(·, |∂1uM |)(1 + |∂1uM |2) ε
2 dx

]2

+

[ˆ

Br(z)

bM(·, |∂2uM |)(1 + |∂2uM |2) ε
2 dx

]2

.

We can handle both terms in a similar way and show the proceeding for the first one.
By Hölder’s inequality we receive the upper bound

YM :=

[ˆ

Br(z)

aM(·, |∂1uM |)sχ dx

] 2
χ

·
[ˆ

Br(z)

aM(·, |∂1uM |)
χ−sχ
χ−1 (1 + |∂1uM |2)

ε
2

χ
χ−1 dx

]2χ−1
χ

.

Here we have s ∈ (0, 1) and χ ∈ (1, 2) such that sχ > 1. For the second integral Y 2
M

follows by Lemma 2.2 (v)

Y 2
M =

ˆ

Br(z)∩[|∂1uM |≤1]

. . . +

ˆ

Br(z)∩[|∂1uM |>1]

. . . ≤ c +

ˆ

Br(z)

aM(·, |∂1uM |) dx ≤ c.

Note that we have for t ≥ 1

aM(x, t)
χ−sχ
χ−1 (1 + t2)

ε
2

χ
χ−1 ≤ caM(x, t)

for ε small enough, since sχ > 1 (remember Lemma 2.1 (i)). Now we get, using
Jensen’s and Young’s inequality

YM ≤ c

[ˆ

Br(z)

aM(·, |∂1uM |)sχ dx

] 2
χ

≤ c

ˆ

Br(z)

aM(·, |∂1uM |)2s dx

≤ τ ′′′
ˆ

Br(z)

aM(·, |∂1uM |)2 dx + c(τ ′′′).

So we have to add

τ ′′′
ˆ

Br(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx(2.9)
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on the r.h.s. of (2.8). Combining (2.7)–(2.9) we have shown (for a suitable choice of
τ and τ ′′′)

ˆ

Bρ(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx

≤ c(R− r)−β +
1

2

ˆ

BR(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx.

From [Gi1] (Lemma 5.1, p. 81) we obtain uniform bounds on aM(·, |∂1uM |) and
bM(·, |∂2uM |) in L2

loc(B). Now we get the uniform boundedness of uM in W 2,2
loc (B,RN)

(compare Lemma 2.1 (i) and (2.7)) and we can reproduce the proof of [BF6] for the
rest, whereby the terms which appear additionally on account of (1.5) are uncritical.

Full regularity for N = 1. In case N = 1 it is possible to modify the N -
function in [Br3], (4.4). Therefore we need the inequalities

bM(x, t) ≤ ct2−2εaM(x, t) and aM(x, t) ≤ ct2−2εbM(x, t).(2.10)

By Lemma 2.1 (vi) this follows from ‖p− q‖∞ < 2 for ε ¿ 1. So we can separate
the mixed integrands of the terms

ˆ

B

η2kaM(·, |∇̃uM |)|Γ
α+2ε

2
n,M dx and

ˆ

B

η2kbM(·, |∂nuM |)Γ̃
α+2ε

2
M dx,

which occur additionally to the integrals in [Br3]. Finally we get instead of [Br3],
(4.6),

ˆ

B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx

≤ c(η)

[
. . . +

ˆ

B

η2kbM(·, |∂nuM |)|Γ
α+2ε

2
n,M dx +

ˆ

B

η2kaM(·, |∇̃uM |)Γ̃
α+2ε

2
M dx

]

as well as an analogous inequality for aM(·, |∇̃uM |)Γ̃
α+2

2
M instead of [Br3], (4.7). The

key for this is an integrating-by-parts argument as in the vector-valued situation
(compare the step: partial regularity), the growth conditions of aM and bM and a
Caccioppoli-type inequality only valid if N = 1. Since we may assume ε ≤ 1/2, the
first integral on the r.h.s. is bounded by (using Young’s inequality)

τ

ˆ

B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx + c(τ)

ˆ

B

η2kbM(·, |∂nuM |)|Γ
α
2
n,M dx

for an arbitrary τ > 0. For the second one we can argue similarly and we obtain by
absorbing the τ -terms

ˆ

B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx +

ˆ

B

η2kaM(·, |∇̃uM |)|Γ̃
α+2

2
M dx

≤ c(η)

[ˆ

spt(η)

η2kbM(·, |∂nuM |)|Γ
α
2
n,M dx +

ˆ

spt(η)

η2kaM(·, |∇̃uM |)Γ̃
α
2
M dx

]
.

Now we can iterate as in [Br3] and obtain arbitrary high integrability of∇uM uniform
in M (the starting point is α = 0, see Lemma 2.2, part (v)). This is enough to end
up the proof as mentioned there (full regularity follows by DeGiorgi-type arguments
using Stampacchia’s Lemma [St], Lemma 5.1, p. 219).
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