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Abstract. In this paper we prove a boundary Harnack inequality for positive functions which
vanish continuously on a portion of the boundary of a bounded domain Ω ⊂ R2 and which are
solutions to a general equation of p-Laplace type, 1 < p < ∞. We also establish the same type of
result for solutions to the Aronsson type equation ∇(F (x,∇u)) · Fη(x,∇u) = 0. Concerning Ω we
only assume that ∂Ω is a quasicircle. In particular, our results generalize the boundary Harnack
inequalities in [BL] and [LN2] to operators with variable coefficients.

1. Introduction

Recently there have been several breakthroughs in the study of boundary Har-
nack inequalities for p-harmonic functions, 1 < p ≤ ∞, which vanish on a portion
of the boundary of a bounded domain Ω ⊂ Rn. In particular, in the plane, i.e.,
Ω ⊂ R2, the boundary Harnack inequality for p-harmonic functions, 1 < p < ∞, was
proved in [BL] assuming only that Ω ⊂ R2 is bounded and that ∂Ω is a quasicircle.
In [LN2] this result was extended to p = ∞ and hence to the case of infinity har-
monic functions. Furthermore, in [LN1] and [LN4] a number of results concerning the
boundary behavior of positive p-harmonic functions, 1 < p < ∞, in a bounded Lips-
chitz domain Ω ⊂ Rn were proved. In particular, the boundary Harnack inequality
as well as Hölder continuity for ratios of positive p-harmonic functions, 1 < p < ∞,
vanishing on a portion of ∂Ω were established. Furthermore, the p-Martin boundary
problem at w ∈ ∂Ω was resolved under the assumption that Ω is either convex, C1-
regular or a Lipschitz domain with small constant. In [LN3] the boundary Harnack
inequality and Hölder continuity for ratios of p-harmonic functions vanishing on a
portion of certain Reifenberg flat and Ahlfors regular NTA-domains were established
and the p-Martin boundary problem was resolved in these domains. Finally, in the
case of certain Reifenberg flat domains, these results where generalized to equations
of p-laplace type in [LLuN], and to equations of p-laplace with lower order terms in
[ALuN].

The purpose of this paper is to generalize the result on boundary Harnack in-
equalities proved in [BL] and [LN2] to more general operators of p-Laplace type and
to operators of Aronsson type. The latter operators represent generalizations of the
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so called infinity-Laplacian. In particular, we generalize the results in [BL] and [LN2]
to operators with variable coefficients.

To state our main result we need to introduce some notation. In particular, we
let Ē, ∂E, diam E, be the closure, boundary, diameter, of the set E ⊂ R2. We define
d(y, E) to equal the distance from y ∈ R2 to E, 〈·, ·〉 denotes the standard inner
product on R2 and we let |x| = 〈x, x〉1/2 be the Euclidean norm of x. B(x, r) = {y ∈
R2 : |x − y| < r} is defined whenever x ∈ R2, r > 0, and we let dx denote the two
dimensional Lebesgue measure on R2. If O ⊂ R2 is open and 1 ≤ q ≤ ∞, then by
W 1,q(O) we denote the Sobolev space, i.e., the space of equivalence classes of functions
f with weak gradient ∇f = (fx1 , . . . , fxn), both of which are q-th power integrable
on O. Let ‖f‖1,q = ‖f‖q + ‖ |∇f | ‖q be the norm in W 1,q(O) where ‖ · ‖q denotes the
usual Lebesgue q norm in O. Note that if q = ∞, then ‖f‖1,∞ = ‖f‖∞ + ‖ |∇f | ‖∞
where ‖ · ‖∞ denotes the essential supremum on O. Next let C∞

0 (O) be the set of
infinitely differentiable functions with compact support in O and let W 1,q

0 (O) be the
closure of C∞

0 (O) in the norm of W 1,q(O). By C(O) and C0(O) we denote the set of
continuous functions on O and the set of continuous functions with compact support
in O respectively. By ∇· we denote the divergence operator.

We now introduce the geometric notions used in this paper. To start with we
recall that a Jordan curve J is said to be a k quasicircle, 0 < k < 1, if J = h(∂B(0, 1))
where h ∈ W 1,2(R2) is a homeomorphism of R2 and

(1.1) |hz̄| ≤ k|hz|, dx almost everywhere in R2.

Here we are using complex notation, i =
√−1, z = x1 + ix2, 2hz̄ = hx1 + ihx2 ,

2hz = hx1 − ihx2 . We say that J is a quasicircle if J is a k quasicircle for some
0 < k < 1. Let w1, w2 be distinct points on the Jordan curve J and let J1, J2 be the
arcs on J with endpoints w1, w2. Then J is said to satisfy the Ahlfors three point
condition provided there exists 1 ≤ M̃ < ∞ such that

(1.2) min{diam J1, diam J2} ≤ M̃ |w1 − w2|
whenever w1, w2 ∈ J . Ω is said to be a uniform domain provided there exists M̂ ,
1 ≤ M̂ < ∞, such that if w1, w2 ∈ Ω, then there exists a rectifiable curve γ : [0, 1] → Ω
with γ(0) = w1, γ(1) = w2, such that if H1(·) denotes the one-dimensional Hausdorff
measure on γ, then

(i) H1(γ) ≤ M̂ |w1 − w2|,
(ii) min{H1(γ([0, t])), H1(γ([t, 1]))} ≤ M̂d(γ(t), ∂Ω).

(1.3)

Furthermore, a bounded domain Ω is called non-tangentially accessible (NTA) if
there exist M ≥ 2 and r0 such that the following are fulfilled:

(i) corkscrew condition: for any w ∈ ∂Ω, 0 < r < r0, there exists ar(w) ∈ Ω

satisfying M−1r < |ar(w)− w| < r, d(ar(w), ∂Ω) > M−1r,

(ii) Rn \ Ω̄ satisfies the corkscrew condition,

(iii) uniform condition: if w ∈ ∂Ω, 0 < r < r0 and w1, w2 ∈ B(w, r) ∩ Ω, then
there exists a rectifiable curve γ : [0, 1]→Ω with γ(0)=w1, γ(1)=w2 s.t.

(a) H1(γ) ≤ M |w1 − w2|,
(b) min{H1(γ([0, t])), H1(γ([t, 1]))} ≤ Md(γ(t), ∂Ω).

(1.4)
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We note that (iii) in (1.4) is different but equivalent to the usual Harnack chain
condition given in [JK] (see [BL, Lemma 2.5]). In the following, M and r0 will be
called the NTA-constants of Ω. Moreover, we note that Ω is a uniform domain if and
only if (1.4) (i) and (iii) hold. Furthermore, the following conditions are equivalent
for Ω ∈ R2:

(i) ∂Ω is a quasicircle,
(ii) ∂Ω is a Jordan curve and satisfies the Ahlfors three point condition,

(iii) ∂Ω is a Jordan curve and Ω is a uniform domain,

(iv) ∂Ω is a Jordan curve and Ω is an NTA-domain.

For more on these geometric notions and proofs of the stated statements we refer to
[G].

We next introduce the operators of p-Laplace type which we consider in this
paper.

Definition 1.1. Let p ∈ (1,∞) and let λ, Λ ∈ R, 0 < λ ≤ Λ < ∞. Let
A = (A1, A2) : R2 ×R2 → R2, assume that the mapping x → A(x, η) is measurable
for all η ∈ R2 and that the mapping η → A(x, η) is continuous for almost every
x ∈ R2. We say that the function A belongs to the class Ap(λ, Λ) if the following
conditions are satisfied for almost every x ∈ R2 whenever ξ, ζ ∈ R2 and η ∈ R2\{0}:

(i) |A(x, ξ)| ≤ Λ|ξ|p−1,

(ii) 〈A(x, ξ)− A(x, ζ), ξ − ζ〉 ≥ λ(|ξ|+ |ζ|)p−2|ξ − ζ|2,
(iii) A(x, η) = |η|p−1A(x, η/|η|).

If A belongs to the class Ap(λ, Λ), then we write A ∈ Ap(λ, Λ).

Definition 1.2. Let p ∈ (1,∞) be given and let A ∈ Ap(λ, Λ) for some (λ, Λ),
0 < λ ≤ Λ < ∞. Given a bounded domain G ⊂ R2 we say that u is A-harmonic in
G provided u is a weak solution of ∇ · A(x,∇u) = 0 in G, i.e., u ∈ W 1,p(G) and

(1.5)
∫

G

〈A(x,∇u),∇ψ〉 dx = 0

whenever ψ ∈ W 1,p
0 (G) . As a short notation for (1.5) we write that ∆p,Au = ∇ ·

A(x,∇u) = 0 in G.

We note that an important class of equations which is covered by Definition 1.1
and 1.2 is the class of equations of the type

(1.6) ∇ ·
[
〈a(x)∇u,∇u〉p/2−1a(x)∇u

]
= 0 in G

where a(x) = {aij(x)} is a matrix such that the conditions in Definition 1.1 (i) and
(ii) are fulfilled.

Let p ∈ (1,∞) be given. We are now ready to state our first results which
concern A-harmonic functions. Given a domain Ω ⊂ R2 we in the following let
∆(w, r) = ∂Ω ∩B(w, r) whenever w ∈ ∂Ω, 0 < r. We prove the following theorems.

Theorem 1.3. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve and Ω is a uniform
domain with constant M̂ . Let p ∈ (1,∞) be given and assume that A ∈ Ap(λ, Λ)
for some (λ, Λ). Let w ∈ ∂Ω, 0 < r ≤ r0 and suppose that u and v are positive
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A-harmonic functions in Ω ∩ B(w, r), continuous on Ω̄ ∩ B(w, r) with u = 0 = v on
∆(w, r). Then there exists a constant c, depending only on M̂, p, Λ/λ, such that if
r̃ = r/c and x ∈ Ω ∩B(w, r̃), then

c−1u(ar̃(w))

v(ar̃(w))
≤ u(x)

v(x)
≤ c

u(ar̃(w))

v(ar̃(w))
.

Theorem 1.4. Let Ω, p, A, w, r, u and v be as in Theorem 1.3. Then there
exists p̂ > 2 such that the following is true whenever p̂ ≤ p < ∞. There exists a
constant c, depending only on M̂, p̂, Λ/λ, such that if r̃ = r/c and x ∈ Ω ∩ B(w, r̃),
then

c−1u(ar̃(w))

v(ar̃(w))
≤ u(x)

v(x)
≤ c

u(ar̃(w))

v(ar̃(w))
.

Theorem 1.3 was proved in [BL] in the case of the p-Laplace operator, i.e., the
case A(x, η) = |η|p−2η while, still in the case of the p-Laplace operator, Theorem 1.4
was established in [LN2]. Still, Theorem 1.3 and Theorem 1.4 are new for the general
class operators of p-Laplace type defined by the class Ap(λ, Λ).

We next introduce the operators of Aronsson type which we consider in this
paper.

Definition 1.5. Let α, β, γ, p̄, c̄ ∈ R+. Let F : R2 ×R2 → R and assume that

(i1) x → F (x, η) is differentiable for all η ∈ R2,

η → F (x, η) is strictly convex and differentiable for all x ∈ R2,

(ii1) (x, η) → ∇xF (x, η), (x, η) → ∇ηF (x, η) are continuous for all

(x, η) ∈ R2 ×R2,

(iii1) Fxjηj
(x, η) exists and is continuous whenever j ∈ {1, 2},

(x, η) ∈ R2 ×R2.

(1.7)

Assume also that the following hold for all x ∈ R2, ξ, ζ ∈ R2 and η ∈ R2 \ {0},
p ≥ p̄:

(i2) α|ξ|2 ≤ F (x, ξ) ≤ β|ξ|2,
(ii2)

(
F (x, ξ)

p−2
2 ∇ξF (x, ξ)− F (x, ζ)

p−2
2 ∇ξF (x, ζ)

)
· (ξ − ζ) ≥ γp|ξ − ζ|p,

(iii2) F (x, η) = |η|2F (x, η/|η|).
(1.8)

We say that a function F belongs to the class F (α, β, γ, p̄, c̄) if F satisfies the condi-
tions in (i1)–(iii1), (i2)–(iii2) and if for every ball B(w, r) ⊂ R2, there exist constants
C > 0 and 0 < κ ≤ 1 such that the following holds for all η ∈ R2 and for all
x, y ∈ B(w, r):

(i3) |∇xF (x, η)| ≤ C|η|2,
(ii3) |∇xF (x, η)−∇xF (y, η)| ≤ C|η|2|x− y|κ,
(iii3) |∇ηF (x, η)−∇ηF (y, η)| ≤ C|η||x− y|1/2+κ.

(1.9)

If F belongs to the class F (α, β, γ, p̄, c̄), then we write F ∈ F (α, β, γ, p̄, c̄).

Definition 1.6. Let F ∈ F (α, β, γ, p̄, c̄) for some (α, β, γ, p̄, c̄). Given a bounded
domain G ⊂ R2 we say that u is F -infinity harmonic in G provided u solves the partial
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differential equation

(1.10) ∆∞,F u = ∇ (F (x,∇u(x))) · ∇ηF (x,∇u(x)) = 0

in the viscosity sense.

The partial differential equation ∆∞,F u in Definition 1.6 is referred to as an equa-
tion of Aronsson type and we recall that this type of equations was first introduced
by Aronsson in [A1–A4]. These equations play an important role as the governing
equation in certain minimization problems in the L∞-norm. Moreover, to under-
stand the rationale for all of the conditions stated in Definition 1.5, we note that
in [Ju] the fundamental work in [J] on the infinity-Laplacian was generalized to the
partial differential equation in (1.10) using the assumptions stated in Definition 1.5.
In particular, in [Ju, Theorem 2.3, Corollary 3.8 and Theorem 4.25] it is proved that
if f ∈ W 1,∞(G)∩C(Ḡ), then there exists a unique viscosity solution to the Dirichlet
problem

(1.11) ∆∞,F u = 0 in G, lim
x∈G,x→y

u(x) = f(y) for all y ∈ ∂G.

Moreover, in [Ju, Corollary 4.33] it is proved that if f : ∂G → R is a continuous
function, then the Dirichlet problem in (1.11) has a unique viscosity solution in G.
Note that viscosity solutions are by definition continuous and that the conclusions on
the solvability of the Dirichlet problem in (1.11) are valid for any bounded domain
G ⊂ R2. Furthermore, using the assumptions in Definition 1.5, the equation in (1.11)
was derived in [Ju, Corollary 3.8] as the Euler equation for so called variational F -
absolute minimizers. In particular, an F -absolute minimizer is a function u ∈
W 1,∞

loc (G) such that

(1.12) ‖F (x,∇u(x))‖∞,D ≤ ‖F (x,∇v(x))‖∞,D

whenever D is open, D̄ is a compact subset of G and v ∈ W 1,∞(D) is such that u−v ∈
C0(D). For more on this minimization problem and questions concerning existence
and uniqueness of solutions to equations of Aronsson type, as well as applications
to image processing and game theory, we refer to [J], [JWY], [Ju], [BEJ] and the
references in these papers.

We are now ready to state our result which concern F -infinity harmonic functions,
F ∈ F (α, β, γ, p̄, c̄).

Theorem 1.7. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve, Ω is a uniform
domain with constant M̂ and F ∈ F (α, β, γ, p̄, c̄) for some (α, β, γ, p̄, c̄). Let w ∈ ∂Ω,
0 < r ≤ r0 and suppose that u and v are positive F -infinity harmonic functions
in Ω ∩ B(w, r), continuous on Ω̄ ∩ B(w, r) with u = 0 = v on ∆(w, 4r). Then
there exists a constant c, depending only on α, β, γ, p̄, c̄, M̂ , such that if r̃ = r/c and
x ∈ Ω ∩B(w, r̃), then

(1.13) c−1u(ar̃(w))

v(ar̃(w))
≤ u(x)

v(x)
≤ c

u(ar̃(w))

v(ar̃(w))
.

Theorem 1.7 was proved in [LN2] in the case of the infinity-Laplacian, but to our
knowledge no boundary Harnack inequalities for solutions of equations of Aronsson
type have previously been established and hence Theorem 1.7 is new. As mentioned
above we impose the restriction F ∈ F (α, β, γ, p̄, c̄) to be able to use framework and
results in [Ju]. Moreover, in this paper we do not discuss to what extent the quite
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lengthy list of conditions stated in Definition 1.5 are necessary for the validity of the
results in [Ju] and for the validity of Theorem 1.7.

Concerning proofs, the proof of Theorem 1.3, Theorem 1.4 and Theorem 1.7 fol-
low along the lines of the corresponding proofs in the case of the p-Laplacian, see
[BL], and in the case of the infinity-Laplacian, see [LN2]. Though we claim limited
originality here we claim that our results stresses the generality of the technique,
applicable only in R2 though, developed in [BL] for p-harmonic functions and then
refined in [LN2] to the case of infinity harmonic functions. In particular, to under-
stand the relation between Theorem 1.3, Theorem 1.4 and Theorem 1.7 and their
proofs we let F ∈ F (α, β, γ, p̄, c̄) for some (α, β, γ, p̄, c̄) and define

(1.14) A(x, η) = F (x, η)(p−2)/2∇ηF (x, η).

Then A ∈ Ap(λ, Λ) for some (λ, Λ) which only depend on (α, β, γ, p̄, c̄). Let p ∈
(1,∞), G be a bounded domain and let f ∈ W 1,p(Ω) ∩ C(Ω̄). Then there exists, see
Lemma 2.A below, a unique weak solution up to the Dirichlet problem

∇ · A(x,∇up) = ∇ · (F (x,∇up)
(p−2)/2∇ηF (x,∇up)

)
= 0 in G,

lim
x∈G,x→y

up(x) = f(y) for all y ∈ ∂G,
(1.15)

Moreover, to describe the relation between the problems in (1.11) and (1.15) we
assume, in addition, that f ∈ W 1,∞(G) ∩ C(Ḡ) and we let u∞ ∈ W 1,∞(G) ∩ C(Ḡ)
be the unique viscosity solution to (1.11) with boundary data defined by f . Then,
arguing as in [Ju, Theorem 1.15, Proposition 2.5 and Corollary 3.8] we see that there
exists a sequence {pj}, pj → ∞ as j → ∞, such that upj

→ u∞ uniformly in G
as j → ∞. In particular, the unique solution u∞ to the Dirichlet problem (1.11)
for the operator defined in Definition 1.6 is the uniform limit, as pj → ∞, of the
corresponding unique solutions {upj

} to the problems in (1.15). This conclusion
allows us to derive Theorem 1.7 from Theorem 1.4.

The rest of the paper is organized in the following way. In Section 2 we prove a
number of estimates for A-harmonic functions and in particular we establish estimates
which are uniform in p for p large enough. Then, in Section 3 we prove Theorem 1.3–
1.7.

2. Estimates for A-harmonic functions

We begin this section by introducing and recalling some notation. Let maxE u
and minE u be the essential supremum and infimum of u on E whenever E ⊂ Rn and
whenever u is defined on E. Recall that ∆(w, r) = ∂Ω ∩ B(w, r) whenever w ∈ ∂Ω,
0 < r and that ar(w) denotes an interior corkscrew point of Ω guaranteed by (i)
in (1.4). Throughout the paper c will denote, unless otherwise stated, a constant
≥ 1, not necessarily the same at each occurrence, which is independent of p but may
depend on M and p̂. In general, c(a1, . . . , an) denotes a constant ≥ 1, not necessarily
the same at each occurrence, which is independent of p but depends on a1, . . . , an.

We begin with some preliminaries concerning the solvability of the Dirichlet prob-
lem and concerning the possibility to make coordinate transformations.

Lemma 2.A. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve and Ω is a uniform
domain with constant M̂ . Let p ∈ (1,∞), A ∈ Ap(λ, Λ) for some (λ, Λ) and f ∈
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W 1,p(Ω) ∩ C(Ω̄). Then there exists a unique solution to the Dirichlet problem

∆p,Au = ∇ · A(x,∇u) = 0 in Ω, lim
x∈Ω,x→y

u(x) = f(y) for all y ∈ ∂Ω.

Proof. For a detailed proof we refer the reader to [HKM, Theorem 3.17 and
Theorem 6.31]. We just note that the proof of existence is based on the theory
of monotone operators while the proof of uniqueness follows from the comparison
principle for A-harmonic functions. That limx→y u(x) exists and equals f(y) for all
y ∈ ∂Ω follows from the fact that all points on ∂Ω are A-regular. In particular, by
(ii) in (1.4) we see that R2\Ω has a corkscrew at each point on ∂Ω. Hence, using
[HKM, Theorem 6.31] we can conclude that R2\Ω is (p, µ)-thick at each point on
∂Ω. As a consequence, see [HKM, Corollary 6.28], all points on ∂Ω are A-regular.
This completes the proof. ¤

Lemma 2.B. Let Ω ⊂ R2, p ∈ (1,∞), A ∈ Ap(λ, Λ) for some (λ, Λ) and assume
that u is an A-harmonic function in Ω. Let k ∈ R and z ∈ R2. Then û is A-harmonic
in some Ω̂ ⊂ R2, for Â ∈ Ap(λ, Λ), in either of the following cases:

(i) û = ku, (ii) û = u(x + z), (iii) û = u(kx).

Proof. We first note that (i) immediately follows from (iii) in Definition 1.1 and
that in this case û is Â-harmonic in Ω̂ = Ω with Â = A ∈ Ap(λ, Λ). Similarly,
(ii) follows with Â = A(x + z, ξ), Ω̂ = Ω − z and finally (iii) follows with Â =

kp−1A(kx, ξ/k) and Ω̂ = Ω/k. ¤
In the following proofs we will often make the assumptions,

w = 0, r = 1 and max
Ω∩B(w,2r)

u = 1.(2.16)

The assumptions (2.16) are permissible since the parameter M̂ in the definition of
a uniform domain is invariant under translations and scalings and that the same is
true, see Lemma 2.B, for the constants λ and Λ used in the definition of A-harmonic
functions. In addition we will also frequently make use of a test function θ which
satisfies the following,

θ ∈ C∞
0 (B(0, 2)), θ ≡ 1 on B̄(0, 1), θ ≥ 0 and |∇θ| ≤ c.(2.17)

After these preliminaries we state, and in some cases also prove, a number of
basic lemmas for A-harmonic functions.

Lemma 2.1. Let A ∈ Ap(λ, Λ) for some (λ, Λ) and suppose that u and v are
A-harmonic functions in an open set Ω. If

lim
y→x

sup v(y) ≤ lim
y→x

inf u(y)

for all x ∈ ∂Ω, and also for x = ∞ if Ω is unbounded, and if both sides of the above
inequality are not simultaneously ∞ or −∞, then v ≤ u in Ω

Proof. See [HKM, Theorem 7.6]. ¤

Lemma 2.2. Let Ω ⊂ R2, p ∈ (1,∞) be given and assume that A ∈ Ap(λ, Λ)
for some (λ, Λ). Let w ∈ ∂Ω, 0 < r ≤ r0 and assume that either B(w, 2r) ⊂ Ω or
w ∈ ∂Ω. Suppose that u is a nonnegative A-harmonic function in Ω ∩ B(w, 2r) and
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that u = 0, in the Sobolev sense, on ∆(w, 2r) whenever this set is non empty. Then
there exists a constant c1 ∈ [1,∞), depending only on Λ/λ, such that

rp−2

∫

Ω∩B(w,r)

|∇u|pdx ≤ cp
1

(
max

Ω∩B(w,2r)
u

)p

.

Proof. We start by assuming (2.16). If w ∈ ∂Ω then we extend u to B(0, 2),
by defining u ≡ 0 on B(0, 2)\Ω. Then, u is a nonnegative subsolution to (1.5) in
B(0, 2). In particular, if ψ ∈ C∞

0 (B(0, 2)), ψ ≥ 0, then

(2.18)
∫

R2

〈A(x,∇u),∇ψ〉 dx ≤ 0.

To prove that u satisfies (2.18), let ψ ∈ C∞
0 (B(0, 2)) and put ψ̃ = [(η + max[u −

ε, 0])ε − ηε]ψ, with ε, η > 0 small, then ψ̃ is an admissible test function for (1.5).
Moreover, using (1.5) we see that∫

u≥ε

[(η + max[u− ε, 0])ε − ηε]〈A(x,∇u),∇ψ〉 dx

+

∫

u≥ε

〈A(x,∇u),∇u〉ε(η + u)ε−1ψ dx = 0.

(2.19)

From (ii) in Definition 1.1 we note that 〈A(x,∇u),∇u〉 ≥ 0, hence∫

u≥ε

[(η + max[u− ε, 0])ε − ηε]〈A(x,∇u),∇ψ〉 dx ≤ 0.(2.20)

Using dominated convergence, first letting η → 0 and then ε → 0 we see that u
satisfies (2.18) whenever ψ ∈ C∞

0 (B(0, 2)) and ψ ≥ 0. Now, let θ be as in (2.17) and
define ψ = θp(1 + u)p. Then we first see that

∇ψ = pθp−1(1 + u)p∇θ + pθp(1 + u)p−1∇u,(2.21)

and using (2.21) in (2.18) we can conclude that

p

∫

R2

〈A(x,∇u),∇θ〉θp−1(1 + u)p dx + p

∫

R2

〈A(x,∇u),∇u〉θp(1 + u)p−1 dx ≤ 0.(2.22)

By using (i) and (ii) in Definition 1.1 we see that

−Λ

∫

R2

|∇u|p−1|∇θ|θp−1(1 + u)p dx + λ

∫

R2

|∇u|pθp(1 + u)p−1 dx ≤ 0.(2.23)

By properties of the test function, we have for a constant c depending only on Λ/λ∫

R2

|∇u|pθp(1 + u)p−1 dx ≤ c

∫

R2

|∇u|p−1θp−1(1 + u)p dx,(2.24)

and by using the normalization of u in (2.16),∫

R2

|∇u|pψ dx ≤ c

∫

R2

|∇u|p−1ψ(p−1)/p dx.(2.25)
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By using Hölder’s inequality we finally get∫

R2

|∇u|pψdx ≤ cp,(2.26)

for a constant c depending only on Λ/λ, which completes the proof of Lemma 2.1. ¤

Lemma 2.3. Let p ∈ (1,∞) be given and assume that A ∈ Ap(λ, Λ) for some
(λ, Λ). Assume w ∈ R2, 0 < r < ∞ and suppose that u is a positive A-harmonic
function in B(w, 2r). Then there exists a constant c2 ∈ [1,∞), depending only on p
and Λ/λ, such that

max
B(w,r)

u ≤ c2 min
B(w,r)

u.(2.27)

Moreover, if p̂ > 2 and p̂ ≤ p < ∞, then the constant c2 can be chosen independent
of p but depending on p̂, Λ/λ.

Proof. For a proof of Harnack’s inequality in the case p ∈ (1,∞) where the
constant depends on p we refer the reader to [HKM, Theorem 6.2.]. The proof
presented here is based on energy bounds of ∇(log u) and works for p > 2. We note
that an alternative proof is given in [KMV]. Assume (2.16) and let θ be as in (2.17).
Let ε > 0 and define uε = (ε + u). Using the test function θpu1−p

ε in (1.5) we see that

0 = (1− p)

∫

R2

〈A(x,∇u),∇uε〉θpu−p
ε dx + p

∫

R2

〈A(x,∇u),∇θ〉θp−1u1−p
ε dx(2.28)

and by properties (i) and (ii) in Definition 1.1 we have,

0 ≤ (1− p)λ

∫

R2

|∇u|pθpu−p
ε dx + pcΛ

∫

B(0,2)

|∇u|(p−1)θp−1u1−p
ε dx,(2.29)

and hence ∫

R2

|∇u|pθpu−p
ε dx ≤ c

(
p

p− 1

) ∫

R2

|∇u|(p−1)θp−1u1−p
ε dx,(2.30)

for a constant c depending only on Λ/λ. Therefore, by using Hölders inequality we
see that ∫

R2

|∇u|pθpu−p
ε dx ≤ cp

(
p

p− 1

)p

.(2.31)

Let ε → 0, then we note that (2.31) in fact states that
∫

B(0,1)

|∇(log u)|p dx ≤
∫

R2

|θ∇(log u)|p dx ≤ cp

(
p

p− 1

)p

.(2.32)

Since f(x) = log u(x) ∈ W 1,p(B(0, 1)), we may use the Sobolev embedding theorem,
which yields, if p > 2,

sup
x,y∈B(0,1)

|f(x)− f(y)|
|x− y|1−2/p

≤ c




∫

B(0,1)

|∇f |p dx




1/p

(2.33)
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for a constant c which may depend on p. To obtain the uniform in p case, fix p̂ > 2
and let p > p̂. Then using (2.33) and Hölder’s inequality we see that if x ∈ B(0, 1),
then

(| log u(x)− log u(0)|)p̂ ≤ cp̂

∫

B(0,1)

|∇(log u)|p̂ dx

≤ cp̂+1−p̂/p




∫

B(0,1)

|∇(log u)|pdx




p̂/p

.

(2.34)

Based on (2.32) and (2.34) we conclude

| log u(x)− log u(0)| ≤ c(2.35)

whenever x ∈ B(0, 1). Hence, c−1
2 u(0) ≤ u(x) ≤ c2u(0) whenever x ∈ B(0, 1) for

some constant c which is independent of p but depending on p̂ and Λ/λ. ¤

Lemma 2.4. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve and Ω is a uniform
domain with constant M̂ . Let w, r and u be as in Lemma 2.2. Then there exist
constants α3 ∈ (0, 1] and c3, both depending only on M̂, p, Λ/λ, such that if x, y ∈
Ω ∩B(w, r) then

|u(x)− u(y)| ≤ c3

( |x− y|
r

)α3

max
Ω∩B(w,2r)

u.(2.36)

Moreover, if p̂ > 2 and p̂ ≤ p < ∞, then the constants α3 and c3 can be chosen
independent of p but depending on M̂, p̂, Λ/λ.

Proof. We start with the case p ∈ (1,∞) where the constants may depend on p.
The interior Hölder continuity for A-harmonic functions was proved in [HKM, Theo-
rem 6.6]. If w ∈ ∂Ω, we note from (ii) in (1.4) and Lemma 2.A that limx→y u(x) = 0
for all y ∈ ∂Ω∩ B̄(0, r). The result now follows by the same arguments as in [HKM,
Theorem 6.44, Lemma 6.47], for constants depending on p, M̂ and Λ/λ. For the
uniform in p case, assume (2.16). If w ∈ ∂Ω then we extend u to B(0, 2) by defin-
ing u ≡ 0 on B(0, 2)\Ω̄. As u = 0, in the Sobolev sense, on ∆(0, 2) it follows from
Lemma 2.2 that u ∈ W 1,p(B(0, 1)). Hence to prove Lemma 2.4 we can, in both cases,
simply use the Sobolev embedding theorem in the form given in (2.33), the Hölder
inequality and Lemma 2.2 to obtain

sup
x,y∈B(0,1)

|u(x)− u(y)|
|x− y|1−2/p̂

≤ c1+1/p̂−1/p




∫

Ω∩B(0,1)

|∇u|p dx




1/p

≤ c(2.37)

for a constant c which may depend on p̂ and Λ/λ but is independent of p. Hence,
Lemma 2.4 is valid with α3 = 1− 2/p̂. ¤

Lemma 2.5. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve and Ω is a uniform
domain with constant M̂ . Let p ∈ (1,∞), be given and assume that A ∈ Ap(λ, Λ)
for some (λ, Λ). Let w ∈ ∂Ω, 0 < r ≤ r0 and suppose that u is a positive A-harmonic



The boundary Harnack inequality for solutions to equations of Aronsson type in the plane 271

function in Ω ∩ B(w, r), continuous on Ω̄ ∩ B(w, r) with u = 0 on ∆(w, r). Then
there exists a constant c4, depending only on M̂, p, Λ/λ, such that if r̃ = r/c4, then

max
Ω∩B(w,r̃)

u ≤ c4u(ar̃(w)).(2.38)

Moreover, if p̂ > 2 and p̂ ≤ p < ∞, then the constant c4 can be chosen independent
of p but depending on M̂, p̂, Λ/λ.

Proof. To prove Lemma 2.5 we proceed as in [CFMS]. We prove the lemma for
p̂ ≤ p, but the proof for the case 1 < p < ∞ is similar. Instead of (2.16) we assume
w = 0. Let k be a large number to be chosen later and assume that

ku(ar̃(0)) < max
Ω∩B(0,r̃)

u = u(x1),(2.39)

where x1 ∈ ∂B(0, r̃)∩Ω by the maximum principle. We want to derive a contradiction
if k is large enough. If d(x1, ∂Ω) ≥ r̃/100 then by Harnack’s inequality u(x1) ≤
cu(ar̃(0)) and hence we obtain a contradiction if k is large enough. Therefore, we
assume that d(x1, ∂Ω) < r̃/100. For c4 large enough we can connect x1 to ar̃(0) by a
Harnack chain totally contained in B(0, 2r) ∩Ω. Thus it follows by Lemma 2.3 that
there exist constants ĉ, λ ∈ [1,∞), depending only on M̂ , p̂ and λ/Λ, such that

u(x1) ≤ ĉ

(
d(ar̃(0), ∂Ω)

d(x1, ∂Ω)

)λ

u(ar̃(0)).(2.40)

From (2.39) and (2.40) we see that

d(x1, ∂Ω)

d(ar̃(0), ∂Ω)
≤

(
ĉ

k

)1/λ

.(2.41)

Let x+
1 ∈ ∂B(0, 1) ∩ ∂Ω be a point minimizing |x+

1 − x1|. We apply Lemma 2.4 to
B(x+

1 , r̃/2) to obtain

u(x1) ≤ c3d(x1, ∂Ω)α3 max
Ω∩B(x+

1 ,r̃/2)
u.(2.42)

By Harnack’s inequality, the maximum principle, our assumption (2.39), (2.41) and
(2.42) we obtain, for x2 ∈ ∂B(x+

1 , r̃/2) ∩ Ω,

kč−1u(ar̃/2(x
+
1 )) ≤ ku(ar̃(0)) < u(x1) ≤ c3

(
ĉ

k

)α3/λ

u(x2).

By choosing k so large that čc3(ĉ/k)(α3/λ) = 1 we obtain,

ku(ar̃/2(x
+
1 )) < u(x2) and u(x1) ≤ u(x2).(2.43)

We can now, thanks to Lemma 2.B, repeat the above argument from (2.39), with
(2.43) replacing (2.39), to obtain,

ku(ar̃/2m−1(x+
m−1)) < u(xm) and u(xm) ≤ u(xm+1).

for every m ∈ [1,∞). Since xm → y for some y ∈ ∂Ω ∩ B̄(0, 2r̃) and u = 0
continuously on ∆(0, 2r), we conclude that ku(a1(0) ≤ 0 which gives a contradiction.

¤
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Lemma 2.6. Let Ω ⊂ R2, assume that ∂Ω is a Jordan curve and Ω is a uniform
domain with constant M̂ . Let p ∈ (1,∞), be given and assume that A ∈ Ap(λ, Λ)
for some (λ, Λ). Assume w ∈ ∂Ω, 0 < r ≤ r0 and suppose that u is a positive A-
harmonic function in Ω∩B(w, r), continuous on Ω̄∩B(w, r) with u = 0 on ∆(w, r).
Extend u to B(w, r) by defining u ≡ 0 on B(w, r)\Ω. Then there exists a unique
finite positive Borel measure µ on R2 with support in ∆(w, r), such that whenever
ψ ∈ C∞

0 (B(w, r)), then
∫

R2

〈A(x,∇u),∇ψ〉 dx = −
∫

R2

ψ dµ.(2.44)

Proof. Assume (2.16) and note by (2.18) that if ψ ∈ C∞
0 (B(0, 1)) and ψ ≥ 0,

then
∫

R2

〈A(x,∇u),∇ψ〉 dx ≤ 0.(2.45)

By using (i) in Definition 1.1, Hölder’s inequality and Lemma 2.2, we see that for
every compact K ∈ B(0, 1) and every ψ ∈ C∞

0 (K),
∣∣∣∣∣∣∣

∫

B(0,1)

〈A(x,∇u),∇ψ〉 dx

∣∣∣∣∣∣∣
≤ Λ

∫

K

|∇u|p−1|∇ψ| dx ≤ c sup
K
|∇ψ|.(2.46)

Hence, if µ is defined according to (2.44), then µ is a non negative distribution in
B(0, 1) and hence a positive measure in B(0, 1). Since u is A-harmonic in Ω∩B(0, 1)
and u ≡ 0 in B(0, 1)\Ω̄, µ has support within ∆(0, 1). ¤

Lemma 2.7. Let Ω, w, r, u and µ be as in Lemma 2.6. Then there exists a
constant c6, depending only on M̂, p, Λ/λ, such that if r̃ = r/c6, then

c−p
6 r̃p−2µ(∆(w, r̃)) ≤ (u(ar̃(w)))p−1 ≤ cp

6r̃
p−2µ(∆(w, r̃)).(2.47)

Moreover, there exists p̂ > 2 such that if p̂ ≤ p < ∞, then the constant c6 can be
chosen independent of p but depending on M̂, p̂, Λ/λ.

Proof. For the case 1 < p < ∞ with a constant depending on p we refere to [KZ].
For the uniform in p case, note that by Lemma 2.3 and Lemma 2.5, there exists a
constant c̃, depending only on M̂ , p̂ and Λ/λ, such that if r̃ = r/c̃, then

c̃−1u(ar̃(w)) ≤ max
Ω∩B(w,4r̃)

u ≤ c̃u(ar̃(w)).(2.48)

Moreover, instead of (2.16) we assume that

w = 0, r̃ = 1 and u(ar̃(w)) = 1.(2.49)

Therefore, to prove Lemma 2.7 it suffices to show the existence of c6, depending only
on M̂, p̂, Λ/λ, such that

c−p
6 ≤ µ(∆(0, 1)) ≤ cp

6.(2.50)
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Let θ be as in (2.17). Using Lemma 2.6, (i) in Definition 1.1, Hölder’s inequality,
Lemma 2.2, (2.48) and the normalization in (2.49), we see that

µ(∆(0, 1)) ≤
∫

R2

θ̂ dµ ≤
∫

R2

|∇θ̂||A(x,∇u)| dx ≤
∫

Ω∩B(0,2)

cΛ|∇u|p−1 dx

≤ c




∫

Ω∩B(0,2)

|∇u|p dx




(p−1)/p

≤ ccp−1
1 ≤ cp

6.

(2.51)

Hence, the right hand side inequality in (2.50) is proved.
Next we prove the left hand side inequality in (2.50). Our proof is based on [KZ],

see also [EL]. We define

M(ρ) = sup
B(0,ρ)

u(x) whenever ρ ∈ [0, 2].(2.52)

Let h be A-harmonic in B(0, 1), to the same A(x, η) as u, with boundary values equal
to u on ∂B(0, 1). Note that by assumption u is continuous on Ω̄∩B̄(0, 1) and hence u
is well defined on ∂B(0, 1). By the comparison principle for A-harmonic functions we
see that 0 ≤ u ≤ h in B(0, 1). Moreover, considering p > p̂ and applying Lemma 2.3
to the function h we see that

inf
B(0,1/2)

h ≥ c−1
2 sup

B(0,1/2)

h ≥ c−1
2 sup

B(0,1/2)

u = c−1
2 M(1/2).(2.53)

Using Lemma 2.4 we see that

u(x) ≤ c3t
α3M(1/2) whenever x ∈ B(0, t), t < 1/4.(2.54)

Let β = 1/(2c2) and restrict t to the interval [0, (β/c3)
1/α3). Using (2.54) it then

follows that M(t) ≤ βM(1). Under the same conditions we also see, using (2.53),
that, whenever x ∈ B(0, t),

h(x)− u(x) ≥ inf
B(0,1/2)

h− sup
B(0,t)

u ≥ 2βM(1/2)− βM(1/2) = βM(1/2).(2.55)

Next we note that the function

ψ = min
B(0,1)

{h− u, βM(1/2)}(2.56)

is non negative in B(0, 1) and belongs to the space W 1,p
0 (B(0, 1)). Using (2.55) we

also see that ψ = βM(1/2) on B(0, t). Now, we observe that
∫

B(0,1)

|∇ψ|p dx ≤
∫

B(0,1)

(|∇h|+ |∇u|)p−2 |∇h−∇u|2 dx.(2.57)
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By using (ii) in Definition 1.1, that h is A-harmonic in B(0, 1) and Lemma 2.6 we
also see that

λ

∫

B(0,1)

(|∇h|+ |∇u|)p−2 |∇h−∇u|2 dx

≤
∫

B(0,1)

〈A(x,∇h)− A(x,∇u),∇ψ〉 dx

= −
∫

B(0,1)

〈A(x,∇u),∇ψ〉 dx =

∫

B(0,1)

ψ dµ,

(2.58)

based on which we can conclude that∫

B(0,1)

|∇ψ|p dx ≤ β

λ
M(1)µ(B(0, 1)).(2.59)

But on the other hand using Hölder’s inequality as well as a Sobolev type inequality
we see that

(βM(1))pπt2 ≤
∫

B(0,1)

|ψ|p dx ≤ cp

∫

B(0,1)

|∇ψ|p dx.(2.60)

An explicit constant, independent of p, for which the right hand inequality in (2.60)
is true can be found in [GT]. Combining (2.59) and (2.60) we can therefore conclude
that

(βM(1/2))pπt2 ≤ cpβM(1/2)µ(B(0, 1))(2.61)

for a constant c independent of p. Hence, by the assumption (2.49) and if we choose
t = (β/c3)

1/α3/2, then

c−p
6 ≤ µ(∆(0, 1)).(2.62)

This completes the proof of the left hand side inequality in (2.50) and hence the proof
of Lemma 2.7. ¤

Remark. Lemmas 2A, 2B and Lemmas 2.2–2.7 are valid in Rn, n ≥ 3 as well
if we assume that Ω is a NTA-domain. In particular, the restriction to R2 is only
necessary in the proof of Theorem 1.3 and Theorem 1.4 below and not in this section.

3. Proof of the main results

Proof of Theorem 1.3 and Theorem 1.4. The proof of Theorem 1.3 and The-
orem 1.4 are identical apart from the constants and we therefore only prove Theo-
rem 1.4. Theorem 1.3 then follows. The proof is based on the proof of Lemma 2.16
in [BL]. In fact to prove Theorem 1.4 we repeat the argument in [BL, Lemma 2.16]
making sure that the constants of our estimates can be chosen independently of p
whenever p ≥ p̂ > 2. We note that the following proof is identical with the proof of
Theorem 2 in [LN2], but for the readers convenience, we include the proof. In the
following we let p̂ be large enough to ensure the validity of the statements in Lemmas
2.1–2.4 and in Lemma 2.6. Moreover, we let r̃ = r/(100c6) with c6 as in Lemma 2.6.

Let γ : [0, 1] → R2 be a parametrization of ∂Ω such that γ(0) = w. Let r1 = r̃/c̃

where c̃ = c̃(M̂) ≥ 1 will be chosen later. Let t1 = sup{t < 0: |γ(t)− w| = r1}, t2 =
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inf{t < 0: |γ(t)−w| = r1}, z1 = γ(t1) and z2 = γ(t2). Then |w− z1| = |w− z2| = r1

and the part of ∂Ω between z1 and z2 is contained in B(w, r1), see the Figure 1. If
r2 = r1/c̃, then from (1.2) we see, for c̃ large enough, that B(z1, r2)∩B(z2, r2) = ∅. For
any two points ζ1 ∈ ∆(z1, r2) and ζ2 ∈ ∆(z2, r2) we can use (1.3) to construct a curve
with endpoints ζ1, ζ2 in the following way. Take ρ such that B(ζi, ρ) ⊂ B(zi, r2) for
i = 1, 2. Draw the curve from aρ(ζ1) to aρ(ζ2) guaranteed by (1.3). Similarly, connect
aρ(ζ1) to aρ/2(ζ1) and then aρ/2(ζ1) to aρ/4(ζ1) and so on. Since aρ/2n(ζ1) → ζ1, as
n →∞, this curve ends up at ζ1. We can advance from aρ(ζ2) to ζ2 in the same way.
The total curve from ζ1 to ζ2 is denoted by Γ, see Figure 1.

From our construction and (1.3) we note that, for c̃ large enough,

(i) Γ \ {ζ1, ζ2} ⊂ Ω ∩B(w, r̃),

(ii) H1(Γ) ≤ c̃r̃,

(iii) min{H1(Γ([0, t])), H1(Γ([t, 1]))} ≤ c̃d(Γ(t), ∂Ω).

(3.63)

Recall that H1(·) denotes the one-dimensional Hausdorff measure on Γ. In the fol-
lowing we let c̃ be large enough to satisfy the above requirements and to make sure
that we can connect any to points in B(w, r̃) by a Harnack chain totally contained
in B(0, r) ∩ Ω.

Next we consider the functions u, v in Theorem 1.4, we extend both of these to
B(w, r) in the standard way and we assume, as we may, that u(ar̃(w)) = v(ar̃(w)) =
1. We let µ and ν be the measures, in the sense of Lemma 2.5, corresponding to
u and v respectively. Let M+ = M+(M̂) be a constant to be chosen and assume
that M+ is so large that Γ ∩ B(w, r1/M+) = ∅ independently of ζ1 ∈ ∆(z1, r2) and
ζ2 ∈ ∆(z2, r2). Existence of M+ follows from (3.63).

Figure 1. The curve Γ.

Suppose that u/v > λ at some point in Ω ∩ B(w, r1/M+). Our intention is to
prove that λ can not be too large. Using the continuity of u and v in Ω̄ ∩ B(w, r),
the comparison principle for A-harmonic functions and that Ω ⊂ R2, we see that
u/v > λ at some point ξ ∈ Γ. Making use of the point ξ and using (3.63), Lemma 2.6
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and Lemma 2.2 we deduce for some s, 0 < s < r̃/2 and i ∈ {1, 2}, that
µ(∆(ζi, s))

ν(∆(ζi, s))
≥ c−p

6 (u(as(ζi)))
p−1

cp
6(v(as(ζi)))p−1

> č−pλp−1,(3.64)

where č is a constant independent of p. Allowing ζi in this construction to vary in
∆(zi, r2), i = 1, 2, we get a covering of either ∆(z1, r2) or ∆(z2, r2) by balls of the
form ∆ζ = ∆(ζ, s). Assume for example that ∆(z1, r2) is covered by balls of this
type. Then using a standard covering argument we get a subcovering, {∆ζn}, of
∆(z1, r2) such that the balls, with one-fifth the diameter of the original balls but the
same centers, denoted {∆∗

ζn
}, are disjoint. From (3.64), Lemmas 2.2 and Lemma 2.6

we then deduce

č−pλp−1ν(∆(z1, r2)) ≤ č−pλp−1ν(∪n∆ζn) <
∑

µ(∆ζn) ≤ ĉp
∑

µ(∆∗
ζn

)(3.65)

for yet another constant ĉ6 which is independent of p. Hence

č−pλp−1ν(∆(z1, r2)) < ĉpµ(∆(w, 2r̃)).(3.66)

Moreover, using Lemma 2.6 and Lemma 2.2 once more we also see that

ν(∆(w, 2r̃) ≤ cpν(∆(z1, r2))(3.67)

for some c independent of p. Combining (3.66) and (3.67) we first see that

c−pč−pĉ−pλp−1 <
µ(∆(w, 2r̃))

ν(∆(w, 2r̃))
(3.68)

and then, using Lemma 2.6, Lemma 2.2 and the normalization u(ar̃(w)) = 1 =
v(ar̃(w)),

c−pč−pĉ−pλp−1 <
µ(∆(w, 2r̃))

ν(∆(w, 2r̃))
≤ c̄p(3.69)

for yet another constant c̄ which is independent of p. (3.69) implies that λ < c with
c independent of p. Hence u/v ≤ c in Ω∩B(w, r̃/M+) and the proof of Theorem 1.4
is complete. ¤

Proof of Theorem 1.7. Let u and v be as in the statement of Theorem 1.7
and note that this implies, in particular, that u, v ∈ W 1,∞(Ω ∩ B(w, r/2)) ∩ C(Ω̄ ∩
B̄(w, r/2)). We let, for p ∈ (2,∞), up and vp be the unique weak solutions to the
problem (1.15) in Ω ∩ B(w, r/2), continuous on Ω̄ ∩ B(w, r/2) with up = 0 = vp on
∆(w, r/2) and limx→y up(x) = u(y), limx→y vp(x) = v(y) for all y ∈ ∂B(w, r/2) ∩
Ω. Existence of up and vp follows from Lemma 2.A. Using the uniqueness result
of Juutinen [Ju, Theorem 4.25] together with the result concerning the limit [Ju,
Theorem 1.15, Proposition 2.5 and Corollary 3.8] we see that there exists a sequence
{pj}, pj →∞ as j →∞, such that upj

→ u and vpj
→ v uniformly in Ω̄∩B(w, r/2)

as j → ∞. In particular, the unique solutions u and v to the Dirichlet problem in
(1.11) is the uniform limit as pj →∞, of the corresponding unique solutions up and
vp to the problem (1.15). It follows that for every ε > 0 there exists p̃ = p̃(ε) > 2
such that if p > p̃ then

|up(x)− u(x)| < ε and |vp(x)− v(x)| < ε(3.70)
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whenever x ∈ Ω̄ ∩ B̄(w, r/2). Let p̂ and c be as in Theorem 1.4. Then for p ≥ p̂ and
c3 = 2c2

c−1
3

up(ar(w))

vp(ar(w))
≤ up(x)

vp(x)
≤ ĉ3

up(ar(w))

vp(ar(w))
whenever x ∈ Ω ∩B(w, r/ĉ3).(3.71)

Since c3 is independent of p, theorem 1.7 follows from (3.70) and (3.71). ¤
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