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Abstract. We show that the Cantor set Cp associated to the sequence {1/np}n, p > 1, is a

smooth attractor. Moreover, it is smoothly conjugate to the 2−p-middle Cantor set. We also study

the convolution of Hausdorff measures supported on these sets and the structure and size of the

sumset Cp + Cq.

1. Introduction and statement of main results

1.1. Introduction. A Cantor set is a compact, perfect and totally disconnected
set in some topological space. We deal with Cantor sets in the real line with the usual
topology.

There is a way to construct zero Lebesgue measure Cantor sets that consists in
successively removing gaps, that is, bounded open intervals, from an initial closed
interval; the construction is done by steps and the lengths of the removed gaps are
prescribed by the values of a positive and summable sequence. The precise definition,
which appeared in [BT54], is given in Section 2. For example the ‘classical’ middle-r
Cantor set Ar, 0 < r < 1/2, that is defined by

Ar =
{

(1 − r)
∑

j≥0

ajr
j : aj ∈ {0, 1}

}
,

is the one associated to the sequence
{
ξ, rξ, rξ, r2ξ, r2ξ, r2ξ, r2ξ, . . .

}
, where ξ = 1 −

2r. Here, the ratio between the lengths of the gaps of consecutive steps is constant,
which reflects the ‘linearity’ of the set. Note that A1/3 is the classical ternary Cantor
set.

We will mainly focus on the family of p-Cantor sets Cp, p > 1, which are defined
through the above construction using the sequence {1/np}n≥1. At any fixed step the
removed gaps have strictly decreasing lengths, which reflects the nonlinear nature of
this set. Despite its nonlinearity, this is a family of well behaved Cantor sets, since

in [CMPS05] and [GMS07] it is shown that 0 < H 1/p(Cp) < P
1/p
0 (Cp) < +∞, where

H t and P t
0 denotes the t-dimensional Hausdorff measure and packing premeasure

respectively; in particular,

dim Cp = dimBCp = 1/p,

where dim and dimB denote the Hausdorff and upper Box dimensions. See the book
of Mattila [Mat95] for the definitions of these measures and dimensions. In this
article we discover further properties of this family of Cantor sets, showing that it
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is closely related to the family of middle-r Cantor sets and so it can be viewed as a
nonlinear version of the classical linear case.

1.2. Statements of main results. Let us recall that an iterated function
system (IFS) is a finite set {f0, . . . , fn} of self maps defined on a nonempty closed
subset X ⊂ R such that each fi is a strict contraction, that is, there is a constant
0 < c < 1 such that

|fi(x) − fi(y)| ≤ c|x − y|, ∀x, y ∈ X, i = 0, . . . , n.

Hutchinson [Hut81] proved that to each IFS one can associate an unique nonempty
compact invariant set, that is, a set K that verifies

K =

n⋃

i=0

fi(K).

Moreover, given a probability vector (p0, . . . , pn) with
∑n

i=0 pi = 1 and pi ∈ (0, 1),
there is a unique probability measure µ supported on K, called invariant measure,
such that

(1.1) µ(A) =

n∑

i=0

piµ(f−1
i (A)) for every Borel set A.

It is well known, and easy to verify, that the before mentioned sets Ar are also
the attractors of the IFS of contracting similitudes {gr,0, gr,1} defined on [0, 1], where
gr,i = rx+ i(1−r). These are the simplest examples of regular or dynamically defined
Cantor sets, where in general, the derivatives of the functions of the IFS are assumed
be at least ε-Hölder continuous for some 0 < ε < 1 (see Section 2). We write C 1+ε-
regular to emphasize that the functions of the system are of class C 1+ε. An important
feature of regular Cantor sets is that their Hausdorff and Box dimensions coincide. In
addition, their Hausdorff and packing measures on this dimensional value are finite
and positive; see the book of Falconer [Fal97]. This motivates the following theorem
which will be proved in Section 3.

Theorem 1. The set Cp is a C 1+1/p-regular Cantor set. Moreover, this is the
highest degree of smoothness that can be attained by any other regular system that
has this set as attractor.

In view of the above result, Cp has a C
1+1/p-differentiable structure. By a result

of Sullivan [Sul88], this structure can be classified by its scaling function (defined in

Section 4). More precisely, two regular IFS {f0, f1} and {f̃0, f̃1} are equivalent if they
are smoothly conjugate, that is, if there exists a smooth homeomorphism h, termed
conjugacy, such that

h ◦ fi = f̃i ◦ h, i = 0, 1;

here by smooth we mean that h and its inverse are at least C 1. Then, the result
in [Sul88] says that the scaling function is a complete invariant: two C

1+ε-regular
systems are equivalent if and only if their scaling functions coincide. Moreover, there
is a conjugacy which is C 1+ε; for a proof of this see [PT96] and [BF97]. Let us denote
by {fp,0, fp,1} the IFS which has Cp as attractor given by Theorem 1. In Section 4
we apply the result of Sullivan to obtain

Theorem 2. The systems
(
Cp, {fp,0, fp,1}

)
and

(
A2−p ,

{
2−px, 2−px+(1−2−p)

})

are C 1+1/p-conjugate. In particular, Cp is C 1+1/p-diffeomorphic to A2−p .
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Also in Section 4 we exhibit an example of a C 1-regular Cantor set which has
the same scaling function as A2−p but it is not bi-Lipschitz conjugate to it (see
Example 13).

In order to introduce the results of the last section, recall that a measure is of
pure type if it is either absolutely continuous or purely singular with respect to L ,
the Lebesgue measure on R. Henceforth, absolutely continuous or singular will be
meant with respect to L . Let Hp denotes the measure H 1/p|Cp

. We are interested
in determine whether the convolution measure Hp ∗Hp′ is of pure type; in Section 5
we obtain partial results. Also we investigate the size of the sumset Cp + Cp′, which
is relevant in this setting since it contains the support of Hp ∗ Hp′.

Due to a classical result of Newhouse, the thickness of a Cantor set is a useful tool
to determine whether the sum of two of these sets has nonempty interior. Through
an estimate of thickness, we provide sufficient conditions on the parameters p and p′

so that Cp + Cp′ has nonempty interior. We show that in order to have analogous
conditions to the classical case, it is necessary to consider a local version of thickness.

After the above estimates we concentrate on the convolution of measures and the
dimensional behaviour of sumsets, but from a measure theoretical point of view. For
any pair of sets E, F ⊂ R, with dim F = dimBF , it is well known that

dim(E + F ) ≤ dim(E × F ) ≤ dim E + dim F ;

see Mattila [Mat95]. Hence it is always true that

dim(Cp + Cp′) ≤ min
(
dim Cp + dim Cp′, 1

)
.

Hence Hp ∗Hp′ is trivially singular if dim Cp +dim Cp′ < 1 because L (Cp +Cp′) = 0.
We prove that the convolution is absolutely continuous when dim Cp + dim Cp′ > 1,
with the possible exception of a small set in the parameter space. More precisely, let
p′ be fixed and p̄ be such that dim Cp′ + dim Cp̄ = 1. Also, let us denote with ν ∈ L2

(ν /∈ L2) the fact that the measure ν has (does not have) a density in L2(R). Then,
for any ε > 0 there is a δ = δ(ε) > 0 (which decreases to 0 with ε) such that

(1.2) dim
{
p ∈ (1, p̄ − ε) : Hp ∗ Hp′ /∈ L2

}
≤ 1 − δ.

In particular, Hp ∗ Hp′ ∈ L2 for L -a.e. p such that dim Cp + dim Cp′ > 1.
Observe that (1.2) implies that

(1.3) dim
{
p ∈ (1, p̄ − ε) : L (Cp + Cp′) = 0

}
< 1 − δ.

Moreover, we show that

(1.4) dim
{
p ∈ (p̄ + ε,∞) : dim(Cp + Cp′) < dim Cp + dim Cp′

}
< 1 − δ.

In particular, the formula

dim(Cp + Cp′) = min
(
dim Cp + dim Cp′, 1

)

holds for almost every p.
We can replace Cp′ and Hp′ above by any compact K ⊂ R and a suitable

measure; besides, more general families of Cantor sets can be used instead of {Cp}p;
see Theorems 19 and 21.

These last results are a consequence of the Peres–Schlag projection theorem;
see [PS00]. In that paper, the dimensional bounds of exceptions (1.3) and (1.4)
are obtained for families of homogeneous Cantor sets, each of these sets being by
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definition an attractor of an IFS of similitudes, all of them with the same ratio of
contraction.

1.3. Background and related works. In connection with dynamically defined
Cantor sets, Bamón et al. in [BMPV97] considered central Cantor sets, which by
definition satisfy that on each step the removed gaps have the same length. In
that paper those central Cantor sets that are C k+ε or C ∞-regular are characterized
in terms of the decay of the sequence. Moreover, a classification of these sets is
provided up to local and global diffeomorphisms.

The structure and dimension of sums of Cantor sets are relevant in different areas
such as diophantine approximations in number theory and homoclinic tangencies in
smooth dynamics. In the latter context, Palis (see [PT93]) asked whether the sum
of two regular Cantor sets has zero Lebesgue measure or contains an open interval.
There are particular cases where this is not true, as it was shown by Sannami [San92],
but Moreira and Yoccoz [MY01] proved that generically (in the C

1+ε topology on
regular Cantor sets) the conjecture is true. Nevertheless, the question for the self-
similar case is still open, although for the special case of Ar+Ar it is true, see Cabrelli
et al. [CHM97].

Related to the size of sumsets, if C1 and C2 are strictly nonlinear C 2-regular
Cantor sets, the formula dim(C1 + C2) = min

(
dim C1 + dim C2, 1

)
is true under

some explicit conditions on the IFS; see Moreira [M98]. For the linear case, given a
compact set K ⊂ R, the equality

(1.5) dim(K + Ar) = min
(
dim K + dim Ar, 1

)
for L -a.e. r

was established by Peres and Solomyak [PS98]. It was improved in [PS00] as we
mentioned above. Recently Peres and Shmerkin [PS09] found the exceptional set
for K = As: when dim Ar + dim As ≤ 1, equality holds if and only if log r/ log s is
irrational. This condition also appears in the study of the topological structure of
the sumset when dim As +dim Ar > 1; see Mendes and Oliveira [MO94] and Cabrelli
et al. [CHM02].

In order to motivate our study of convolution of measures, let

µr(A) =
1

2
µr

(
g−1

r,0 (A)
)

+
1

2
µr

(
g−1

r,1 (A)
)

for every Borel set A.

In this particular case, µr = H dr |Ar
([Hut81]), where dr = dim Ar and H dr |Ar

is the normalized restriction of the Hausdorff measure to Ar. Now let us look at
the convolution measure µr ∗ µr. Since all the similitudes have the same ratio of
contraction, it is easily verified that it satisfies an identity as the one in (1.1), with
IFS

{
rx, rx + 1− r, rx + 2(1− r)

}
and weights (1/4, 1/2, 1/4). Thus it is a measure

of pure type (see [PSS00], Proposition 3.1).
The Fourier transform is a useful tool to determine whether a measure is not

absolutely continuous. Recall that the Fourier transform of a finite Borel measure µ
is defined by

µ̂(x) =

ˆ

eitx dµ(t)

(see [Mat95], Chapter 12) and that by the Riemann–Lebesgue lemma, a necessary
condition for absolute continuity of a measure is that its Fourier transform vanishes
at infinity. It is well known that µ̂r does not tend to 0 at infinity if and only if
1/r is a Pisot number different from 2 (Pisot numbers are a special class of algebraic
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integers); see [Sal63]. By a general property of convolutions, µ̂r ∗ µr = µ̂r · µ̂r, whence
µr ∗µr is singular if r is the reciprocal of a Pisot number; however it may happen that
L (Ar + Ar) > 0. For example, this is the case when r = 1/3. Lau et al. ([FLN00],
[HL01]) studied the multifractal structure of the m-th convolution of the measure
µ1/3, which is singular by the above argument. Nazarov et al. [NPS09] determined

that the correlation dimension of µr ∗ µs is min
(
dr + ds, 1

)
whenever log r/ log s is

irrational.
Shmerkin informed us that in a joint work with Hochman [HS09] they generalize

the work on sums of Cantor sets [PS09] and their methods imply that the dimension
of the convolution Hp ∗ Hp′ is min

(
dim Cp + dim Cp′, 1

)
whenever p/p′ is irrational.

This in turns implies that for these parameters formula (1) holds. However, when the
sum of the dimensions is greater than 1 they do not obtain results on the absolute
continuity of the convolution.

1.4. Some open questions. 1) Let ϑp be the invariant measure associated to
the IFS {fp,0, fp,1} with probabilities (1/2, 1/2). This measure is equivalent to Hp

(see Proposition 18), whence ϑp ∗ ϑp′ is of pure type if and only if so is Hp ∗ Hp′.
Then, from results in Section 5, we know that ϑp ∗ ϑp′ is of pure type for almost
everywhere p given p′, but we do not know if is always true. Moreover, in general it
is unknown if the convolution of two invariant measures associated to regular Cantor
sets is of pure type.

2) For which values p > 1 does the Fourier transform of ϑp vanish at infinity?
If hp is the diffeomorphism between A2−p and Cp (which exists by Theorem 2), then
the relation

ϑp = µ2−p ◦ h−1
p

holds by uniqueness of the invariant measure. Although we know this identity, the
nonlinearity of the diffeomorphism hp does not allows us to transfer the information
from µ2−p to ϑp in order to estimate the decay of its Fourier transform (recall that
µ̂r → 0 if and only if r is not the reciprocal of a Pisot number).

2. Basic definitions and notation

In this section we provide the basic definitions and notation that we will use
later.

The symbolic space. Given n ≥ 1, let Ωn be the set of binary strings of length
n, that is

Ωn = {ω1 . . . ωn : ωi = 0, 1 with 1 ≤ i ≤ n}.

Set Ω0 = {e} with e the empty string and let Ω∗ =
⋃

n≥0 Ωn. Define Ω = {ω1ω2 . . . : ωi

= 0, 1 with i ∈ N}, the set of binary infinite strings. The length of ω ∈ Ω∗ ∪ Ω is
denoted by |ω|. Elements in Ω have infinite length. Given ω ∈ Ω∗ ∪ Ω with |ω| ≥ k,
its k-truncation is ω|k = ω1 . . . ωk. The infinite string with all entries 0 is denoted by
0̄; analogously, we define 1̄. Moreover, if ω ∈ Ω∗ and τ ∈ Ω∗ ∪Ω then ωτ denotes the
string obtained by juxtaposing the elements of ω and τ . Furthermore, for ω ∈ Ωn

denote by `(ω) the binary representation

`(ω) =

n∑

j=1

ωj2
n−j.

Note that this is a bijection from Ωn to {0, 1, . . . , 2n − 1}.
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Given β > 1, we define a metric on Ω by

dβ(ω, τ) =

{
β−|ω∧τ | if ω 6= τ,

0 if ω = τ,

where |ω∧τ | = min{k : ωk 6= τk}. The space (Ω, dβ) is a compact, perfect and totally
disconnected metric space.

Cantor set associated to a sequence. Let a = {aj} be a positive and summa-
ble sequence and let Ia be the closed interval [0,

∑
j aj ]. We define the zero Lebesgue

measure Cantor set Ca associated to the sequence a as follows. In the first step, we
remove from Ia an open interval L1 of length a1, termed gap, resulting in two closed
intervals I1

0 and I1
1 . The position of the gap will be uniquely determined by the

sequence, as it will become clear from the construction (see Remark below). Having
constructed the k-th step, we obtain the 2k closed intervals Ik

ω, ω ∈ Ωk, contained in
Ia. The next step consists in removing from Ik

ω the gap L2k+`(ω) of length a2k+`(ω),

obtaining the closed intervals Ik+1
ω0 and Ik+1

ω1 . Then we define

Ca :=
∞⋂

k=1

⋃

ω∈Ωk

Ik
ω.

The intervals Ik
ω are the basic intervals of Ca. Sometimes it will be convenient to

label these intervals with integers instead of finite strings, so we define Ik
j = Ik

ω, where
j = `(ω).

Remark. In the above construction there is a unique way of removing the open
intervals at each step. Also notice that the lengths of the closed intervals of the same
step not necessarily coincide. In fact, for ω ∈ Ωk we have by construction that

(2.1) Ik
ω = Ik+1

ω0 ∪ L2k+`(ω) ∪ Ik+1
ω1 ;

then, applying this identity recursively to each closed interval of the right hand side,
the length of the intervals is given by

(2.2) |Ik
ω| =

∑

n≥k

∑

λ∈Ωn−k

a2n+`(ωλ),

or

(2.3) |Ik
j | =

∑

h≥0

(j+1)2h−1∑

i=j2h

a2k+h+i

using the other notation.

Given ω ∈ Ω∗ ∪ Ω, with |ω| ≥ k, we define

Ik
ω = Ik

ω|k
.

Observe that for ω ∈ Ω, the family {Ik
ω}k is a nested sequence of closed intervals

whose intersection is a single point. Thus we define the projection map πa : Ω → Ca

by

(2.4) {πa(ω)} =
⋂

k≥1

Ik
ω.
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Endowed with the lexicographical order ≺ on Ω, this map is an order preserving
homeomorphism and provides a natural way to code the Cantor set. For notational
convenience we will identify the point ω ∈ Ω with the single element of

⋂
k≥1 Ik

ω ⊂ C.
By the endpoints of a Cantor set Ca we mean the set of endpoints of all the

intervals Ik
ω with ω ∈ Ωk, k ≥ 1. The next proposition says that endpoints correspond

to points of the form ωū, where ω ∈ Ω∗ and u = 0, 1.

Proposition 3. For ω ∈ Ωk we have that

Ik
ω =

[
πa(ω0̄), πa(ω1̄)

]
and L2k+`(ω) =

(
πa(ω01̄), πa(ω10̄)

)
.

Proof. The result follows from the definition of π and its order preserving prop-
erty. We omit the details. �

Recall that Cp is the Cantor set associated to {1/np}n. In Section 5 we will work
with the more general set Cp,q, that is the one associated to {(log n)q/np}n (the term
corresponding to n = 1 is defined as 1). Here p > 1 and q ∈ R. It is known that
dim Cp,q = 1/p, but H 1/p(Cp,q) = 0 if q < 0 and H 1/p(Cp,q) = +∞ if q > 0; see
[GMS07].

The next lemma states the bounds for the basic intervals of Cp,q that will be used
throughout the paper.

Lemma 4. If Ik
j is a k-step interval of Cp, then

(2.5)
2p

2p − 2

(
1

2k + j + 1

)p

≤ |Ik
j | ≤

2p

2p − 2

(
1

2k + j

)p

.

Moreover, if Ip,q
j is a k-step interval of Cp,q, then

(2.6) cp,q
kq

2kp
≤ |Ip,q

j | ≤ c′p,q

kq

2kp
,

where cp,q and c′p,q depend continuously on p and q and are finite and positive.

Proof. Estimate (2.5) is given in [CMPS05], Lemma 3.2. The lower bound in
(2.6) holds since Ip,q

j ⊃ L2k+j and |L2k+j | > |L2k+1|. The remaining bound is obtained
using (2.3):

|Ik
j | =

∑

h≥0

(j+1)2h−1∑

i=j2h

(log(2k+h + i))q

(2k+h + i)p
≤

∑

h≥0

2h (log(2h(2k + j + 1)))q

(2h(2k + j))p
≤ c′p,q

kq

2kp
. �

Regular Cantor sets. For simplicity let I = [0, 1]. Consider an IFS of diffeo-
morphisms {f0, f1} defined on I such that

0 < f ′
i(x) < 1 for all x ∈ [0, 1], 0 = f0(0) < f0(1) < f1(0) < f1(1) = 1,

and the derivatives are η-Hölder continuous, i.e.,

|f ′
i(x) − f ′

i(y)| ≤ c|x − y|η for all x, y ∈ I.

Such an IFS is called C 1+η-regular.
The first condition implies that the attractor is already a Cantor set of zero

Lebesgue measure. If we only required differentiability to the system, the Hausdorff
and box dimensions of the attractor coincide (see [PT93], Chapter 4), but the addition
of the Hölder condition assures that, in the corresponding dimensional parameter,
the Hausdorff and packing measures are positive and finite (see [Fal97], Theorem 5.3
and its proof).
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Given ω ∈ Ωk we set fω = fω1 ◦ · · · ◦ fωk
. It is easily seen that the attractor of a

regular system is given by

C =
⋂

k≥0

⋃

ω∈Ωk

fω(I).

3. Cp is a regular Cantor set

In this section we show that Cp is a regular Cantor set. A sufficient condition for
an IFS {f0, f1} to have Cp as its attractor is that

(3.1) fω(I) = Ik
`(ω) for all ω ∈ Ωk and k ≥ 1.

Thus, in order to prove our theorem it is enough to find functions that satisfy the
above properties. The existence of such functions is not evident, especially if we
want them to be smooth. The proof of our theorem is motivated by the following
necessary condition for the derivatives of the functions of an IFS at the points of its
attractor.

Proposition 5. Assume that C is the attractor of an IFS {f0, f1}, where f0, f1

have continuous positive derivatives. Given x ∈ C, let ω ∈ Ω be such that x = π(ω).
Then the derivative at x is given by the limit

(3.2) f ′
i(x) = lim

n→∞

|fiω|n(I)|

|fω|n(I)|
, i = 0, 1.

Proof. By the mean value theorem we have that

(3.3) |fiω|n(I)| = |fi(fω|n(I))| = f ′
i(ξn)|fω|n(I)|,

where ξn ∈ fω|n(I). As n goes to infinite, ξn tends to the unique point x ∈ C
which is in the intersection

⋂
n≥1 fω|n(I). Thus (3.2) follows from the positiveness

and continuity of f ′. �

Therefore this proposition provides us with the starting point. The proof of
Theorem 1 has essentially two parts. First we prove that for each endpoint ω ∈ Ω,
the sequence of quotients

(3.4)
{
|In+1

`(iω|n)|/|I
n
`(ω|n)|

}

n

converges and we find an expression for the limit. Thus by (3.2) these limits should
be the values, at the endpoints of our Cantor set, of the derivatives of the functions
of an IFS that satisfies (3.1). Then, with these values, in the second part we are able
to extend the derivatives to the whole interval I so that (3.1) holds and thus the
system has Cp as its attractor.

Notice that if the derivatives are positive then fi is order preserving, so f0(0) = 0
and f1(|I|) = |I|. From this, once we have constructed the derivatives F0 and F1, we
define

(3.5) f0(x) =

ˆ x

0

F0 and f1(x) =

ˆ x

0

F1 + c,

with c = |I1
0 | + 1, since 1 is the length of the first gap.

3.1. Definition of the derivatives on Cp and properties. Recall that
endpoints of Cp correspond to strings of the form ωū, with u = 0 or 1 and ω ∈ Ωk,
k ≥ 1. We have the following result.
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Proposition 6. At each endpoint ωū of Cp the limit of
{
|In+1

`(i(ωū)|n)|/|I
n
`((ωū)|n)|

}
n

exists. It is given by the formula

(3.6) Gi(ωū) =

(
2k + `(ω) + u

2k+1 + i2k + `(ω) + u

)p

, ω ∈ Ωk, u = 0, 1.

Proof. Let ω ∈ Ωk with k ≥ 1. It follows from (2.5) that

(
2n + `((ωū)|n)

2n+1 + `(i(ωū)|n) + 1

)p

≤

∣∣∣In+1
`(i(ωū)|n)

∣∣∣
∣∣∣In

`((ωū)|n)

∣∣∣
≤

(
2n + `((ωū)|n) + 1

2n+1 + `(i(ωū)|n)

)p

.

From equalities

`((ωū)|n) =

k∑

j=1

ωj2
n−j + u(2n−k − 1) = 2n−k(`(ω) + u(1 − 1/2n−k))

and

`(i(ωū)|n) = i2n + `((ωū)|n),

we get ∣∣∣In+1
`(i(ωū)|n)

∣∣∣
∣∣∣In

`((ωū)|n)

∣∣∣
≤

(
2k + `(ω) + u(1 − 1/2n−k) + 1/2n−k

2k+1 + i2k + `(ω) + u(1 − 1/2n−k)

)p

,

with a similar lower bound. Since `(ω) is independent of n, the limit of the sequence
(3.4) exists and is given by (3.6). �

Remark. In fact, the limit in the above proposition exists not only at the end-
points but in all of Cp. For our purposes however it is enough to know the values at
the endpoints.

Let us denote with Ep the set of endpoints of Cp. The functions of the previous
proposition have the following properties.

Lemma 7. Let Gi, i = 0, 1 be defined on Ep by formula (3.6). Then

(a) each function Gi takes the same value at the endpoints of a single gap; that
is, at the endpoints of L2k+`(ω) we have that Gi(ω01̄) = Gi(ω10̄), ω ∈ Ωk,
k ≥ 0, i = 0, 1,

(b) both functions G0 and G1 are non-decreasing,
(c) for every ω ∈ Ωk, u = 0, 1,

(
1

2

)p

≤ G0(ωū) ≤

(
2

3

)p

and

(
1

3

)p

≤ G1(ωū) ≤

(
1

2

)p

.

Proof. (a) Since `(ω1) = `(ω0)+1, the statement is a consequence of the definition
of Gi.

(b) By the previous item and the continuity of Gi, it is enough to show that this
function is increasing when restricted to the left endpoints. Let ω0̄ and τ 0̄ be left
endpoints with π(ω0̄) < π(τ 0̄). Then ω0̄ ≺ τ 0̄ since π is order preserving. We may
assume that ω, τ ∈ Ωk because left endpoints of one level are left endpoints of all
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higher levels. By (3.6) we must see that
(

2k+1 + `(ω1)

2k+2 + i2k+1 + `(ω1)

)p

<

(
2k+1 + `(τ1)

2k+2 + i2k+1 + `(τ1)

)p

,

but this is equivalent to

`(ω1) < `(υ1),

which holds because ω is lexicographically smaller than τ .
(c) is consequence of (b) and the values of the functions at the endpoints of I. �

Note that item (c) emphasizes that the derivatives are strictly less than 1 in Cp.
Below we establish the Hölder regularity of Gi on Ep.

Proposition 8. Let Gi be as above. Then Gi ∈ C 1/p(Ep), but Gi /∈ C η(Ep) for
any η > 1/p.

Proof. Firstly assume that x and y are endpoints of the same interval of the
m-step. By Proposition 3, there exists ω ∈ Ωm such that x = ω0̄ and y = ω1̄.
Applying formula (3.6), we have Gi(ω0̄) = (a/b)p and Gi(ω1̄) = ((a + 1)/(b + 1))p,
with a = 2k + `(ω) and b = 2k+1 + i2k + `(ω). Then

Gi(ω1̄) − Gi(ω0̄) =
((a + 1)b)p − ((b + 1)a)p

(b(b + 1))p
= h(b) − h(a),

where h(t) =
(

ab+t
b(b+1)

)p

. By the mean value theorem there exists a < ξ < b such that

Gi(ω1̄) − Gi(ω0̄) =
p(ab + ξ)p−1(b − a)

(b(b + 1))p
= p

(
a + ξ/b

b + 1

)p
(b − a)

b

1

a + ξ/b
.

Since

1/4 ≤
a + ξ/b

b + 1
,
(b − a)

b
≤ 1,

by inequalities (2.5) there are positive and finite quantities c1 and c2 depending only
on p such that

(3.7) c1|I
k
`(ω)|

1/p ≤ Gi(ω1̄) − Gi(ω0̄) ≤ c2|I
k
`(ω)|

1/p.

The last inequality says that Gi is 1/p-Hölder continuous at the endpoints of each
basic interval with constant independent of the interval. On the other hand, the first
inequality shows that the exponent 1/p cannot be improved. In fact, if there is an
ε > 0 such that Gi(ω1̄) − Gi(ω0̄) ≤ c|Ik

`(ω)|
1/p+ε, then 0 < c1c

−1 ≤ |Ik
`(ω)|

ε for all k,

which is impossible because |Ik
`(ω)| → 0 as k increases. Therefore, the second claim

is proved.
To complete the proof of the first claim we need the following result of [CMPS05]

(Lemma 3.5):

Let J be an open interval and let k ∈ N. Then
∑

j : Ik
j ⊂J |I

k
j |

1/p ≤ 4|J |1/p.

Let x and y be arbitrary endpoints and ε > 0. We define Jε = (x − ε, y + ε). As
a consequence of the construction note that x and y are endpoints of the k-step for
some k, so let x = x0 < . . . < xN = y be all the endpoints of the k-step between x
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and y. By Lemma 7 (a) we have that Gi(xn+1) − Gi(xn) = 0 if (xn, xn+1) is a gap.
Thus, using inequality (3.7) and the above lemma we obtain

|Gi(x) − Gi(y)| =

∣∣∣∣∣

N−1∑

k=0

Gi(xk) − Gi(xk+1)

∣∣∣∣∣ ≤
∑

ω : Ik
`(ω)

⊂Jε

|Gi(ω1̄) − Gi(ω0̄)|

≤ c2

∑

j : Ik
j ⊂Jε

|Ik
j |

1/p ≤ 4c2|Jε|
1/p,

and the result follows letting ε → 0. �

Remark. Once we have constructed an IFS with continuous derivatives that
satisfies (3.1), it follows from the last proposition and denseness of Ep that the
derivatives are 1/p-Hölder continuous on all Cp.

The following lemma will be useful to prove the Hölder continuity of the exten-
sion.

Lemma 9. Let f : (a, b) → R and let a < c < b be such that f restricted to the
intervals (a, c] and [c, b) is α-Hölder continuous with constants C1 and C2 respectively.
Then f is α-Hölder continuous in (a, b) with constant C = 2 max{C1, C2}.

Proof. Let x ∈ (a, c) and y ∈ (c, b). Then

|f(y)− f(x)| ≤ C2(y − c)α + C1(c − x)α ≤ 2 max{C2(y − c)α, C1(c − x)α}

≤ C max{(y − c + c − x)α, (c − x + y − c)α} = C(y − x)α,

and the lemma is proved. �

3.2. Construction of the derivatives. Here we define the derivatives Fi of
the desired maps fi extending the functions Gi to the whole interval I in such a way
that 1/p-Hölder continuity is preserved and that equation (3.1) holds. Firstly we give
an equivalent condition to this equation in terms of the lengths of gaps.

Lemma 10. Condition (3.1) is equivalent to f0(0) = 0, f1(|I|) = |I| and

(3.8) |L2n+1+`(iω)| =

ˆ

L2n+`(ω)

Fi

for any ω ∈ Ωn, n ≥ 0.

Proof. Suppose that (3.8) holds. For ω ∈ Ωn let ω̃ = ω2 . . . ωn. Then by (2.2) we
get

|In
`(ω)| =

∑

k≥n

∑

λ∈Ωk−n

|L2k+`(ωλ)| =
∑

k≥n

∑

λ∈Ωk−n

ˆ

L
2k−1+`(ω̃λ)

Fω1

=

ˆ

In−1
`(ω̃)

Fω1 = |fω1(I
n−1
`(ω̃) )|.

(3.9)

For n = 1 this implies that |fi(I)| = |I1
i |, and since both intervals have a common

endpoint, then they are the same. Inductively, if for n ≥ 1 equality fω(I) = In
`(ω)

holds for all ω ∈ Ωn, then

|fωi(I)| = |fω1(I
n
`(ω̃i))| = |In+1

`(ωi)|,
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where we used (3.9) in the last equality. Hence each interval in the dynamical n + 1-
step has the same length as its corresponding interval associated to the sequence.
Moreover, we know that I1

i = fi(I), whence

In
`(ω) = fω(f0(I) ∪ L1 ∪ f1(I)) = fω0(I) ∪ fω(L1) ∪ fω1(I).

Recall by definition that

(3.10) In
`(ω) = In+1

`(ω0) ∪ L2n+`(ω) ∪ In+1
`(ω1),

then fωi(I) has a common endpoint with In+1
`(ωi) since fω is increasing. Therefore

fω(I) = In
`(ω) for all ω ∈ Ωn, n ≥ 1.

On the other hand, if (3.1) holds then f0(0) = 0 and f1(|I|) = |I|; also by
hypothesis

In
`(ω) = fω1(I

n−1
`(ω̃) (I)) = In+1

ω0 ∪ fω1(L2n−1+`(ω̃)) ∪ In+1
ω1 ,

hence fω1

(
L2n−1+`(ω̃)

)
= L2n+`(ω) by (3.10), and equality (3.8) follows. �

Obviously one can define on each gap a smooth function that satisfies the end-
point condition (3.6) and also (3.8), but we need to do this with a uniform bound
of the Hölder constants on all gaps. Below we show that this can be realized if, for
any gap in a sufficiently large step, the graph of Fi on this gap coincides with the
equal sides of an isosceles triangle as it is shown in Figure 1. This construction will
be possible whenever the triangle is above the x-axis, since we want the derivatives
to be positive.

L2n+`(ω)

Gi(ω01̄)
b b

Gi(ω10̄)

Figure 1. The shared area must be |L2n+1+`(iω)| by Lemma 10.

Remark. The values of Gi at the endpoints of each gap coincide (Lemma 7(a)),
but if we define Fi on L2n+`(ω) as the constant value Gi(ω10̄), then (3.8) does not
hold because this function has too much area over this gap.

Let us denote with hi
2n+`(ω) the height of the triangle over the gap L2n+`(ω).

Lemma 11. There is an integer np such that on each gap L2n+`(ω), with ω ∈ Ωn

and n ≥ np, it is possible to define a positive function gω through the isosceles
triangle as in Figure 1 so that it satisfies (3.8). Moreover, for these gaps we have
that hi

2n+`(ω) ≤ p
2n . Furthermore, the 1/p-Hölder constants of these functions are

uniformly bounded.
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Proof. Let us define j = `(ω), so that `(ω1) = 2j + 1 and `(iω) = i2n + j. Let
R be the area of the rectangle with base L2n+`(ω) and height Gi(ω10̄) (the dotted
rectangle in Figure 1). The area under the triangle decreases continuously as the
vertex approaches the x-axis and is equal to 1

2
R when they intersect. So, by condition

(3.8), it is necessary to verify that 1
2
R < |L2n+1+`(iω)| for all n big enough; that is

1

2

(
1

2n + j

)p (
2n+1 + 2j + 1

2n+2 + i2n+1 + 2j + 1

)p

<

(
1

2n+1 + i2n + j

)p

.

Writing a = 2n + j, the last inequality is equivalent to
((

2a + 1

2a

) (
a + 2n(1 + i)

a + 2n(1 + i) + 1/2

))p

< 2.

Each factor in the product tends to 1 as n increases, thus the inequality holds for
every n ≥ np, where np is an integer depending on p.

For n ≥ np we know the area of the triangle so we can compute its height:

hi
2n+j = 2

|L2n+j| · Gi(ω10̄) − |L2n+1+i2n+j|

|L2n+j |

= 2

[(
2n+1 + 2j + 1

2n+2 + i2n+1 + 2j + 1

)p

−

(
2n + j

2n+1 + i2n + j

)p]
.

Applying the mean value theorem (0 < ξ < 1/2) we obtain

hi
2n+j = 2

[(
a + 1/2

a + 2n(1 + i) + 1/2

)p

−

(
a

a + 2n(1 + i)

)p]

= p

(
a + ξ

a + ξ + 2n(1 + i)

)p−1
2n(1 + i)

(a + 2n(1 + i) + ξ)2
<

p

2n
.

For the last statement, let ω ∈ Ωn and j = `(ω). Let s be the midpoint of L2k+j

and take x and y in this gap. The absolute value of the slope of the side of the
triangle is

mi
2k+j = 2hi

2k+j/|L2k+j|.

First assume that s ≤ x, y. Then

|gω(x) − gω(y)| = mi
2k+j|x − y| ≤ mi

2k+j|L2k+j |
1−1/p|x − y|1/p ≤ 4p|x − y|1/p.

Hence the Hölder constant is independent of ω. The case x, y ≤ s is symmetric, and
for x < s < y the inequality follows using Lemma 9 given earlier. �

Now we proceed to define the derivatives Fi, that will be the limit of a sequence
of functions {F n

i }. Each F n
i interpolates suitably the values of Gi at the endpoints

of the basic intervals of the n-step.
To begin with, on each gap Lk, with 1 ≤ k ≤ 2np − 1 and np as in Lemma 11,

we define F
np

i joining the values of Gi at the endpoints of the gap so that it be C 1,
positive and its area under the gap be given by (3.8). On the remaining intervals,
that is, on the closed intervals of the np-step, we interpolate linearly so that F

np

i

is a continuous function. For n > np we define F n
i inductively: on the gap Lk,

1 ≤ k < 2n−1, F n
i coincides with F n−1

i ; on the remaining gaps of the n-step, that is,
on Lk′, with 2n−1 ≤ k′ < 2n, we define the graph of F n

i as the sides of the isosceles
triangle mentioned above; finally we complete the definition with linear interpolation.

The sequence {F k
i }k has the following property.
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Lemma 12. {F k
i }k is a uniform Cauchy sequence.

Proof. It is enough to prove that ‖F k+1
i − F k

i ‖∞ = O
(

1
2k

)
for every k ≥ np. For

this, notice that F k
i and F k+1

i coincide on the complementary gaps of the k-step, so
we need to estimate their difference for points in the closed intervals of that step.
Let x ∈ Ik

`(ω) = [ω0̄, ω1̄], with ω ∈ Ωk. The functions are increasing in Cp so (see

Figure 2)

Gi(ω0̄) ≤ F k
i (x) ≤ Gi(ω1̄)

and
Gi(ω0̄) − hi

2k+`(ω) ≤ F k+1
i (x) ≤ Gi(ω1̄).

Then

(3.11) |F k+1
i (x) − F k

i (x)| ≤ Gi(ω1̄) − Gi(ω0̄) + hi
2k+`(ω).

Therefore the result follows as a consequence of the estimate in Lemma 11, inequality
(3.7) in the proof of Proposition 8 and since |Ik

`(ω)| ≤ C2−kp. �

hi
2n+`(ω)b

b b

b

Ik+1
`(ω0) Ik+1

`(ω1)

Gi(ω0̄)

Gi(ω1̄)

Figure 2. F k
i in grey and F k+1

i in black.

The previous lemma allows us to define Fi as the (uniform) limit of {F k
i }k, which

results a continuous function. Integrating we obtain the system {fp,0, fp,1} that has
Cp as attractor.

Remark. Because of the freedom to extend the derivatives on each gap it is
obvious that there is no uniqueness in the construction of the system.

End of proof of Theorem 1. It remains to show that Fi is 1/p-Hölder continuous
on I. Continuity and Proposition 8 imply this on Cp (see the remark after that
proposition). Also, by definition and Lemma 11, Fi is 1/p-Hölder continuous on each
gap with constant independent of the gap. Let C be the maximum between this
constant and the one given by Proposition 8. Take x and y in I with x < y. If these
points are in different gaps, let ex and ey denote the right and left endpoints of the
respective gaps. Then

|Fi(x) − Fi(y)| ≤ |Fi(x) − Fi(ex)| + |Fi(ex) − Fi(ey)| + |Fi(ey) − Fi(y)|

≤ C
(
|x − ex|

1/p + |ex − ey|
1/p + |ey − y|1/p

)
≤ 3C|x − y|1/p,

which is what we need. The other possibilities for x and y in I follow in the same
way. �
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4. Conjugations

In this section we prove Theorem 2 stated in the introduction, which shows how
the sets Cp and A2−p are related. Since the attractors of conjugate (smooth) systems

satisfy C̃ = h(C), then they are diffeomorphic. In particular they have the same
Hausdorff, packing and box dimensions, since these quantities are invariant under
bi-Lipschitz maps. Moreover, at their critical dimension, Hausdorff and packing
measures are positive and finite. Nevertheless, these facts are not sufficient to ensure
that the sets are smoothly conjugated.

Next we define the scaling function of a regular Cantor set, that is a complete
invariant for this class of sets and is due to Sullivan [Sul88].

Let ∆ be the unit simplex in R
3, i.e.,

∆ =
{
(a, b, c) : a + b + c = 1, a, b, c ≥ 0

}
.

Given ω ∈ Ωk denote with ω? the reverse string ωk . . . ω1. For a C 1+ε-regular Cantor
C and for each ω ∈ Ω, we define a function Rn : Ω → 4 by

Rn(ω) =
(
|I(ω|n)?0|, |L(ω|n)?|, |I(ω|n)?1|

)
/|I(ω|n)? |.

These functions converge uniformly on Ω with an order of convergence O(βnε), where
on Ω we consider the metric dβ given in Section 2.

Definition. The scaling function R : Ω → int(∆) is defined by

R(ω) := lim
n→∞

Rn(ω).

With the metric dβ, the scaling function is Hölder continuous with exponent ε.

Theorem. (Sullivan) Two C
k+ε-regular Cantor sets are C

k+ε-conjugated if and
only if they have the same scaling function.

We are ready to prove Theorem 2.

Proof of Theorem 2. By Sullivan’s Theorem we must verify that both scaling
functions coincide. Since A2−p has contraction ratio 2−p, it follows that its scaling
function is

R(α) =

(
1

2p
,
2p − 2

2p
,

1

2p

)
.

Let us see that this is also the scaling function of Cp. Recall that for ω ∈ Ω,

2p

2p − 2

(
1

2n + `((ω|n)?) + 1

)p

≤ |In
`((ω|n)?)| ≤

2p

2p − 2

(
1

2n + `((ω|n)?)

)p

.

Then, by the identity `((ω|n)
?i) = 2`((ω|n)

?) + i for i = 0, 1, we obtain

|I(ω|n)?i|

|I(ω|n)?|
≤

(
2n + `((ω|n)

?) + 1

2n+1 + `((ω|n)?i)

)p

≤
1

2p

(
1 +

1

2n + `((ω|n)?)

)p

−→
1

2p
,

with a similar lower bound, thus |I(ω|n)?i|/|I(ω|n)?| → 1/2p. Since the sum of the
coordinates of the scaling function is 1, we obtain the coincidence of these functions.

�

The scaling function also exists if weaker conditions on the derivatives of the
functions are required. For example, if they satisfy the Dini condition (see, for
example, [FJ99]), or more generally, a bounded distortion property. We finish this



36 Ignacio Garcia

section illustrating that, even when the functions of the IFS are only C 1, the scaling
function may exist, and moreover, it can be a constant function.

Example 13. The Cantor set Cp,1 associated to the sequence {(log n)/np} sat-
isfies:

1) It is the attractor of an IFS {f0, f1} with fi ∈ C 1.
2) The derivatives are not ε-Hölder continuous for any ε > 0 (actually, they do

not satisfy the bounded distortion property).
3) Its scaling function is constant, with value

(
1
2p , 2p−2

2p , 1
2p

)
; in particular, this

function is ε-Hölder continuous, for any ε > 0.

Proof. 1) First, for all 0 ≤ j < 2k, k ≥ 1 we have

(4.1) (c̃p + cp log(2k + j))
1

(2k + j + 1)p
≤ |Ik

j | ≤ (c̃p + cp log(2k + j + 1))
1

(2k + j)p
,

where cp =
∑

h≥0
1

2(p−1)h and c̃p =
∑

h≥0
log 2h

2(p−1)h ; this is obtained in the same way as
the bounds of Lemma 4.

Now we show that Cp,1 is the attractor of a system {f0, f1} with continuous
derivatives such that fω(I) = Ik

`(ω) for all ω ∈ Ωk, k ≥ 1. Given ω ∈ Ωk, by estimate

(4.1) we have that

lim
n→∞

∣∣∣In+1
`(i(ωū)|n)

∣∣∣
∣∣∣In

`((ωū)|n)

∣∣∣
=

(
2k + `(ω) + u

2k+1 + i2k + `(ω) + u

)p

for u = 0, 1.

By Proposition 5, this limit gives the values of the derivatives at the endpoints. Notice
that these are the same values than the one obtained in the Cp case; in particular,
they coincide at the endpoints of any gap (Lemma 7 (b)).

As before we must subtract some area over each gap, which can be done with
triangles because the same bounds as in Lemma 11 hold.

2) It was shown in [GMS07] that dimH Cp,1 = 1/p and moreover, that

H
1/p(Cp,1) = +∞,

whence this set cannot be the attractor of a system whose functions have ε-Hölder
continuous derivatives, for any ε > 0 (nor can the derivatives satisfy the bounded
distortion property).

3) Given ω ∈ Ω we have

|I(ω|n)?i|

|I(ω|n)? |
≤

c̃p + cp log(2n+1 + `((ω|n)
?i) + 1)

c̃p + cp log(2n + `((ω|n)?))
·

(
2n + `((ω|n)

?) + 1

2n+1 + `((ω|n)?i)

)p

−→
1

2p
,

since one can show that the second factor in the product goes to 1. The lower bound
is similar. Hence the scaling function is R(ω) =

(
1
2p , 2p−2

2p , 1
2p

)
for all ω ∈ Ω. �

Corollary 14. The scaling functions of (Cp, {fp,1, fp,0}) and (Cp,1, {f0, f1}) co-
incide. Nevertheless these Cantor sets are not even bi-Lipschitz conjugate. Therefore
in Sullivan’s Theorem the regularity hypothesis cannot be weakened to C

1.

Proof. Since 0 < H 1/p(Cp) < +∞ and H 1/p(Cp,1) = +∞, these Cantor sets
cannot be bi-Lipschitz conjugate. �
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5. Sums and convolutions

In this section we provide results on sums of two Cantor sets in the family {Cp}
and on the convolution of measures supported on these sets. We begin giving an
estimate of the thickness of Cp, which is used to obtain conditions so that the sumset
has nonempty interior. Subsequently, for a given compact K ⊂ R, we adapt a result
of Peres and Schlag [PS00] to study the size of the set of parameters where the
convolution measure H 1/p|Cp

∗H 1/p′ |Cp′
is not absolutely continuous (Corollary 20)

and also where the formula dim(K + Cp) = min(dim K + dim Cp, 1) does not hold.
Let L be a bounded gap of a Cantor set C. A bridge B of L is a maximal interval

that has a common endpoint with L and does not intersect any gap whose length is
at least that of L. We say that (B, L) is a bridge/gap pair of C. The thickness of C
is defined by

τ(C) = inf

{
|B|

|L|
: (B, L) is a bridge/gap pair

}
.

An important consequence of Newhouse’s gap lemma is that the sum C1 +C2 of two
Cantor sets is a finite union of intervals if τ(C1) · τ(C2) ≥ 1 (see [PT93]). Moreover,
if none of the translates of either of the Cantor sets are contained in a (bounded)
gap of the other, then C1 + C2 is an interval.

In the classical case we have τ(Ar) = 2r/(1− 2r). If 2−p takes the place of r one
would expect that Cp + Cp′ be an interval when 1

2p−2
1

2p′−2
≥ 1. But the thickness

of Cp is bigger than expected because of the nonlinearity of the set. Nevertheless,
a slightly weaker result can be attained if we consider a local version of thickness
instead.

Given x ∈ C let ω ∈ Ω be such that π(ω) = x. The Cantor sets Ck
x := C ∩ Ik

`(ωk)

decrease to {x} as k → ∞. Then the local thickness of C at x is

τloc(C, x) := lim
k→∞

τ(Ck
x).

It can be shown, following the proof of Newhouse’s lemma, that if x1 ∈ C1 and
x2 ∈ C2 are such that τloc(C1, x1) ·τloc(C2, x2) > 1, then C1 +C2 contains a nonempty
open interval. Moreover, if

inf
x∈C1,y∈C2

{
τloc(C1, x) · τloc(C2, y)

}
> 1

then C1 + C2 is a finite union of intervals.
In general, regular Cantor sets have constant local thickness (see [PT93]). In our

case it is easy to compute this value.

Proposition 15. We have

(5.1)
1

2p − 2

1

2p
≤ τ(Cp) ≤

1

2p − 2

(
2

3

)p

.

Moreover,

(5.2) τloc(Cp) =
1

2p − 2
.

Proof. Since lengths of bounded gaps of Cp are lexicographically decreasing, the
bridge for L2k+j is the closed interval of the k + 1-step which is at its right, that is
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Ik+1
2j+1. Therefore inequalities (2.5) imply

(5.3)
1

2p − 2

(
2k + j

2k + j + 1

)p

≤
|Ik+1

2j+1|

|L2k+j|
≤

1

2p − 2

(
2k + j

2k + j + 1/2

)p

.

Thus the bounds for the quotient bridge/gap increase to 1/(2p−2) as k and j increase.
From this, for k = j = 0, the first inequality in (5.3) gives a lower bound for all
quotients bridge/gap and therefore the lower bound in (5.1). Moreover, k = j = 0
gives the smallest of all upper bounds in (5.3), that is the second inequality in (5.1).

Note that for the local thickness every bridge/gap pair of Ck
p,x is one of Cp; hence

by (5.3) we have

1

2p − 2

(
2k

2k + 1

)p

≤ τ(Ck
p,x) ≤

1

2p − 2

(
2k+1 − 1

2k+1 − 1/2

)p

,

and (5.2) follows letting k → ∞. �

As a consequence of the above we have the following result.

Corollary 16. For 1
2p(2p−2)

1
2q(2q−2)

≥ 1 the set Cp + Cq is an interval. Moreover,

if 1
2p−2

· 1
2q−2

> 1 then Cp + Cq is a finite union of intervals.

Finally we concentrate on the measure theoretic results of the dimension of Cp+Cq

and the corresponding problem of convolution measures given in the introduction.
Let µ0 denote the uniform product measure on Ω. A probability measure ϑp on

Cp is defined by

ϑp = µ0 ◦ Γ−1
p .

Remark 17. It can be easily verified that ϑp is the invariant measure of the
regular i.f.s. that generates Cp with weights (1/2, 1/2).

Note that in view of the next proposition, the convolution measure Hp ∗ Hq is
equivalent to ϑp ∗ ϑq, hence in this section we will work with the later.

Proposition 18. ϑp is equivalent to Hp.

Proof. Recall that hp(A2−p) = Cp. Given B ⊂ [0, 1] we have that

ϑp(B) = µ2−p(h−1
p (B)) = H

1/p(h−1
p (B) ∩ A2−p) = H

1/p(h−1
p (B ∩ Cp)).

Since hp is a bi-Lipschitz function, there is a constant c > 0 such that

c−1
H

1/p(B ∩ Cp) ≤ H
1/p(h−1

p (B ∩ Cp)) ≤ cH 1/p(B ∩ Cp),

whence the measures are equivalent. �

Indeed we will work with a more general parametric family. Let {Cp,q}p>1,q∈R be
the family of Cantor sets associated to the sequence {logq n/np}n (the term n = 1
is defined to be 1). Notice that dim Cp,q = 1/p; see [GMS07]. We regard q as a C

∞

function of p on (1, +∞), so from now onwards {Cp,q}p is an uniparametric family
with q depending on p.

Recall that a finite measure η with compact support is a Frostman measure with
exponent s > 0 if

η(Br(x)) ≤ Crs for x ∈ R, r > 0.

By Frostman’s Lemma, given a compact set K and s < dim K there is a Frostman
measure supported on K with exponent s; see Mattila [Mat95].
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A probability measure on Cp,q is defined by ϑp,q = µ0 ◦ Γ−1
p,q, where µ0 is defined

as above and Γp,q : Ω → Cp,q is the projection defined in (2.4). Note that ϑp = ϑp,0,
and this is a Frostman measure with exponent 1/p because it is equivalent to Hp

and this is a Frostman measure; seed Theorem 5.3 in [Fal97].
The main theorems of this part are stated below. Let us denote with ν ∈ L2

(ν /∈ L2) the fact that the measure ν has (does not have) a density in L2(R).

Theorem 19. Let η be a Frostman measure with exponent s ∈ (0, 1) and let p̄
be such that s + 1/p̄ = 1. Given J ⊂ (1, p̄) a closed interval, J = [p0, p1] we have

(5.4) dim
({

p ∈ J : η ∗ ϑp,q /∈ L2
})

≤ 2 −
(
s +

1

p1

)
.

In particular, the measure η ∗ ϑp,q has a density in L2 for L -a.e. p ∈ (1, p̄).

Let us denote by µ � ν if µ is absolutely continuous with respect to ν.

Corollary 20. For a fixed p′ > 1 we have ϑp ∗ϑp′ � L (H 1/p |Cp
∗H 1/p′ |Cp′

�

L ) with density in L2(R) for L -a.e. p such that dim Cp + dim Cp′ > 1.

Remark. If dim Cp+dim Cp′ < 1, the convolution ϑp′∗ϑp is singular with respect
to L , since supp(ϑp ∗ ϑp′) = Cp + Cp′.

For sumsets we have the following result, that is analogous to Theorem 5.12 for
homogeneous Cantor sets in [PS00].

Theorem 21. Let K ⊂ R be a compact set and J = [p0, p1] ⊂ (1, +∞). Then

(5.5) dim
{
p ∈ J : dim(K + Cp,q) < dim K + dim Cp,q

}
≤ dim K + dim Cp0,q(p0)

and

(5.6) dim
{
p ∈ J : H

1(K + Cp,q) = 0
}
≤ 2 − (dim K + dim Cp1,q(p1)).

Note that (5.6) follows from (5.4) choosing s < dim K, taking a Frostman measure
on K with exponent s and then letting s ↗ dim K.

5.1. Proof of Theorems 19 and 21. These theorems are a consequence
of a projection theorem of Peres and Schlag [PS00] (see also [PSS00]) and their
proofs follow closely that of Theorem 5.12 in that paper. We need to state a one
dimensional version of the projection theorem, and for this we require some definitions
and notation.

Definition. The Sobolev dimension of a finite measure on R
n with compact

support is defined by

dims(ν) = sup
{
α :

ˆ

(1 + |x|)α−n|ν̂(x)|2 dx < +∞
}
.

The properties of Sobolev dimension that we will use are stated below; see Mattila
[Mat04], Proposition 5.1.

Proposition 22. Let ν be finite measure on R
n with compact support.

1. If 0 ≤ dims ν ≤ n, then dims ν ≤ dim(supp ν).
2. If dims ν ≥ n, then ν ∈ L2(Rn).

The general setting of the projection theorem consists in a compact metric space
(Θ, d) together with a continuous map Π: L × Θ → R, where L ⊂ R is an open
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interval. For this map it is assumed that for any compact J ⊂ L and m ∈ N there
exists cm,J such that ∣∣∣∣

dm

dpm
Π(p, θ)

∣∣∣∣ ≤ cm,J

for every p ∈ J and θ ∈ Θ. The functions Πp(·) := Π(p, ·) can be seen as a family of
projections parameterized by p. Given a finite measure µ on Θ, consider the family
of projected measures νp = µ ◦Π−1

p . Peres and Schlag [PS00] related the smoothness
of the measures νp to the α-energy of the measure µ, defined by

Eα(µ) =

ˆ

Θ

ˆ

Θ

dµ(θ1) dµ(θ2)

d(θ1, θ2)α
.

For this it is crucial that Π verifies the transversality condition, which is a kind of
non degeneracy condition.

Definition. For any distinct θ1, θ2 ∈ Θ and p ∈ J let

Φθ1,θ2(p) =
Π(p, θ1) − Π(p, θ2)

d(θ1, θ2)
.

For any β ∈ [0, 1) we say that J is an interval of transversality of order β for Π if
there is a constant Cβ such that for all p ∈ J and for all θ1, θ2 ∈ Θ condition

|Φθ1,θ2(p)| ≤ Cβd(θ1, θ2)
β

implies

(5.7)

∣∣∣∣
d

dp
Φθ1,θ2(p)

∣∣∣∣ ≥ Cβd(θ1, θ2)
β.

In addition, we say that Π is regular on J if under the same condition and for all
positive integer m there is a constant Cβ,m such that

(5.8)

∣∣∣∣
dm

dpm
Φθ1,θ2(p)

∣∣∣∣ ≤ Cβ,md(θ1, θ2)
−βm.

Next we state (incompletely) the Peres–Schlag projection theorem.

Theorem 23. [[PS00], Theorem 2.8] Let Θ, J and Π be as above. Suppose that
J is an interval of transversality of order β for Π for some β ∈ (0, 1] and that Π is
regular on J . Let µ be a finite measure on Θ with finite α-energy for some α > 0.
Then, for any σ ∈ (0, α] we have

(5.9) dim
{
p ∈ J : dims(νp) ≤ σ

}
≤ 1 + σ −

α

1 + a0β
,

where a0 is some absolute constant. Moreover, for any σ ∈ (0, α − 3β] we have

(5.10) dim
{
p ∈ J : dims(νp) < σ

}
≤ σ.

Now we apply the above to prove Theorems 19 and 21.
Recall that ap

n = (log n)q/np, where q is a C ∞ function of p. For notational
convenience we will denote the code map of Cp,q by Γp instead of Γp,q. For ω ∈ Ω we
define Γω(p) = Γp(ω). Note that Γω ∈ C ∞((1, +∞)) for each ω ∈ Ω. In fact, since
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any point in a Cantor set is the sum of the length of all gaps which lie to its left, we
obtain Γp(ω) =

∑
n≥1 ap

n(ω), where

ap
n(ω) =

{
ap

n, if the gap Ln is to the left of Γp(ω);

0, otherwise.

Notice that the values of n for which ap
n(ω) = 0 depend only on ω and not on p.

Now fix a compact set K ⊂ R and a Frostman measure η supported on K
with exponent s. In our context transversality fails globally but we will be able to
apply Peres-Schlag Theorem on small pieces of the Cantor sets. More precisely, given
δ ∈ Ωm, consider the cylinder [δ] = {δτ : τ ∈ Ω}. Let Θδ = K × [δ]. The projection
map Π: (1,∞) × Θδ → R is defined by

Π(p, x, ω) = x + Γp(ω).

Given J = [p0, p1] ⊂ (1,∞) we define a metric on [δ] by

d̃(ω, τ) =

{
dk, if |ω ∧ τ | = k,

0, if ω = τ,

where dk = max|γ|=k |I
p0
γ |, with Ip

γ the corresponding interval of the k-step of Cp,q.
Thus, the metric on Θδ is

d((x, ω), (y, τ)) = |x − y| + d̃(ω, τ).

Consider on the space Θδ the measure µδ = η×µ0|[δ], with µ0 the uniform product
measure on Ω.

Remark 24. Let Cp,q,δ := Cp,q ∩ Ip
δ and ϑp,q,δ = ϑp,q|Cp,q,δ

. It can be verified
directly from the definition that the projected measure νp,q,δ := µδ ◦ Π−1

p,q coincides
with the convolution η ∗ ϑp,q,δ. We will find M > 0 such that Peres–Schlag Theorem
can be applied to η ∗ ϑp,q,δ for all δ ∈ ΩM . Hence the desired conclusion in Theorem
19 for η ∗ ϑp,q follows easily from the corresponding conclusion for each η ∗ ϑp,q,δ.

Let us begin with the energy estimate for µδ.

Lemma 25. Let J = [p0, p1] ⊂ (1,∞). Then the α-energy of µδ is finite provided

α < s + dim Cp0,q.

Proof. Note that

Eα(µδ) =

ˆ

[δ]

ˆ

[δ]

ˆ

K

ˆ

K

dη(x) dη(y) dµ0(ω) dµ0(τ)

(|x − y| + d̃(ω, τ))α

≤

ˆ

Ω

ˆ

Ω

ˆ

K

ˆ

K

dη(x) dη(y) dµ0(ω) dµ0(τ)

(|x − y| + d̃(ω, τ))α

=

ˆ

K

ˆ

K

∑

k≥0

1

2k

dη(x) dη(y)

(|x − y| + dk)α

=

ˆ

K

ˆ

K

∑

k : |x−y|≤dk

+

ˆ

K

ˆ

K

∑

k : |x−y|>dk

= I + II.
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We are going to estimate I and II separately. We have

I ≤
∑

k≥0

1

2k

1

dα
k

(η × η)
{
|x − y| ≤ dk

}
≤ c

∑

k≥0

1

2k

1

dα−s
k

,

where the last inequality holds since η is a Frostman measure with exponent s.
Observe that 2kdt

k → +∞ for any t < dim Λp0 since 2kdt
k is an upper bound for the

t-dimensional cover of Λp0 with the intervals of the k-step. Therefore I is bounded
by a convergent geometrical series.

For the second term, choose ε > 0 such that t := α − s + ε < dim Λp0. Then
dk ≥ c2−k/t for all k and for some c > 0, since 2kdt

k → +∞. If

κ(x, y) := min{k : |x − y| > dk},

then

II ≤ c′
ˆ

K

ˆ

K

1

2κ(x,y)

dη(x) dη(y)

|x − y|α
≤ c′′

ˆ

K

ˆ

K

dη(x) dη(y)

|x − y|α−t
< +∞,

the last inequality is because α − t = s − ε is smaller than the exponent of η (see
[Mat95], Chapter 8). �

A sufficient condition for transversality is given below. We say that the interval
J is of transversality of order β relative to [δ] if it is of transversality of order β for
Π: (1,∞) × Θδ → R.

Lemma 26. The closed interval J ⊂ (1, +∞) is of transversality of order β
relative to [δ] provided there exists a constant cβ such that

(5.11) |Γ′
ω(p) − Γ′

τ (p)| ≥ cβd
β+1
k , if |ω ∧ τ | = k,

for all ω, τ ∈ [δ], p ∈ J . Moreover, Π is regular on J if

(5.12)
∣∣∣

dm

dpm
Γω(p) −

dm

dpm
Γτ (p)

∣∣∣ ≤ cβ,md1−βm
k

for some constant cβ,m.

Proof. Suppose

(5.13) |Φθ1,θ2(p)| ≤ cβd(θ1, θ2)
β for all θ1, θ2 ∈ Θδ,

for some small enough constant cβ. Now fix ω1 = (x, ω), ω2 = (y, τ) ∈ Θδ. We may
assume ω 6= τ , otherwise is trivial. Let

r := d((x, ω), (y, τ)) = |x − y| + dk.

Observe that transversality and regularity follow easily from (5.11) and (5.12) if we
can show that r < 2dk. This is a consequence of (5.13). In fact, if |x−y| ≥ 2dk, then
u = |x − y|/dk > 2, which implies

|Φω1,ω2(p)| ≥
|x − y| − dk

|x − y| + dk
=

u − 1

u + 1
≥ C > 0.

This contradicts (5.13) if cβ < C. �

Proof of Theorem 19. Note that

d

dp

(log n)q

np
= (q′(p) log log n − log n)

(log n)q

np
,
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whence d(ap
n)/dp is comparable to −(log n)q+1/np for n ≥ n0, for some n0 depending

on the function q. That is, there exist positive and finite quantities c and c′ depending
on J such that

(5.14) c
(log n)q+1

np
≤ −

d

dp
ap

n ≤ c′
(log n)q+1

np
.

Choose M > 0 such that at least the first n0 gaps where removed to construct the
M-step of Cp,q. Let δ ∈ ΩM and ω, τ ∈ [δ], with |ω ∧ τ | = k, and assume that ω ≺ τ .
Note that

|Γ′
ω(p) − Γτ (p)′| =

∑

n∈Λ

−
d

dp
ap

n,

where Λ is the set of subindex of all the gaps of Cp,q which lie between Γp,q(ω) and
Γp,q(τ). Observe that Λ only depends on the relative positions of ω and τ in Ω. It
follows by (5.14) that |Γ′

ω(p) − Γτ (p)′| is comparable to |Γp,q+1(ω) − Γp,q+1(τ)|, which
is comparable to the length of the basic interval Iω∧τ of the Cantor set Cp,q+1. Hence,
from Lemma 4 we get

(5.15) cp
kq+1

2kp
≤ |Γ′

ω(p) − Γτ (p)′| ≤ c′p
kq+1

2kp
.

Then transversality relative to [δ] holds in smaller subintervals of J . That is, given

β ∈ (0, 1) decompose J =
⋃N

i=1 Ji, with Ji = [pi, pi+1], so that

β >
pi+1

pi
− 1.

Choose ε > 0 such that β − ε satisfies the above inequality. With ω and τ as above
and letting q̃ = minp∈J{q(p)}, we have from (5.15)

|Γ′
ω(p) − Γ′

τ (p)| ≥ cJ
kq̃+1

2kpi+1
> cJ

kq̃+12kpiε

2kpi(β+1)
≥ cJ,β

kq(pi)

2kpi(β+1)
≥ c′J,βdβ+1

k ,

the last inequality follows from Lemma 4. Hence each Ji is an interval of β transver-
sality relative to [δ] by Lemma 26.

Next we check regularity relative to [δ] on each Ji. As above, we can verify that
dm(ap

n)/dpm is comparable to (−1)m(log n)q+m/np for sufficiently large values of n
(depending on q and m). In particular, |dm(ap

n)/dpm| ≤ cJ,m(log n)q+m/np for all n,
for some constant cJ,m. With the same notation as above we have

∣∣∣∣
dm

dpm
Γω(p) −

dm

dpm
Γτ (p)

∣∣∣∣ =
∑

n∈Λ

|
dm

dpm
ap

n| ≤ cJ,m

∑

n∈Λ

(log n)q+m

np
.

The last sum is equivalent to the length of the basic interval Iω∧τ of Cp,q+m, thus it
is bounded by a constant c′J,mkq+m/2kp. From this regularity follows.

Since on Ji the α-energy of µδ is finite provided α < s + 1/pi, then from Propo-
sition 22, Remark 24 and (5.9) in Theorem 23 we obtain

dim
({

p ∈ Ji : η ∗ ϑp,q,δ /∈ L2
})

≤ dim
({

p ∈ Ji : dims(η ∗ ϑp,q,δ) ≤ 1
})

≤ 2 −
s + 1/pi

1 + a0β
≤ 2 −

s + 1/p1

1 + a0β
.

Finally, note that dim({p ∈ Ji : υp,q /∈ L2}) ≤ maxδ∈ΩM
dim({p ∈ Ji : υp,q,δ /∈ L2}),

since υp,q =
∑

δ∈ΩM
υp,q,δ. Therefore (5.4) follows letting β → 0. �
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To prove (5.5) in Theorem 21 we proceed as in the above proof but we use (5.10)
in Theorem 23 instead. Details are omitted.
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