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Abstract. Given a simply connected planar domain 2 we develop estimates for boundary
derivatives on 02 and estimates for hyperbolic and extremal distances in Q2 and the hyperbolic
convex hull boundary Sq. We focus on the case when the underlying domain has smooth boundary;
this allows very explicit formulas in terms of a collection of invariants which clarify behavior even
in the generic case. In particular, we are able to obtain very explicit estimates using the intimate
connection between the convex hull boundary and the geometry of the medial axis. As applica-
tions, we include here a refinement and alternate proof of the Thurston—Sullivan conjecture that
the nearest-point retraction is 2-Lipschitz in the hyperbolic metrics and a variant of the Ahlfors
distortion theorem which works as an integral along branches of the medial axis.

1. Introduction

In this paper, we study the special case of the hyperbolic convex hull boundary
Sq over a domain €2 C C with smooth boundary; in particular we obtain a number
of estimates and invariants which relate extremal lengths and hyperbolic distances
“upstairs” in the convex hull boundary to the same quantities “downstairs” in the
domain via the nearest-point retraction map r: €2 — Sq. The study of the smooth
case was originally motivated, perhaps unexpectedly, by computer vision, where con-
formal mapping techniques were introduced by Sharon and Mumford (see [25]) to
construct metric spaces of smooth curves. In this application, smooth Jordan curves
are represented by their associated welding maps, and a Riemannian metric on curves
is induced by the Weil-Peterson metric on the diffeomorphism group of the circle.
The curves of interest are typically at least C?, and careful geometric estimates for
boundary derivatives and extremal distances are required in order to understand
geodesic distances between curves. We obtain these by working with the convex
hull boundary Sq. The surface S admits an explicit construction for the Riemann
map ¢: Sq — D (see, for example, [6] or [18]) and this map ¢ can act as a sort of
poor-man’s Riemann map from the disk to Q itself. Among the advantages is that
Sq is a ruled surface, and this special geometry permits easier analysis; in addition,
the Riemann map ¢ is an entirely local construction, unlike the global nature of the
Riemann map to €.

The resulting formulas are, for the most part, simple and explicit, and we feel
that working in the smooth case has the potential to simplify many computations
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and clarify the geometry even in the generic case; we give a few examples, including
a proof and refinement of the Thurston-Sullivan “L. = 2” conjecture, first proven
with sharp constant by Epstein, Marden and Markovic in [17], which states that the
nearest-point retraction is hyperbolic 2-Lipschitz. Our result, which we state in a
moment, shows the role played by the local bending of the hull, gives an alternate
approach to the proof. We also obtain a variant of the Ahlfors distortion theorem,
where the famous estimate [ %”” is replaced with an integral along the medial axis of
Q.

We now describe the major results in this paper. Many results rely on the
geometry of the medial axis of 2. The intimate connection between the medial axis
and the convex hull boundary was first exploited, to our knowledge, by Bishop (see
[7], [6]) in the context of numerical conformal mapping, and our work here owes an
obvious debt to his. We also include a short appendix describing the basic results
about the medial axis.

The first section of this paper collects some facts and definitions from hyperbolic
geometry. In Section 3 we develop explicit estimates that relate hyperbolic distance in
Q2 to distances on Sg; this section includes the following result, relating the hyperbolic
distances:

Theorem 1. (Hyperbolic distances comparable) Let v: [0,7] — Q be path in 2
and o = r(v). Then the hyperbolic velocities of v and o satisfy

1 1 + K1

—llo — < |A < |6 1 0

10lls0 s < il < 1950 (1 + iy cos)
where 0 is the angle between ¢ and the transverse vector to the bending line on which
o lies, k1 is the hyperbolic principal curvature of Sq, and the norms || - ||q and || - || s,
denote hyperbolic length on €2 and Sq.

We also obtain the following result, which shows how the bending influences
the local Lipschitz constant of the nearest-point retraction map. L; is hyperbolic
distance.

Theorem 2. (“L = 2” conjecture) The nearest point retraction map r: € — Sq
is 2-Lipschitz in the hyperbolic metrics. Further, if v € ) is a path whose retract
o = r(y) is transverse to any bending lines it encounters, we have

Lulo] < 2Lal] — / a3,

Our proof differs from that of Epstein, Marden and Markovic in [17] in that
they approximate a generic domain with a finite union of disks and we approximate
using a domain with real-analytic boundary. In the case of a finite union of disks,
the Jacobian is essentially trivial everywhere except on bending lines, where it is
singular in the transverse direction. In the real-analytic case, one can talk almost
everywhere about the Jacobian of the nearest-point retraction, and one sees that the
Jacobian is primarily a function of the bending of the dome S. This makes certain
estimates relating bending to various other kinds of distortion, like hyperbolic lengths
and extremal distances, very easy to derive.

In Section 4 we obtain the following estimate for extremal distances between pairs
of bending lines B, and B; in Sq and their preimages F, = r~1(B,), F; = r—}(B;) C Q:



Extremal distance, hyperbolic distance, and convex hulls over domains with smooth boundary 197

Theorem 3. (Extremal distance comparable) Let Fy, [y, C Q be two foliating
arcs. Then

2 t
(1) dSQ(Bs,Bt) < dQ(FsaFt> < dSQ(BS7Bt) + ﬁ/ dg,

where ((t) is the bending measure associated with Sg.

This, plus some computation using the medial axis, leads immediately to the
following analog of the Ahlfors distortion theorem. If m is the arc-length parameter
on a branch of the medial axis (see Appendix) of Q with corresponding points of
tangency (a(m),b(m)), then:

Corollary 4. Let Fy, Fi, s <t be two fo]iating arcs in ). Then

do(Fy, Fy)
)2 !b - a!

Acknowledgements. The results are part of my PhD thesis. I wish to offer my
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2. Background: hyperbolic 3-space

We are interested in conformal structures on a domain €2 lying on the Riemann
sphere C. These conformal structures can be approximated using constructions from
hyperbolic geometry which we now describe. These hyperbolic constructions have
the advantage of being entirely local, unlike the global nature of the Riemann map.
We regard C as the boundary at infinity of hyperbolic 3-space H3. Here we describe
the constructions we will need to relate hyperbolic and conformal geometries.

2.1. Models of hyperbolic space. Equipping the open unit ball in R™ with
2
the Poincaré metric ds* = (ﬁ) |dz|?, where |z| is the distance to the origin and

|dz| is the Euclidean distance element, gives a model of hyperbolic space H". With
this metric, the space is normalized so all sectional curvatures are a constant —1.
The isometries of H" act on the boundary S"! as conformal automorphisms.

We are particularly interested in the case n = 3. We regard C as the boundary at
1nﬁn1ty of hyperbolic 3-space H3. In this Poincaré model, arcs of circles orthogonal
to C are geodesics in the half-space or ball models. The isometries of H? act on
the boundary as the group of linear fractional maps SLy(C). Denote the closed unit
ball, with the hyperbolic structure on the interior and conformal structure on the
boundary by B".

One may also realize the same geometry in the half-space model (see Figure 1);
the two models are related by a conformal self-map of R3. In this model, hyperbolic

3-space is the set {(z1, 29, x3): x3 > 0} with the metric ds* = dxlﬂiw Geodesics
3

are again arcs of circles orthogonal to the (x1,z;) plane C, and isometries again
extend to the boundary and act conformally on C.

2.2. Convex hulls and the dome.

Definition 1. (Convex) A non-empty subset F' C B" is said to be convez if,
given any two points in F', the geodesic arc joining them is also contained in F'.
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Figure 1. The half-space model of H?: Arcs of circles orthogonal to C are geodesics. A planar
domain lies in C, the boundary of H?.

A supporting half-space for a convex set E© C B™ is a closed half-space containing
E whose boundary meets E. A support plane for E at some point z € ENH" is the
boundary of a supporting half-space which meets E at z. It can be shown (see [12])
that support planes exist for all points in the boundary of E.

Given a closed nonempty convex subset £/ C B"™, there is a canonical retraction
r: B" — E. We define it as follows:

Definition 2. (Nearest-point retraction map r: B" — FE) Let £ C H" be a
convex set. For z € H" we define the map r: HS™ — OF as follows:

r(z) = arg glelg dp(z,w).

For z € OH", we define r(z) by inflating a horoball tangent at z until it makes contact
with some point w € E and set r(z) = w.

One may also construct the map r by inflating balls centered at z until they make
contact with E. By convexity of F, the ball will have a unique first point of contact
in OF; this unique point is r(z). This geometric construction makes it clear that the
extension of r to the boundary of hyperbolic space is natural.

The nearest-point retraction map is both continuous and distance-decreasing; for
details and proof, see, e.g., [12].

Definition 3. (Hyperbolic convex hull) The convex hull of a set F' C B™ is the
smallest convex subset of B" containing F'.

We will use the notation C(F') for the convex hull of F© C B™. The notation
OC(F) refers to the part of the boundary of C'(F') which lies in H".

Definition 4. (The dome of a planar domain) Let  C 9H? be a proper subset
of the plane and C'(2¢) be the convex hull of its complement. The “dome” Sg, is the
boundary 9C(2°).

We can equip the dome with a natural path metric by restricting the hyperbolic
metric in H? to paths contained in the dome. In fact, the resulting metric is the
hyperbolic metric for Sg. There is also an explicit construction for the Riemann map
t: Sq — D, due to Thurston, which we will describe in a moment.
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2.3. Bending. If Q ¢ C is a simply-connected region which is a union of N
disks, the dome S, has a particularly simple form. If we consider all support planes
P for Sq, we see that P N Sq is either a line or a piece of a hyperbolic plane. If
PN Sqis aline, we call it a bending line; otherwise P N Sg is called a flat piece. We
say that such a dome is finitely-bent. Note that if z € Sq lies in a bending line it has
a set of support planes; if z lies in a flat piece it has only one support plane. The
bending angle associated with a bending line is angle between the extremal support
planes for the line, that is, it is the angle at which the associated flat pieces meet
(the angle between their normal vectors).

The bending at each intersection induces a transverse measure on the dome,
called the bending measure, constructed as follows. For z € Sq, let 5(z) be the
bending angle at z. This is zero unless z lies on a bending line. If S, is finitely-bent,
we define a measure on embedded intervals v in Sq by setting () to be the sum
of the bending encountered along ~. For more general domains, we define 3(v) as
an infimum over finitely-bent approximations between the endpoints of 7 (see [12]
for details). Here, we are interested in the case where 02 is smooth. In this case,
the bending measure has a Radon—Nikodym derivative with respect to arc length on
transverse intervals on the dome.

Figure 2. Above: 2 is a finite union of disks, shown in the half-space model. The faces of the
dome meet at geodesic “bending lines”, each with some bending angle 3. Below: After refinement

Sq is smooth; each support plane intersects Sq along a single bending line.

3. Strip-like domains and the dome

We now show that hyperbolic distances in 2 can be approximated by the same
quantities on Sg. This is advantageous as the Riemann map ¢: S — D from the
dome to the unit disk admits an explicit construction which is easily understood
in terms of the medial axis of 2 (see, for example, [7] or [18]). In particular, we
exploit the fact that ¢ almost immediately gives extremal distances between pairs of
bending lines: if B, and By, together with the arcs of df) joining their endpoints,
bound a generalized quadrilateral ) € Sq, then up to a normalization by some map
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in PSLy(R), the map

1
10g(1+b):59—>{(:17,y): —o<zr<oo,—T/2<y<m/2}

takes @ to a rectangle in the strip (see Figure 3).

Figure 3. ¢ takes bending lines in the dome to geodesics in the disk. After mapping the disk to
the strip, we immediately obtain hyperbolic distance d}, and extremal distance dg,, between bending
lines B, and By: that is, dg,, (Bs, Bt) = %dh(Bs,Bt).

3.1. Preliminaries: distance between bending lines. Our goal in this
section is to obtain estimates for distances between pairs of bending lines in Sq.
We will later use this estimate to obtain explicit formulas for distances in {2 and
to understand geometrically the length distortion introduced by the nearest-point
retraction. We will require some basic definitions and a few results from [18]; we
repeat them here without proof. First, the cross-ratio of 4 points in the complex
plane can have 6 possible values depending on the order of the 4 points; we will use
the following choice.

Definition 5. (Cross-ratio) Let (a,b,c¢,d) be 4 points in the complex plane.
Their cross-ratio is defined to be
(b—a)(d—rc)
(d—a)(b—c)

The next definition introduces a particular curve which is useful when estimating
geodesic lengths in Sgq.

X(a/7 b7 C? d) =

Definition 6. (Path of nearest points) Define the path of “nearest points”

(1) = li in dy,(p, By
p (1) lim arg min (D, Biie)

and the infinitesimal distance between them
1
d* (t) = hr% _dh(Bt7 Bt+€)-
e—0 €

We have the following formula for the infinitesimal cross-ratio of endpoints of
adjacent bending lines; this formula will allow us to pass from statements about
hyperbolic distance in Sq to explicit formulas involving the geometry of 9€).

Proposition 1. (Cross-ratio of endpoints) Let a,b be the endpoints of some
bending line at t = 0. Then the infinitesimal cross-ratio x.,s(t) satisfies
jab]

o —al?

o1
Xinf (t) = 1{% t_QX(atv Qe bt+67 bt) =
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where ¢ = 4

.» similar for b.

The next lemma is stated in non-invariant terms; it connects the Euclidean ge-
ometry of ) to invariant quantities. We make the following definition:

Definition 7. (Midpoint of B;) Fix a chart for the half-space model of H3. Then

the midpoint of a bending line B, for a given domain 2 C C is the midpoint of B
viewed a Euclidean semicircle in this chart.

The next three lemmas describe p*(t) with explicit formulas.
Lemma 1. (Location of p*) Let a,b € 02 be the endpoints of some bending line

By. Then p* lies at hyperbolic distance 1 5 log ’ ‘ from the midpoint of By. Positive
distances indicate motion towards b.

Lemma 2. (Infinitesimal distance between bending lines)

Lemma 3. The velocity p*(t) decomposes into components pi.(t), p’ (t), tangen-
tial and orthogonal to the bending line B; respectively, with hyperbolic lengths

" jal =[], 1 (b
= R — - — -
||pT||h ‘b_a‘ +2 b a 3

Jia

" |, = 2 .
||pLHh ’b—CL’

Further, p* meets B; at angle
d*(t
0(t) = arctan (#)
127

and has hyperbolic speed

1/2
15" (1n = (127117 + 11PL]17)

Remark. One may also write the tangential component as

81 b

A ﬁ 53

While more cluttered, it does allow one to see at a glance the role played by the
curvature of the medial axis.

log

The boundary derivatives of the map ¢: 92 — 0Dy are particularly simple:

Proposition 2. Let ¢: Sq — Dy map Sq to some medial disk Dy. Then v is
differentiable with
de

—l=1
ds

at iota’s fixed points a(T') and b(T), where s is the arclength parameter along 0S).
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Remark. This easy but useful result is essentially just the observation that ¢
is a rotation near the fixed points. It also highlights a key difference between the ¢
and Riemann maps: the derivatives of the Riemann map are hugely influenced by
boundary curvature; the derivatives of ¢ are completely blind to curvature.

The next lemma is the main goal of this section. It gives us estimates for distances
between bending lines along a branch of the medial axis. In upcoming sections we will
generate more abstract estimates and then plug in Lemma 4 to obtain computable
results.

Lemma 4. (Length of geodesics in Sq) Let v C Sq be the shortest geodesic
joining some B, and By, s < t. Then

¢ \/lab| Clogabl 1 lal—1h . 1 (b a\\
2 du < L <2 Sl BN (e O o 2= d
/S|b—a| us Ll < / b—ap 2\ g T2l ) ) ™

whenever the curve p* is continuous.

Proof. Choose any path p(u) joining B and B;. The lower bound is simply the
observation that

. 1 1 )
[1p(u)]n = lim ={p(u +€) = p(u)lln 2 lim =dp(By, Bute) = d™(u)

for any choice of path p(u).
The upper bound is obtained by integrating ||p*||, along the path p*(u); the
formula follows directly from Lemma 3. U

Remark. This estimate is sharp, which implies the path p*(u) is the geodesic
joining B, and By, when ||p% ||, = 0. This can happen, for example, when % log 4/ % =
0 and either &, or R is zero. The first happens exactly when |b/a| is constant, or
using some facts from the medial axis,

i)_l—R/—ia

— = — = const.
a 1— R/ﬁb

Both conditions are satisfied in, for example, a strip-like domain consisting of two
curves symmetric about a straight axis, or a section of an annulus. Note that p* can
be geodesic without minimizing distance between any pair of bending lines and with
pr # 0. The geodesic joining 0 to co in the complement of a logarithmic spiral is
such an example.

3.2. Hyperbolic distances in S, and (2. We now obtain estimates relating
hyperbolic distances in {2 and Sq. We first bound the hyperbolic metric in €2 using
the metrics on the maximal disks {D;}. In a domain with real-analytic boundary,
the medial axis is finitely-branched; the foliation consists of sets of arcs {F};} along
each branch. Where 3 or more branches meet, the foliation has a gap, which is an
ideal polygon in some maximal disk D. The boundary of the polygon consists of
ideal geodesics in D with endpoints at the points of tangency of D. The next lemma
is a variant of the Koebe 1/4 theorem and allows us to control hyperbolic distance
in €2 using the metric on the maximal disks.
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Lemma 5. Let €2 be a domain with real-analytic boundary. Then for z € ()

2) 590(2) < pol2) < po(2),

where D is the medial disk which corresponds to the foliating arc or gap containing
z, and pq and pp, denote hyperbolic arc length on ) and D, respectively.

Proof. The upper bound follows from extension of domain, so we need only prove
the lower bound. We first consider the case where z lies on some foliating arc F'. It
is sufficient to consider the case where z = 0, D is the unit disk, and F' = [—1,1].
Let 0: C — C be the map o(z) = 2. Let f: D — Q with f(0) = 0. Then by the
Koebe 1/4 theorem,

42> (o0 f)(0) =2[f(0)].
Since conformal maps are hyperbolic isometries, we have

pp(0)
pa((¢o £)(0))
Now assume that z lies in some gap. We need only consider the case where the

gap is a triangle (every point in an n-gon is also contained in a triangle joining some
triple of endpoints) and z = 0. In this case, we know ’;—g < 2 on each foliating arc

on the boundary of the gap. In fact, £2 is a subharmonic function (see [17]) and
achieves its maximum on the boundary, so the conclusion follows. 0

=[O0 <2

This is in fact sufficient to show that (2) holds in any domain, since we may
approximate an arbitrary domain with a real-analytic domain, say, by considering
the image of the circle of radius 7 < 1 under a conformal map from the unit disk
to the domain. The hyperbolic distances will converge as we let r — 1 and the
inequalities will still hold in the limit.

D) r(@)

P q

Figure 4. The situation for Theorem 1. One imagines the domain € lying in the plane with
the dome above; we see this here in cross-section with the points p, ¢ mapped to the dome via the

nearest-point retraction.

We can now apply Lemma 5 to prove our first theorem relating hyperbolic ar-
clength in Sq to arclength in 2.

Theorem 1. (Hyperbolic distances comparable) Let v: [0, 7] — € be path in )
and o = r(v). Then the hyperbolic velocities of v and o satisfy
1 1 —f- K1

lollsqg————— < [¥lla < o 1 0
QHUHSQl T rysing = Ylle < ||UHSQ( + Ky cosf),

where 6 is the angle between ¢ and the transverse vector to the bending line on which
o lies, Ky is the hyperbolic principal curvature of Sq, and the norms || - ||q and || - || s,
denote hyperbolic length on €2 and Sq.
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Proof. By conformal invariance, we need only consider a single point where v = 0
with velocity 4 = %7, the maximal circle is the unit circle, and the points of tangency
are a = —i,b = 4. Hence r() = (0,0,1). In this case, we have

1 <pa(y) £2

by Lemma 5, and ps,(r(7)) = 1. Let ¢ = r.J and in transverse coordinates on §2
and Sq write

4= (¥ cos,|¥|sinf), &= (|d]|cosb,|o|sind).
We evaluate the upper bound

. 2 . 2
2 -1 - g ol
I¥lla = pals™'4] < 2\/(71) e+ (%)

= 1612 + 63(2m1 + 1) = [6]4/1 + cos? 0(2r, + A2).

We now need the inequality \/1 + a2(2b + b2) < 1+4ab, for 0 < a < 1,b > 0. Indeed,
(14 ab)* = 1+ 2ab + a®b* > 1 + 2a%b + a®b*.
Hence,
Y]l < [o1(1 4 k1 cosb) = l&lsq (1 + K1 cos0).

We now address the lower bound:

. . 21 \> .. .
p— pr— 2
6150 = psal 741 \/<1+m) +(23)

2 P 29| .
= —1_'_/{1\/7%-1-7%(1-1—/11)2 = 1+/{1\/1+Sln20(21ﬁ+1€%)
2||’YHQ\/ . 9 . 1+ Kisiné
e 0(2 2) < 9|4 || LAY 0
STtk +sin” 0(2k1 + k7)) < 2|1¥||q T r

Remark. Theorem 1 holds trivially by Lemma 5 at points where -y lies in a gap.

The quantity k1 cos is the amount of bending encountered per unit hyperbolic
length (see [18]) in the direction ¢. Thus we may write

e < llollsq + dB.

The lower bound admits a similar interpretation: k; is again the bending per unit
length in the transverse direction. If the velocity ¢ is transverse to the bending lines,
then sinf = 0 and we have

1 .. :
5 (I5llsa +dB) < [l7lle
whereas when ¢ is parallel to the bending line, o encounters no bending and
1. .
S16lse < Il

The integrated form of this observation is the following corollary relating path lengths

in Sq and €.



Extremal distance, hyperbolic distance, and convex hulls over domains with smooth boundary 205

Corollary 5. Let o: [0,T7] — Sq be a transverse arc. Then

%(Lh[a] +/Ud6) < Lupy] < Lh[OH/Udﬁa

where v = (o).

Proof. As we remarked, the upper bound holds in general. By Theorem 10, we
have

. 1. 14 Ky 1. 1 ..
il = 5 10lls0 s = 5101+ K0) = 5 (Ils0 +dB)
where the first equality uses the fact that o is a transverse arc implies ¢ = 0. The
corollary follows by integration. 0J

Remark. Lurking behind the estimates on hyperbolic distances is a nice inter-
pretation of crescents in the finitely-bent case. The previous corollary showed that
up to constants, hyperbolic lengths of transverse arcs agreed up to the amount of
bending encountered along the path. In the finitely-bent case, one can view the
crescents (the preimages of bending lines under r) as ideal strips of approximately
constant hyperbolic width. We present a proof in the finitely-bent case.

Lemma 6. (Width of crescents) In a finitely-bent domain, let B C Sq be a
bending line with bending angle 3 and let C' C Q be the associated crescent r~*(B).
Let F~ and F* be the two circular arcs bounding C'. Then

SO <d(FFY) < p,

where dj, is hyperbolic distance in ).

Proof. Let a and b be the two points in dC' N 9€2. We consider C' as a disjoint
union of circular arcs Fy, 0 < 6 < 3, where Fj joins a to b and meets F'~ at angle 6.
By Lemma 5,

1
5PDs < pa < pp,

on Fy, where pq defines the hyperbolic metric on 2 and Dy C € is the disk containing
Fy as an ideal geodesic in the Poincaré metric pp,. Let o be any Mobius map taking
a to 0 and b to co. Then ¢(C') is a sector of angular width § and o(F,) is a straight
line extending from 0 to co. For any 6, the pushforward under o of pp, is simply the

metric given by 1/7 in polar coordinates, and we see that
1 1
— < 0upo < -
2r T

If we show that arcs of circles centered at 0 are geodesic in the metric 1/r, the
conclusion will follow. This is indeed the case: Under the map ¢(z) = log(z), the
sector maps to a strip and the metric p = 1/r pushes forward to the metric on the
strip given by

plot(w) _ 1 .
OPI) = o )] ~ e

Thus any two points on the boundary of the strip are joined by the Euclidean straight
line between them, the shortest such paths have length 3, and the conclusion follows.

O

=1
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3.3. Best Lipschitz constant for r: {2 — Sn. The lower estimates in Theorem
1 and Corollary 5 provide a refinement of the Thurston—Sullivan “L = 2” conjecture.
This conjecture arose in the study of hyperbolic 3-manifolds, and was originally
worked on in the 80’s by Epstein and Marden, who showed that L < 4 (see [15]). A
series of improvements, including work by Bridgeman, Canary, and Bishop, followed,
progressively lowering the best constant (see, e.g., [10, 11, 9]). The best possible
constant L = 2 was finally proven by Epstein, Marden and Markovic in [17]. We
obtain their result here working with domains with real-analytic boundaries, instead
of finitely-bent domains. Our result is the following.

Theorem 2. (“L = 2” conjecture) The nearest point retraction map r: {2 — Sq
is 2-Lipschitz in the hyperbolic metrics. Further, if v € ) is a path whose retract
o = r(7) is transverse to any bending lines it encounters, we have

Lilo) < 2Lab) - | as.
Proof. Along any branch of the medial axis,

1+ K;siné

I
650 < 2013 la—

The right-hand side is less than 2||%||q in general, which proves the 2-Lipschitz state-
ment along any branch of the axis. If ¢ is transverse to the bending lines on some
branch, then sin# = 0 and

15]ls0 < 17le

1+I€1

which proves the second statement after integrating. On any gap, both statements
follow easily from Lemma 5 and the fact that curvature is zero.

This is sufficient to prove the result on a domain with real-analytic boundary,
since the medial axis of such a domain is finitely-branched. In general, we approxi-
mate any domain € with a sequence of domains €2, bounded by the (real-analytic)
image of the circle of radius » < 1 under a conformal map from the unit disk to 2.
For sufficiently large r, any pair of points p,q € {2 are in the subdomain €2,, and
hyperbolic distances converge in {2, and Sg, to hyperbolic distances in 2 and Sq.
The inequalities then hold in the limit. O

The 2-Lipschitz result is sharp in the case of a “folded” surface. For example,
take €2 to be the complement in the complex plane of the negative part of the real
axis. The dome of this domain consists of two half planes, glued together. This dome
has only one bending line. This is the extremal domain for the Koebe 1/4 theorem
and the hyperbolic metric in 2 is exactly 1/2 at z = 1. It is simple to show that in
this example the nearest point retraction is 2-Lipschitz.

In general, the metrics on €2 and S are comparable up to a factor of 2, while the
more bent the dome is, the smaller the transverse part of the Jacobian of r. From
this point of view, the folded surface is extremal because it makes the hyperbolic
metric in Sq as large as possible relative to {2 while simultaneously concentrating the
bending on a single line. In this case, r can’t help “slow down” the image of a particle
following the path 7 as it approaches the bending line.
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4. Extremal distances in S and 2

In this section, our goal is to relate extremal distances in Sq to those in €2,
with explicit estimates involving the geometry of 9€2. We first record a short lemma
showing that estimates for for extremal and hyperbolic distances are interchangeable
up to a constant. We then prove the main theorem of this section, which shows that
extremal distances between foliating arcs Fj, F} in ) agree with the corresponding
distances between their retracts Bs, B; in So, up to an error which is controlled by
the bending of Sg. From these two results, it is easy to obtain some explicit formulas
for extremal distances using material from the previous sections. The final estimate
takes the form of a variant of the Ahlfors distortion theorem, in which we replace
an integral over a strip domain with a similar integral over any branch of the medial
axis; this integral provides bounds on extremal distances in Sg and also on 2. We
now prove the first lemma.

Lemma 7. (Extremal and hyperbolic distances coincide for {B;}) Let B, B; C
Sq, s <t, be two bending lines. Then the extremal distance dg,, and the hyperbolic
distance dj, satisfy

1
(3) dso(Bs, Br) = ;dh(Bs, By).

Proof. The  map takes B and B; to a pair of geodesics ¢(Bs), ¢(B;) in the disk.
Then for some angle 0 < ¢ < 7/2, there is a map ¢: D — D taking the endpoints
of 1(B;) to {7, €} and the endpoints of +(B,) to {e{™?) =™~} For such a o,
the map z — log iggg takes the disk to the strip {z +iy: — /2 <y < 7/2} and
takes ¢(B;) and «(By) to the vertical sides of a rectangle of height 7. Since the map
is an isometry between the hyperbolic metrics on the disk and the strip, the proof is

complete. 0

We now proceed to the main theorem and show that extremal distances in €2 can
be approximated by those in Sq. This is nice because the relatively simple geometry
of Sq allows explicit estimates, as recorded in earlier sections.

Theorem 3. Let F, F; C Q) be two foliating arcs. Then

2 t
(4) dSQ(Bs;Bt) < dQ(F37Ft> < dSQ(BS7Bt) + F/ dp,

where (3(t) is the bending measure associated with Sg.

Proof. We appeal to the the finitely-bent case. Let pg be the extremal metric
for Sg. Observe that the nearest-point retraction r~! maps each facet of the dome
conformally onto its image in 2. Define the metric pg on 2 to be r*pg (the pullback
under the nearest-point retraction), where this is defined, and let pg = 0 elsewhere.
This metric achieves the lower bound.

We explicitly construct a metric to produce the upper bound. Consider two
bending lines B; and By, k > j. The region of the dome between these lines is a
generalized quadrilateral, and there is some extremal map taking this quadrilateral to
a rectangle. In fact, this map is simply ¢ followed by the transformation z — log %
and a normalizing conformal self-map of the strip. Hence we see that the extremal
map takes bending lines to geodesics in the strip model.
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Let ¢, be the restriction of this extremal map to the n-th facet of the dome; ¢,
takes the facet to a region in the strip bounded by a pair of geodesics. The map
¢n o1 takes a subset of each medial disk in €2 to the strip.

Now let C,, be the crescent between faces n and n + 1 and note that on each
bending line, ¢,, and ¢, agree. On C,,, define coordinates 0 < r < 00, 0 < 0 < 3
by sending the two endpoints of the crescent to 0 and oo and the center to (say) 1,
and taking standard polar coordinates in this frame. The map

0n(2) = (Pnor)(2) +0(2)

takes (), to a region of the strip bounded by two geodesics; o,, agrees with ¢,, and ¢,,11
on the boundary, up to translation. One may verify that the map o,, is equivalent to
the map

re? s 0 + i arctanr

taking the crescent to a rectangle of height m and width [, followed by a self-map of
the strip applied separately to each vertical line in the rectangle.

Now let R be a rectangle of height 7 and width 72ds,(Bs, B;) + >, 8(n), and
define the continuous map ¥: Q2 — R by gluing together the images of adjacent maps
01,01, 2,09, ..., 0, along the sides of length .

Define the metric pg on R to be |VImV¥|. Clearly the length L,, of any path
joining the top and bottom of the rectangle is at least m. We need an upper bound
on the area. Since this metric is the extremal metric on each face of the dome, we
have that the combined area of all faces is 72dg, (B;, Bk)-

On each crescent C,,, the map WV is given by (r,0) — 6 + i arctanr followed by a
self-map of the strip applied to each vertical line. If the self-map is the identity, we

have
A B(n) poo ) ’ B(n) oo r .
)= V Im U2 dr d = —_drd
m<>/0 /Ormrrr / /MHTQW
1 n)

S
= 005l = 75

It remains to be shown that area is nonincreasing when the self-map is other than
the identity. We need to evaluate the area of a sector under the metric ds* =
|V Im VU |%(dz? + dy?), that is

Jé] [eS)
/ / |V Im U|?r dr df),
o Jo

U(r,0) =o(i(2arctanr — 7/2)) + 6

where

for some conformal self-map o of the strip. We claim we need only consider o
which are purely elliptic with fixed point 0. We can decompose an arbitrary element
o € PSLy(R) into a choice of ¢(0) and an elliptic rotation about ¢(0). Moving ¢(0)
can be decomposed as a pair of hyperbolics, first with axis equal to the x-axis and
the second with axis perpendicular. The first is simply translation and the metric
is obviously invariant. In the second case, the action of ¢ pulls back to a conformal
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self-map of the sector: it is the restriction to the wedge of a hyperbolic h: C—-C
with fixed points at 0 and oco. In this case

// |V Im ¥(r,0)|? // |Im (i(2arctanr — w/2))[?
S S

:/ |Im%z(2arctanh( ) —7/2)

-/ / |z (b))
— //h(sﬁ) |2 arctan’(r)|? :/SB |2 arctan’(r)|?

as claimed. Hence we need only consider elliptics. An elliptic 0 € PSLy(R) with
rotation angle ¢ and fixed point at 0 acts on the strip as
z 1 zZ_1
a(z):loge +1+a(e )
e +1—aler—1)

for a = €**. Further,

do 4oe?

dz (€24 1)2 — a2(exV*’

From this, one may compute

cos ¢

[VImo(z)] i di arctan(cos ¢ tany) =
Z=1 y

We now compute the area:

// |V Im¥(r,0))* = // \Imga(iau‘ctanr)\2
Ss Ss or

/B /OO - = 2 dr df
= rar
o Jo cos? Y+ cos? ¢ Sin2 Yy 1472 y=2arctan(r)—

s
2

cos?y + cos? gsin®y’

A somewhat lengthy but direct computation shows that

2
cos ¢

Im U(r,0)| dv.

/Sﬁ|Vm " ﬁ/ (1—1}251n2¢) ’

Differentiating under the integral sign followed by explicit integration reveals the
extrema on [0,27) are maxima at ¢ = 0,7 and minima at ¢ = 7/2, 37 /2. Therefore
the conjugate extremal distance satisfies

71.2

WQdSQ(Bj, Bk) + % Zn 6(”) ‘

Hence

do(Fj, Fy,) < ds,(Bj, By) + % Zﬁ(”)

This completes the proof in the finitely-bent case; the smooth case follows under
refinement. 0J
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We can now show that on a regular branch of the medial axis there is a natural
analog for the % estimate for extremal distances in strip domains. This follows
from the geodesic length estimates of Lemma 4, combined with the fact that extremal
and hyperbolic distances between bending lines coincide. We make two corollaries to
produce our Ahlfors integral. The first is an estimate for extremal distances in the

dome.
Corollary 6. Let By, By, s < t, be two bending lines in Sq. Then
2 / b \ab
b —al
Proof. By Lemmas 7 and 4, we have

1 2/t\/%

dSQ(BS7Bt) = ;dh(BéHBt) > ; |b _ al

du < dSQ (387 Bt)

du. O

Remark. This estimate is sharp when the geodesic joining B; and B, coincides
with the axis of “nearest points”, p*(u), s < u < t.

The lower estimate applies without modification to the domain €2; this is our
analog for the integral estimate f %"” in strip domains.

Corollary 4. (A medial axis Ahlfors integral) Let Fy, Fy, s < t, be two foliating
arcs in €). Then

do(Fy, F) > /|b_a|

Proof. By Theorem 3,
dﬂ(FsaFt> ZdSQ(BS7Bt)' ]

There is also an upper bound. It seems to be empirical fact that upper bounds
for extremal distance are often unwieldy compared to lower bounds.

Corollary 7. Let Fy, F;, s < t, be two foliating arcs in ). Then

2 [t |d5| la| — ]b| b
< — . —
do(Fs, Fy) < /8 b—af? + = ( bl R+ b du + / dg.

Proof. Apply Lemmas 7 and 4, and Theorem 3 as above.

5. Appendix: Geometry of the medial axis

Many of our results in the work above are stated in terms of the geometry of
the medial axis; we collect the necessary formulas and results here. Throughout this
paper we work on a single smooth branch of the medial axis of some domain with
smooth boundary arcs. In general, the medial axis of any domain with real-analytic
boundary is finitely-branched and consists of a finite number of real-analytic curves
(see [13]); it then follows that the dome Sq over a real-analytic branch of the medial
axis is itself smooth. However, over branch points of the medial axis, the dome will
generally be no more than C' no matter how smooth the boundary arcs are.
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b(®)

a(t)

Figure 5. Notation for the medial axis. The axis is shown in blue; m(t) is a parametrization
of the medial axis. a(t),b(t) are points of tangency. The red arc F; = r~(B;) is the foliating arc
connecting a(t) and b(t). ¢ = arg(b —m) — 7, is the angle between one of the dashed lines and the
tangent to the medial axis at m.

Definition 8. (Medial axis) The medial axis pair (m(t), R(t)) of a closed planar
region consists of m(t), the curve defined by the locus of centers of maximal circles
contained in the region, and R(t), their associated radii.

Figure 6. A rectangle and its medial axis. The branches of the axis are formed by the centers
of maximal circles.

The curve m(t) gives a sort of skeleton for a planar region. In general, m can be
quite pathological; for example, it may be infinitely branched, and may even have
dimension > 1.! However, for a region with real-analytic boundary, m consists of a
finite number of smooth branches [13] meeting at branch points.

Throughout we use the notation introduced above; see Figure 5. By a smooth
branch of the medial axis, we mean a smooth, arclength-parametrized (unless stated
otherwise) pair (m(t), R(t)) for a region with smooth boundary.

The following results can be found in [23]. We first show how to reconstruct the
boundary given the medial axis pair.

LC. Bishop, personal communication.
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Theorem 8. Along a smooth branch of the medial axis:

(1) The boundary curves corresponding to (m(t), R(t)) are given by

a(t) = (m + REReé™ — R\V/1— 1%2@%) (1),
b(t) = (m + RRe™ + RV1 — R%”m) (t).

(2) Given associated boundary points a(s),b(s), the corresponding medial axis
pair is given by

R(s) = %, m(s) = a(s) + R(s)e™, = b(s)+ R(s)e™.
(

Not all pairs (m(t), R
pairs which are.

t)) are allowable. The following theorem identifies those

Theorem 9. The smooth pair (m(t), R(t)) is locally the medial axis of a smooth
boundary curve if and only if

1) [Rl<1, )
1-R*—-RR
r1-R2
We will frequently need to use the following relationships. See [23| for various
other relationships which hold along a smooth branch.

(2) [#m] <

Proposition 3. Along a smooth branch of the medial axis,

b—a| . P V1-— R
= S = —
or 0 T T TR
. /1 - R2 - Ko — Kb
bl = ——— m=V1—R? = :
i 1—Rr, ((1—3%)(1—3’%))
We'll also need a few variations on these formulas; the next proposition gives a
short proof of some relations we will use.

R = —cos ¢,

Proposition 4.

) ~b = 5alal + mli),

| — Jb|

1 . .
(6> Rm = §(I€a’a| - F”'b|b|) = 2R

Proof. At any time we have
Uy =Tm+0+7, Vi=Tm+0,+71m=1,—0,+m.

According to our sign convention, K, = —% and K, = dd”t“, so implicit differentiation

yields

Kolb| = —kiml] — Gy, Kald| = Kom|ii2] — O
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Formula (5) follows by adding these two equations; (6) follows by subtracting them.
We continue computation to obtain the remaining results:
2him|1i1| = Kala| — Kb,
- Ka K - Ko — K
2nm\my=\/1—R2( ’ ):\/1—32( ’ )

1— Rk, 1— Rr, (1 — RR,)(1 — Rrky)

:\/1—71%2(( Rk, — Rry ) \/1—71%2( 1 1 )

R 1-Rr)(1—Rry)) R 1— Rk, 1-— Rk,

1. :
= —(lal - ). s

The formulas for reconstructing the boundary curve from the axis seem to indicate

a derivative is lost when passing from one to the other. However, this is not the case.
The following result appears in |[23].

Theorem 10. Let s,t and v be arclength parameters for a, b and m, respectively.

(1) If (m(v), R(v)) are a C?, p > 2, interior portion of the medial axis pair for

boundary curves a,b, with |R| < 1 and |ky,| < TRj—\/:—gf, then a and b are also

CP.
(2) If a(s), b(t) are portions of a C? curve, p > 2, corresponding via the medial
axis so
|b— al
1 — Kap— 0
" b2s1n¢

the the associated interior portion of m is CP.
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