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Abstract. Given a simply connected planar domain Ω we develop estimates for boundary
derivatives on ∂Ω and estimates for hyperbolic and extremal distances in Ω and the hyperbolic
convex hull boundary SΩ. We focus on the case when the underlying domain has smooth boundary;
this allows very explicit formulas in terms of a collection of invariants which clarify behavior even
in the generic case. In particular, we are able to obtain very explicit estimates using the intimate
connection between the convex hull boundary and the geometry of the medial axis. As applica-
tions, we include here a refinement and alternate proof of the Thurston–Sullivan conjecture that
the nearest-point retraction is 2-Lipschitz in the hyperbolic metrics and a variant of the Ahlfors
distortion theorem which works as an integral along branches of the medial axis.

1. Introduction

In this paper, we study the special case of the hyperbolic convex hull boundary
SΩ over a domain Ω ⊂ C with smooth boundary; in particular we obtain a number
of estimates and invariants which relate extremal lengths and hyperbolic distances
“upstairs” in the convex hull boundary to the same quantities “downstairs” in the
domain via the nearest-point retraction map r : Ω → SΩ. The study of the smooth
case was originally motivated, perhaps unexpectedly, by computer vision, where con-
formal mapping techniques were introduced by Sharon and Mumford (see [25]) to
construct metric spaces of smooth curves. In this application, smooth Jordan curves
are represented by their associated welding maps, and a Riemannian metric on curves
is induced by the Weil–Peterson metric on the diffeomorphism group of the circle.
The curves of interest are typically at least C2, and careful geometric estimates for
boundary derivatives and extremal distances are required in order to understand
geodesic distances between curves. We obtain these by working with the convex
hull boundary SΩ. The surface SΩ admits an explicit construction for the Riemann
map ι : SΩ → D (see, for example, [6] or [18]) and this map ι can act as a sort of
poor-man’s Riemann map from the disk to Ω itself. Among the advantages is that
SΩ is a ruled surface, and this special geometry permits easier analysis; in addition,
the Riemann map ι is an entirely local construction, unlike the global nature of the
Riemann map to Ω.

The resulting formulas are, for the most part, simple and explicit, and we feel
that working in the smooth case has the potential to simplify many computations
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and clarify the geometry even in the generic case; we give a few examples, including
a proof and refinement of the Thurston-Sullivan “L = 2” conjecture, first proven
with sharp constant by Epstein, Marden and Markovic in [17], which states that the
nearest-point retraction is hyperbolic 2-Lipschitz. Our result, which we state in a
moment, shows the role played by the local bending of the hull, gives an alternate
approach to the proof. We also obtain a variant of the Ahlfors distortion theorem,
where the famous estimate

∫
dx
θ
is replaced with an integral along the medial axis of

Ω.
We now describe the major results in this paper. Many results rely on the

geometry of the medial axis of Ω. The intimate connection between the medial axis
and the convex hull boundary was first exploited, to our knowledge, by Bishop (see
[7], [6]) in the context of numerical conformal mapping, and our work here owes an
obvious debt to his. We also include a short appendix describing the basic results
about the medial axis.

The first section of this paper collects some facts and definitions from hyperbolic
geometry. In Section 3 we develop explicit estimates that relate hyperbolic distance in
Ω to distances on SΩ; this section includes the following result, relating the hyperbolic
distances:

Theorem 1. (Hyperbolic distances comparable) Let γ : [0, T ] → Ω be path in Ω
and σ = r(γ). Then the hyperbolic velocities of γ and σ satisfy

1

2
‖σ̇‖SΩ

1 + κ1

1 + κ1 sin θ
≤ ‖γ̇‖Ω ≤ ‖σ̇‖SΩ

(1 + κ1 cos θ) ,

where θ is the angle between σ̇ and the transverse vector to the bending line on which
σ lies, κ1 is the hyperbolic principal curvature of SΩ, and the norms ‖ · ‖Ω and ‖ · ‖SΩ

denote hyperbolic length on Ω and SΩ.

We also obtain the following result, which shows how the bending influences
the local Lipschitz constant of the nearest-point retraction map. Lh is hyperbolic
distance.

Theorem 2. (“L = 2” conjecture) The nearest point retraction map r : Ω → SΩ

is 2-Lipschitz in the hyperbolic metrics. Further, if γ ∈ Ω is a path whose retract
σ = r(γ) is transverse to any bending lines it encounters, we have

Lh[σ] ≤ 2Lh[γ]−
∫

σ

dβ.

Our proof differs from that of Epstein, Marden and Markovic in [17] in that
they approximate a generic domain with a finite union of disks and we approximate
using a domain with real-analytic boundary. In the case of a finite union of disks,
the Jacobian is essentially trivial everywhere except on bending lines, where it is
singular in the transverse direction. In the real-analytic case, one can talk almost
everywhere about the Jacobian of the nearest-point retraction, and one sees that the
Jacobian is primarily a function of the bending of the dome SΩ. This makes certain
estimates relating bending to various other kinds of distortion, like hyperbolic lengths
and extremal distances, very easy to derive.

In Section 4 we obtain the following estimate for extremal distances between pairs
of bending lines Bs and Bt in SΩ and their preimages Fs = r−1(Bs), Ft = r−1(Bt) ⊂ Ω:
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Theorem 3. (Extremal distance comparable) Let Fs, Ft ⊂ Ω be two foliating
arcs. Then

dSΩ
(Bs, Bt) ≤ dΩ(Fs, Ft) ≤ dSΩ

(Bs, Bt) +
2

π2

∫ t

s

dβ,(1)

where β(t) is the bending measure associated with SΩ.

This, plus some computation using the medial axis, leads immediately to the
following analog of the Ahlfors distortion theorem. If m is the arc-length parameter
on a branch of the medial axis (see Appendix) of Ω with corresponding points of
tangency (a(m), b(m)), then:

Corollary 4. Let Fs, Ft, s < t be two foliating arcs in Ω. Then

dΩ(Fs, Ft) ≥ 2

π

∫ t

s

√
ȧḃ

|b− a| dm.

Acknowledgements. The results are part of my PhD thesis. I wish to offer my
warmest thanks to my advisor David Mumford.

2. Background: hyperbolic 3-space

We are interested in conformal structures on a domain Ω lying on the Riemann
sphere Ĉ. These conformal structures can be approximated using constructions from
hyperbolic geometry which we now describe. These hyperbolic constructions have
the advantage of being entirely local, unlike the global nature of the Riemann map.
We regard Ĉ as the boundary at infinity of hyperbolic 3-space H3. Here we describe
the constructions we will need to relate hyperbolic and conformal geometries.

2.1. Models of hyperbolic space. Equipping the open unit ball in Rn with

the Poincaré metric ds2 =
(

2
1−|z|2

)2

|dz|2, where |z| is the distance to the origin and
|dz| is the Euclidean distance element, gives a model of hyperbolic space Hn. With
this metric, the space is normalized so all sectional curvatures are a constant −1.
The isometries of Hn act on the boundary Sn−1 as conformal automorphisms.

We are particularly interested in the case n = 3. We regard Ĉ as the boundary at
infinity of hyperbolic 3-space H3. In this Poincaré model, arcs of circles orthogonal
to Ĉ are geodesics in the half-space or ball models. The isometries of H3 act on
the boundary as the group of linear fractional maps SL2(C). Denote the closed unit
ball, with the hyperbolic structure on the interior and conformal structure on the
boundary by Bn.

One may also realize the same geometry in the half-space model (see Figure 1);
the two models are related by a conformal self-map of R3. In this model, hyperbolic
3-space is the set {(x1, x2, x3) : x3 > 0} with the metric ds2 =

dx2
1+dx2

2+dx2
3

x2
3

. Geodesics

are again arcs of circles orthogonal to the (x1, x2) plane Ĉ, and isometries again
extend to the boundary and act conformally on Ĉ.

2.2. Convex hulls and the dome.

Definition 1. (Convex) A non-empty subset F ⊂ Bn is said to be convex if,
given any two points in F , the geodesic arc joining them is also contained in F .
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Figure 1. The half-space model of H3: Arcs of circles orthogonal to Ĉ are geodesics. A planar
domain lies in Ĉ, the boundary of H3.

A supporting half-space for a convex set E ⊂ Bn is a closed half-space containing
E whose boundary meets E. A support plane for E at some point z ∈ E ∩Hn is the
boundary of a supporting half-space which meets E at z. It can be shown (see [12])
that support planes exist for all points in the boundary of E.

Given a closed nonempty convex subset E ⊂ Bn, there is a canonical retraction
r : Bn → E. We define it as follows:

Definition 2. (Nearest-point retraction map r : Bn → E) Let E ⊂ Hn be a
convex set. For z ∈ Hn we define the map r : HSn → ∂E as follows:

r(z) = arg min
w∈E

dh(z, w).

For z ∈ ∂Hn, we define r(z) by inflating a horoball tangent at z until it makes contact
with some point w ∈ E and set r(z) = w.

One may also construct the map r by inflating balls centered at z until they make
contact with E. By convexity of E, the ball will have a unique first point of contact
in ∂E; this unique point is r(z). This geometric construction makes it clear that the
extension of r to the boundary of hyperbolic space is natural.

The nearest-point retraction map is both continuous and distance-decreasing; for
details and proof, see, e.g., [12].

Definition 3. (Hyperbolic convex hull) The convex hull of a set F ⊂ Bn is the
smallest convex subset of Bn containing F .

We will use the notation C(F ) for the convex hull of F ⊂ Bn. The notation
∂C(F ) refers to the part of the boundary of C(F ) which lies in Hn.

Definition 4. (The dome of a planar domain) Let Ω ⊂ ∂H3 be a proper subset
of the plane and C(Ωc) be the convex hull of its complement. The “dome” SΩ is the
boundary ∂C(Ωc).

We can equip the dome with a natural path metric by restricting the hyperbolic
metric in H3 to paths contained in the dome. In fact, the resulting metric is the
hyperbolic metric for SΩ. There is also an explicit construction for the Riemann map
ι : SΩ → D, due to Thurston, which we will describe in a moment.
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2.3. Bending. If Ω ⊂ Ĉ is a simply-connected region which is a union of N
disks, the dome SΩ has a particularly simple form. If we consider all support planes
P for SΩ, we see that P ∩ SΩ is either a line or a piece of a hyperbolic plane. If
P ∩ SΩ is a line, we call it a bending line; otherwise P ∩ SΩ is called a flat piece. We
say that such a dome is finitely-bent. Note that if z ∈ SΩ lies in a bending line it has
a set of support planes; if z lies in a flat piece it has only one support plane. The
bending angle associated with a bending line is angle between the extremal support
planes for the line, that is, it is the angle at which the associated flat pieces meet
(the angle between their normal vectors).

The bending at each intersection induces a transverse measure on the dome,
called the bending measure, constructed as follows. For z ∈ SΩ, let β(z) be the
bending angle at z. This is zero unless z lies on a bending line. If SΩ is finitely-bent,
we define a measure on embedded intervals γ in SΩ by setting β(γ) to be the sum
of the bending encountered along γ. For more general domains, we define β(γ) as
an infimum over finitely-bent approximations between the endpoints of γ (see [12]
for details). Here, we are interested in the case where ∂Ω is smooth. In this case,
the bending measure has a Radon–Nikodym derivative with respect to arc length on
transverse intervals on the dome.

Figure 2. Above: Ω is a finite union of disks, shown in the half-space model. The faces of the
dome meet at geodesic “bending lines”, each with some bending angle β. Below: After refinement
SΩ is smooth; each support plane intersects SΩ along a single bending line.

3. Strip-like domains and the dome

We now show that hyperbolic distances in Ω can be approximated by the same
quantities on SΩ. This is advantageous as the Riemann map ι : SΩ → D from the
dome to the unit disk admits an explicit construction which is easily understood
in terms of the medial axis of Ω (see, for example, [7] or [18]). In particular, we
exploit the fact that ι almost immediately gives extremal distances between pairs of
bending lines: if Bs and Bt, together with the arcs of ∂Ω joining their endpoints,
bound a generalized quadrilateral Q ∈ SΩ, then up to a normalization by some map
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in PSL2(R), the map

log

(
1 + ι

1− ι

)
: SΩ → {(x, y) : −∞ < x < ∞,−π/2 < y < π/2}

takes Q to a rectangle in the strip (see Figure 3).

→

Figure 3. ι takes bending lines in the dome to geodesics in the disk. After mapping the disk to
the strip, we immediately obtain hyperbolic distance dh and extremal distance dSΩ between bending
lines Bs and Bt: that is, dSΩ(Bs, Bt) = 1

π dh(Bs, Bt).

3.1. Preliminaries: distance between bending lines. Our goal in this
section is to obtain estimates for distances between pairs of bending lines in SΩ.
We will later use this estimate to obtain explicit formulas for distances in Ω and
to understand geometrically the length distortion introduced by the nearest-point
retraction. We will require some basic definitions and a few results from [18]; we
repeat them here without proof. First, the cross-ratio of 4 points in the complex
plane can have 6 possible values depending on the order of the 4 points; we will use
the following choice.

Definition 5. (Cross-ratio) Let (a, b, c, d) be 4 points in the complex plane.
Their cross-ratio is defined to be

χ(a, b, c, d) =
(b− a)

(d− a)

(d− c)

(b− c)
.

The next definition introduces a particular curve which is useful when estimating
geodesic lengths in SΩ.

Definition 6. (Path of nearest points) Define the path of “nearest points”

p∗(t) = lim
ε↘t

arg min
p∈Bt

dh(p,Bt+ε)

and the infinitesimal distance between them

d∗(t) = lim
ε→0

1

ε
dh(Bt, Bt+ε).

We have the following formula for the infinitesimal cross-ratio of endpoints of
adjacent bending lines; this formula will allow us to pass from statements about
hyperbolic distance in SΩ to explicit formulas involving the geometry of ∂Ω.

Proposition 1. (Cross-ratio of endpoints) Let a, b be the endpoints of some
bending line at t = 0. Then the infinitesimal cross-ratio χinf (t) satisfies

χinf (t) ≡ lim
ε↘0

1

t2
χ(at, at+ε, bt+ε, bt) = − |ȧḃ|

|b− a|2 ,
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where ȧ = da
dt

∣∣
t
, similar for ḃ.

The next lemma is stated in non-invariant terms; it connects the Euclidean ge-
ometry of Ω to invariant quantities. We make the following definition:

Definition 7. (Midpoint of Bt) Fix a chart for the half-space model of H3. Then
the midpoint of a bending line Bt for a given domain Ω ⊂ Ĉ is the midpoint of Bt

viewed a Euclidean semicircle in this chart.

The next three lemmas describe p∗(t) with explicit formulas.

Lemma 1. (Location of p∗) Let a, b ∈ ∂Ω be the endpoints of some bending line
B0. Then p∗ lies at hyperbolic distance 1

2
log

∣∣∣ ȧ
ḃ

∣∣∣ from the midpoint of B0. Positive
distances indicate motion towards b.

Lemma 2. (Infinitesimal distance between bending lines)

d∗(t) = 2

√
|ȧḃ|

|b− a| .

Lemma 3. The velocity ṗ∗(t) decomposes into components ṗ∗T (t), ṗ∗⊥(t), tangen-
tial and orthogonal to the bending line Bt respectively, with hyperbolic lengths

||ṗ∗T ||h =
|ȧ| − |ḃ|
|b− a| Ṙ +

1

2

(
b̈

ḃ
− ä

ȧ

)
,

||ṗ∗⊥||h = 2

√
|ȧḃ|

|b− a| .

Further, p∗ meets Bt at angle

θ(t) = arctan

(
d∗(t)
‖ṗ∗T‖

)

and has hyperbolic speed

‖ṗ∗‖h =
(||ṗ∗T ||2h + ||ṗ∗⊥||2h

)1/2
.

Remark. One may also write the tangential component as

||ṗ∗T ||h = κm
Ṙ√

1− Ṙ2
+

∂

∂t

1

2
log

∣∣∣∣∣
ḃ

ȧ

∣∣∣∣∣ .

While more cluttered, it does allow one to see at a glance the role played by the
curvature of the medial axis.

The boundary derivatives of the map ι : ∂Ω → ∂DT are particularly simple:

Proposition 2. Let ι : SΩ → DT map SΩ to some medial disk DT . Then ι is
differentiable with ∣∣∣∣

dι

ds

∣∣∣∣ = 1

at iota’s fixed points a(T ) and b(T ), where s is the arclength parameter along ∂Ω.
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Remark. This easy but useful result is essentially just the observation that ι
is a rotation near the fixed points. It also highlights a key difference between the ι
and Riemann maps: the derivatives of the Riemann map are hugely influenced by
boundary curvature; the derivatives of ι are completely blind to curvature.

The next lemma is the main goal of this section. It gives us estimates for distances
between bending lines along a branch of the medial axis. In upcoming sections we will
generate more abstract estimates and then plug in Lemma 4 to obtain computable
results.

Lemma 4. (Length of geodesics in SΩ) Let γ ⊂ SΩ be the shortest geodesic
joining some Bs and Bt, s < t. Then

2

∫ t

s

√
|ȧḃ|

|b− a| du ≤ Lh[γ] ≤ 2

∫ t

s

√√√√ |ȧḃ|
|b− a|2 +

1

4

(
|ȧ| − |ḃ|
|b− a| Ṙ +

1

2

(
b̈

ḃ
− ä

ȧ

))2

du

whenever the curve p∗ is continuous.

Proof. Choose any path p(u) joining Bs and Bt. The lower bound is simply the
observation that

||ṗ(u)||h ≡ lim
ε→0

1

ε
||p(u + ε)− p(u)||h ≥ lim

ε→0

1

ε
dh(Bu, Bu+ε) ≡ d∗(u)

for any choice of path p(u).
The upper bound is obtained by integrating ||ṗ∗||h along the path p∗(u); the

formula follows directly from Lemma 3. ¤

Remark. This estimate is sharp, which implies the path p∗(u) is the geodesic

joining Bs and Bt, when ‖ṗ∗T‖h = 0. This can happen, for example, when d
dt

log
√

|ḃ|
|ȧ| =

0 and either κm or Ṙ is zero. The first happens exactly when |ḃ/ȧ| is constant, or
using some facts from the medial axis,

ḃ

ȧ
=

1−Rκa

1−Rκb

= const.

Both conditions are satisfied in, for example, a strip-like domain consisting of two
curves symmetric about a straight axis, or a section of an annulus. Note that p∗ can
be geodesic without minimizing distance between any pair of bending lines and with
ṗ∗T 6= 0. The geodesic joining 0 to ∞ in the complement of a logarithmic spiral is
such an example.

3.2. Hyperbolic distances in SΩ and Ω. We now obtain estimates relating
hyperbolic distances in Ω and SΩ. We first bound the hyperbolic metric in Ω using
the metrics on the maximal disks {Dt}. In a domain with real-analytic boundary,
the medial axis is finitely-branched; the foliation consists of sets of arcs {Ft} along
each branch. Where 3 or more branches meet, the foliation has a gap, which is an
ideal polygon in some maximal disk D. The boundary of the polygon consists of
ideal geodesics in D with endpoints at the points of tangency of D. The next lemma
is a variant of the Koebe 1/4 theorem and allows us to control hyperbolic distance
in Ω using the metric on the maximal disks.
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Lemma 5. Let Ω be a domain with real-analytic boundary. Then for z ∈ Ω

1

2
ρD(z) ≤ ρΩ(z) ≤ ρD(z),(2)

where D is the medial disk which corresponds to the foliating arc or gap containing
z, and ρΩ and ρDt denote hyperbolic arc length on Ω and D, respectively.

Proof. The upper bound follows from extension of domain, so we need only prove
the lower bound. We first consider the case where z lies on some foliating arc F . It
is sufficient to consider the case where z = 0, D is the unit disk, and F = [−1, 1].
Let σ : C → C be the map σ(z) = 1+z

1−z
. Let f : D → Ω with f(0) = 0. Then by the

Koebe 1/4 theorem,

4 ≥ |(σ ◦ f)′(0)| = 2|f ′(0)|.
Since conformal maps are hyperbolic isometries, we have

ρD(0)

ρΩ((φ ◦ f)(0))
= |f ′(0)| ≤ 2.

Now assume that z lies in some gap. We need only consider the case where the
gap is a triangle (every point in an n-gon is also contained in a triangle joining some
triple of endpoints) and z = 0. In this case, we know ρD

ρΩ
≤ 2 on each foliating arc

on the boundary of the gap. In fact, ρD

ρΩ
is a subharmonic function (see [17]) and

achieves its maximum on the boundary, so the conclusion follows. ¤
This is in fact sufficient to show that (2) holds in any domain, since we may

approximate an arbitrary domain with a real-analytic domain, say, by considering
the image of the circle of radius r < 1 under a conformal map from the unit disk
to the domain. The hyperbolic distances will converge as we let r → 1 and the
inequalities will still hold in the limit.

r(p)
r(q)

p q

Figure 4. The situation for Theorem 1. One imagines the domain Ω lying in the plane with
the dome above; we see this here in cross-section with the points p, q mapped to the dome via the
nearest-point retraction.

We can now apply Lemma 5 to prove our first theorem relating hyperbolic ar-
clength in SΩ to arclength in Ω.

Theorem 1. (Hyperbolic distances comparable) Let γ : [0, T ] → Ω be path in Ω
and σ = r(γ). Then the hyperbolic velocities of γ and σ satisfy

1

2
‖σ̇‖SΩ

1 + κ1

1 + κ1 sin θ
≤ ‖γ̇‖Ω ≤ ‖σ̇‖SΩ

(1 + κ1 cos θ) ,

where θ is the angle between σ̇ and the transverse vector to the bending line on which
σ lies, κ1 is the hyperbolic principal curvature of SΩ, and the norms ‖ · ‖Ω and ‖ · ‖SΩ

denote hyperbolic length on Ω and SΩ.
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Proof. By conformal invariance, we need only consider a single point where γ = 0
with velocity γ̇ = ∂

∂t
γ, the maximal circle is the unit circle, and the points of tangency

are a = −i, b = i. Hence r(γ) = (0, 0, 1). In this case, we have

1 ≤ ρΩ(γ) ≤ 2

by Lemma 5, and ρSΩ
(r(γ)) = 1. Let σ̇ = r∗γ̇ and in transverse coordinates on Ω

and SΩ write

γ̇ = (|γ̇| cos θ, |γ̇| sin θ) , σ̇ = (|σ̇| cos θ, |σ̇| sin θ) .

We evaluate the upper bound

‖γ̇‖Ω = ρΩ|J−1σ̇| ≤ 2

√(
σ̇1

2

)2

(1 + κ1)2 +

(
σ̇2

2

)2

=
√
|σ̇|2 + σ̇2

1(2κ1 + κ2
1) = |σ̇|

√
1 + cos2 θ(2κ1 + κ2

1).

We now need the inequality
√

1 + a2(2b + b2) ≤ 1 + ab, for 0 ≤ a < 1, b > 0. Indeed,

(1 + ab)2 = 1 + 2ab + a2b2 ≥ 1 + 2a2b + a2b2.

Hence,

‖γ̇‖Ω ≤ |σ̇|(1 + κ1 cos θ) = ‖σ̇‖SΩ
(1 + κ1 cos θ) .

We now address the lower bound:

‖σ̇‖SΩ
= ρSΩ

|Jγ̇| =
√(

2γ̇1

1 + κ1

)2

+ (2γ̇2)
2

=
2

1 + κ1

√
γ̇2

1 + γ̇2
2(1 + κ1)2 =

2|γ̇|
1 + κ1

√
1 + sin2 θ(2κ1 + κ2

1)

≤ 2‖γ̇‖Ω

1 + κ1

√
1 + sin2 θ(2κ1 + κ2

1) ≤ 2‖γ̇‖Ω
1 + κ1 sin θ

1 + κ1

. ¤

Remark. Theorem 1 holds trivially by Lemma 5 at points where γ lies in a gap.

The quantity κ1 cos θ is the amount of bending encountered per unit hyperbolic
length (see [18]) in the direction σ̇. Thus we may write

‖γ̇‖Ω ≤ ‖σ̇‖SΩ
+ dβ.

The lower bound admits a similar interpretation: κ1 is again the bending per unit
length in the transverse direction. If the velocity σ̇ is transverse to the bending lines,
then sin θ = 0 and we have

1

2
(‖σ̇‖SΩ

+ dβ) ≤ ‖γ̇‖Ω

whereas when σ̇ is parallel to the bending line, σ encounters no bending and
1

2
‖σ̇‖SΩ

≤ ‖γ̇‖Ω.

The integrated form of this observation is the following corollary relating path lengths
in SΩ and Ω.
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Corollary 5. Let σ : [0, T ] → SΩ be a transverse arc. Then
1

2

(
Lh[σ] +

∫

σ

dβ

)
≤ Lh[γ] ≤ Lh[σ] +

∫

σ

dβ,

where γ = r−1(σ).

Proof. As we remarked, the upper bound holds in general. By Theorem 10, we
have

‖γ̇‖Ω ≥ 1

2
‖σ̇‖SΩ

1 + κ1

1 + κ1 sin θ
=

1

2
‖σ̇‖SΩ

(1 + κ1) =
1

2
(‖σ̇‖SΩ

+ dβ) ,

where the first equality uses the fact that σ is a transverse arc implies θ ≡ 0. The
corollary follows by integration. ¤

Remark. Lurking behind the estimates on hyperbolic distances is a nice inter-
pretation of crescents in the finitely-bent case. The previous corollary showed that
up to constants, hyperbolic lengths of transverse arcs agreed up to the amount of
bending encountered along the path. In the finitely-bent case, one can view the
crescents (the preimages of bending lines under r) as ideal strips of approximately
constant hyperbolic width. We present a proof in the finitely-bent case.

Lemma 6. (Width of crescents) In a finitely-bent domain, let B ⊂ SΩ be a
bending line with bending angle β and let C ⊂ Ω be the associated crescent r−1(B).
Let F− and F+ be the two circular arcs bounding C. Then

1

2
β ≤ dh(F

−, F+) ≤ β,

where dh is hyperbolic distance in Ω.

Proof. Let a and b be the two points in ∂C ∩ ∂Ω. We consider C as a disjoint
union of circular arcs Fθ, 0 < θ < β, where Fθ joins a to b and meets F− at angle θ.
By Lemma 5,

1

2
ρDθ

≤ ρΩ ≤ ρDθ

on Fθ, where ρΩ defines the hyperbolic metric on Ω and Dθ ⊂ Ω is the disk containing
Fθ as an ideal geodesic in the Poincaré metric ρDθ

. Let σ be any Möbius map taking
a to 0 and b to ∞. Then σ(C) is a sector of angular width β and σ(F

θ
) is a straight

line extending from 0 to∞. For any θ, the pushforward under σ of ρDθ
is simply the

metric given by 1/r in polar coordinates, and we see that
1

2r
≤ σ∗ρΩ ≤ 1

r
.

If we show that arcs of circles centered at 0 are geodesic in the metric 1/r, the
conclusion will follow. This is indeed the case: Under the map φ(z) = log(z), the
sector maps to a strip and the metric ρ = 1/r pushes forward to the metric on the
strip given by

(φ∗ρ)(w) ≡ ρ(φ−1(w))

|φ′ ◦ φ−1(w)| =
1

ew
· ew = 1.

Thus any two points on the boundary of the strip are joined by the Euclidean straight
line between them, the shortest such paths have length β, and the conclusion follows.

¤
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3.3. Best Lipschitz constant for r : Ω → SΩ. The lower estimates in Theorem
1 and Corollary 5 provide a refinement of the Thurston–Sullivan “L = 2” conjecture.
This conjecture arose in the study of hyperbolic 3-manifolds, and was originally
worked on in the 80’s by Epstein and Marden, who showed that L < 4 (see [15]). A
series of improvements, including work by Bridgeman, Canary, and Bishop, followed,
progressively lowering the best constant (see, e.g., [10, 11, 9]). The best possible
constant L = 2 was finally proven by Epstein, Marden and Markovic in [17]. We
obtain their result here working with domains with real-analytic boundaries, instead
of finitely-bent domains. Our result is the following.

Theorem 2. (“L = 2” conjecture) The nearest point retraction map r : Ω → SΩ

is 2-Lipschitz in the hyperbolic metrics. Further, if γ ∈ Ω is a path whose retract
σ = r(γ) is transverse to any bending lines it encounters, we have

Lh[σ] ≤ 2Lh[γ]−
∫

σ

dβ.

Proof. Along any branch of the medial axis,

‖σ̇‖SΩ
≤ 2‖γ̇‖Ω

1 + κ1 sin θ

1 + κ1

.

The right-hand side is less than 2‖γ̇‖Ω in general, which proves the 2-Lipschitz state-
ment along any branch of the axis. If σ̇ is transverse to the bending lines on some
branch, then sin θ = 0 and

‖σ̇‖SΩ
≤ 2

1 + κ1

‖γ̇‖Ω

which proves the second statement after integrating. On any gap, both statements
follow easily from Lemma 5 and the fact that curvature is zero.

This is sufficient to prove the result on a domain with real-analytic boundary,
since the medial axis of such a domain is finitely-branched. In general, we approxi-
mate any domain Ω with a sequence of domains Ωr bounded by the (real-analytic)
image of the circle of radius r < 1 under a conformal map from the unit disk to Ω.
For sufficiently large r, any pair of points p, q ∈ Ω are in the subdomain Ωr, and
hyperbolic distances converge in Ωr and SΩr to hyperbolic distances in Ω and SΩ.
The inequalities then hold in the limit. ¤

The 2-Lipschitz result is sharp in the case of a “folded” surface. For example,
take Ω to be the complement in the complex plane of the negative part of the real
axis. The dome of this domain consists of two half planes, glued together. This dome
has only one bending line. This is the extremal domain for the Koebe 1/4 theorem
and the hyperbolic metric in Ω is exactly 1/2 at z = 1. It is simple to show that in
this example the nearest point retraction is 2-Lipschitz.

In general, the metrics on Ω and SΩ are comparable up to a factor of 2, while the
more bent the dome is, the smaller the transverse part of the Jacobian of r. From
this point of view, the folded surface is extremal because it makes the hyperbolic
metric in SΩ as large as possible relative to Ω while simultaneously concentrating the
bending on a single line. In this case, r can’t help “slow down” the image of a particle
following the path γ as it approaches the bending line.
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4. Extremal distances in SΩ and Ω

In this section, our goal is to relate extremal distances in SΩ to those in Ω,
with explicit estimates involving the geometry of ∂Ω. We first record a short lemma
showing that estimates for for extremal and hyperbolic distances are interchangeable
up to a constant. We then prove the main theorem of this section, which shows that
extremal distances between foliating arcs Fs, Ft in Ω agree with the corresponding
distances between their retracts Bs, Bt in SΩ, up to an error which is controlled by
the bending of SΩ. From these two results, it is easy to obtain some explicit formulas
for extremal distances using material from the previous sections. The final estimate
takes the form of a variant of the Ahlfors distortion theorem, in which we replace
an integral over a strip domain with a similar integral over any branch of the medial
axis; this integral provides bounds on extremal distances in SΩ and also on Ω. We
now prove the first lemma.

Lemma 7. (Extremal and hyperbolic distances coincide for {Bt}) Let Bs, Bt ⊂
SΩ, s < t, be two bending lines. Then the extremal distance dSΩ

and the hyperbolic
distance dh satisfy

dSΩ
(Bs, Bt) =

1

π
dh(Bs, Bt).(3)

Proof. The ι map takes Bs and Bt to a pair of geodesics ι(Bs), ι(Bt) in the disk.
Then for some angle 0 < φ < π/2, there is a map σ : D → D taking the endpoints
of ι(Bt) to {e−iφ, eiφ} and the endpoints of ι(Bs) to {ei(π−φ), e−i(π−φ)}. For such a σ,
the map z → log 1+σ(z)

1−σ(z)
takes the disk to the strip {x + iy : − π/2 < y < π/2} and

takes ι(Bs) and ι(Bt) to the vertical sides of a rectangle of height π. Since the map
is an isometry between the hyperbolic metrics on the disk and the strip, the proof is
complete. ¤

We now proceed to the main theorem and show that extremal distances in Ω can
be approximated by those in SΩ. This is nice because the relatively simple geometry
of SΩ allows explicit estimates, as recorded in earlier sections.

Theorem 3. Let Fs, Ft ⊂ Ω be two foliating arcs. Then

dSΩ
(Bs, Bt) ≤ dΩ(Fs, Ft) ≤ dSΩ

(Bs, Bt) +
2

π2

∫ t

s

dβ,(4)

where β(t) is the bending measure associated with SΩ.

Proof. We appeal to the the finitely-bent case. Let ρS be the extremal metric
for SΩ. Observe that the nearest-point retraction r−1 maps each facet of the dome
conformally onto its image in Ω. Define the metric ρΩ on Ω to be r∗ρS (the pullback
under the nearest-point retraction), where this is defined, and let ρΩ = 0 elsewhere.
This metric achieves the lower bound.

We explicitly construct a metric to produce the upper bound. Consider two
bending lines Bj and Bk, k > j. The region of the dome between these lines is a
generalized quadrilateral, and there is some extremal map taking this quadrilateral to
a rectangle. In fact, this map is simply ι followed by the transformation z → log 1+z

1−z

and a normalizing conformal self-map of the strip. Hence we see that the extremal
map takes bending lines to geodesics in the strip model.
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Let φn be the restriction of this extremal map to the n-th facet of the dome; φn

takes the facet to a region in the strip bounded by a pair of geodesics. The map
φn ◦ r takes a subset of each medial disk in Ω to the strip.

Now let Cn be the crescent between faces n and n + 1 and note that on each
bending line, φn and φn+1 agree. On Cn, define coordinates 0 < r < ∞, 0 < θ < β
by sending the two endpoints of the crescent to 0 and ∞ and the center to (say) 1,
and taking standard polar coordinates in this frame. The map

σn(z) = (φn ◦ r)(z) + θ(z)

takes Cn to a region of the strip bounded by two geodesics; σn agrees with φn and φn+1

on the boundary, up to translation. One may verify that the map σn is equivalent to
the map

reiθ 7→ θ + i arctan r

taking the crescent to a rectangle of height π and width β, followed by a self-map of
the strip applied separately to each vertical line in the rectangle.

Now let R be a rectangle of height π and width π2dSΩ
(Bs, Bt) +

∑
n β(n), and

define the continuous map Ψ: Ω → R by gluing together the images of adjacent maps
φ1, σ1, φ2, σ2, . . . , φn along the sides of length π.

Define the metric ρΩ on R to be |∇ Im Ψ|. Clearly the length LρΩ
of any path

joining the top and bottom of the rectangle is at least π. We need an upper bound
on the area. Since this metric is the extremal metric on each face of the dome, we
have that the combined area of all faces is π2dSΩ

(Bj, Bk).
On each crescent Cn, the map Ψ is given by (r, θ) 7→ θ + i arctan r followed by a

self-map of the strip applied to each vertical line. If the self-map is the identity, we
have

AρΩ
(Cn) =

∫ β(n)

0

∫ ∞

0

|∇ Im Ψ|2r dr dθ =

∫ β(n)

0

∫ ∞

0

r

(1 + r2)2
dr dθ

= −β(n)
1

2(1 + r2)

∣∣∣
∞

0
=

β(n)

2
.

It remains to be shown that area is nonincreasing when the self-map is other than
the identity. We need to evaluate the area of a sector under the metric ds2 =
|∇ Im Ψ|2(dx2 + dy2), that is

∫ β

0

∫ ∞

0

|∇ Im Ψ|2r dr dθ,

where

Ψ(r, θ) = σ(i(2 arctan r − π/2)) + θ

for some conformal self-map σ of the strip. We claim we need only consider σ
which are purely elliptic with fixed point 0. We can decompose an arbitrary element
σ ∈ PSL2(R) into a choice of σ(0) and an elliptic rotation about σ(0). Moving σ(0)
can be decomposed as a pair of hyperbolics, first with axis equal to the x-axis and
the second with axis perpendicular. The first is simply translation and the metric
is obviously invariant. In the second case, the action of σ pulls back to a conformal
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self-map of the sector: it is the restriction to the wedge of a hyperbolic h : Ĉ → Ĉ
with fixed points at 0 and ∞. In this case∫∫

Sβ

|∇ Im Ψ(r, θ)|2 =

∫∫

Sβ

| Im ∂

∂r
σ(i(2 arctan r − π/2))|2

=

∫∫

Sβ

| Im ∂

∂r
i(2 arctan h(r)− π/2)|2

=

∫∫

Sβ

∣∣∣dh

dz

∣∣∣
2

|2 arctan′(h(r))|2

=

∫∫

h(Sβ)

|2 arctan′(r)|2 =

∫∫

Sβ

|2 arctan′(r)|2

as claimed. Hence we need only consider elliptics. An elliptic σ ∈ PSL2(R) with
rotation angle φ and fixed point at 0 acts on the strip as

σ(z) = log
ez + 1 + α(ez − 1)

ez + 1− α(ez − 1)

for α = eiφ. Further,
dσ

dz
=

4αez

(e2 + 1)2 − α2(ez−1)2
.

From this, one may compute

|∇ Im σ(z)
∣∣
z=iy

=
d

dy
arctan(cos φ tan y) =

cos φ

cos2 y + cos2 φ sin2 y
.

We now compute the area:∫∫

Sβ

|∇ Im Ψ(r, θ)|2 =

∫∫

Sβ

| Im ∂

∂r
σ(i arctan r)|2

=

∫ β

0

∫ ∞

0

(
cos φ

cos2 y + cos2 φ sin2 y

2

1 + r2

)2

y=2arctan(r)−π
2

r dr dθ

A somewhat lengthy but direct computation shows that
∫∫

Sβ

|∇ Im Ψ(r, θ)|2 = β

∫ 1

−1

(
cos φ

1− v2 sin2 φ

)2

dv.

Differentiating under the integral sign followed by explicit integration reveals the
extrema on [0, 2π) are maxima at φ = 0, π and minima at φ = π/2, 3π/2. Therefore
the conjugate extremal distance satisfies

d∗Ω(Fj, Fk) ≥ π2

π2dSΩ
(Bj, Bk) + 1

2

∑
n β(n)

.

Hence

dΩ(Fj, Fk) ≤ dSΩ
(Bj, Bk) +

2

π2

∑
n

β(n).

This completes the proof in the finitely-bent case; the smooth case follows under
refinement. ¤
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We can now show that on a regular branch of the medial axis there is a natural
analog for the

∫
dx

θ(x)
estimate for extremal distances in strip domains. This follows

from the geodesic length estimates of Lemma 4, combined with the fact that extremal
and hyperbolic distances between bending lines coincide. We make two corollaries to
produce our Ahlfors integral. The first is an estimate for extremal distances in the
dome.

Corollary 6. Let Bs, Bt, s < t, be two bending lines in SΩ. Then

2

π

∫ t

s

√
ȧḃ

|b− a|du ≤ dSΩ
(Bs, Bt).

Proof. By Lemmas 7 and 4, we have

dSΩ
(Bs, Bt) =

1

π
dh(Bs, Bt) ≥ 2

π

∫ t

s

√
ȧḃ

|b− a| du. ¤

Remark. This estimate is sharp when the geodesic joining Bt and Bs coincides
with the axis of “nearest points”, p∗(u), s ≤ u ≤ t.

The lower estimate applies without modification to the domain Ω; this is our
analog for the integral estimate

∫
dx
θ

in strip domains.

Corollary 4. (A medial axis Ahlfors integral) Let Fs, Ft, s < t, be two foliating
arcs in Ω. Then

dΩ(Fs, Ft) ≥ 2

π

∫ t

s

√
ȧḃ

|b− a| dm.

Proof. By Theorem 3,

dΩ(Fs, Ft) ≥ dSΩ
(Bs, Bt). ¤

There is also an upper bound. It seems to be empirical fact that upper bounds
for extremal distance are often unwieldy compared to lower bounds.

Corollary 7. Let Fs, Ft, s < t, be two foliating arcs in Ω. Then

dΩ(Fs, Ft) ≤ 2

π

∫ t

s

√√√√ |ȧḃ|
|b− a|2 +

1

4

(
|ȧ| − |ḃ|
|b− a| Ṙ +

1

2

(
b̈

ḃ
− ä

ȧ

))2

du +
2

π2

∫ t

s

dβ.

Proof. Apply Lemmas 7 and 4, and Theorem 3 as above. ¤

5. Appendix: Geometry of the medial axis

Many of our results in the work above are stated in terms of the geometry of
the medial axis; we collect the necessary formulas and results here. Throughout this
paper we work on a single smooth branch of the medial axis of some domain with
smooth boundary arcs. In general, the medial axis of any domain with real-analytic
boundary is finitely-branched and consists of a finite number of real-analytic curves
(see [13]); it then follows that the dome SΩ over a real-analytic branch of the medial
axis is itself smooth. However, over branch points of the medial axis, the dome will
generally be no more than C1 no matter how smooth the boundary arcs are.
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F
t

m(t)

a(t)

b(t)

φ
φ

Figure 5. Notation for the medial axis. The axis is shown in blue; m(t) is a parametrization
of the medial axis. a(t), b(t) are points of tangency. The red arc Ft = r−1(Bt) is the foliating arc
connecting a(t) and b(t). φ = arg(b−m)− τm is the angle between one of the dashed lines and the
tangent to the medial axis at m.

Definition 8. (Medial axis) The medial axis pair (m(t), R(t)) of a closed planar
region consists of m(t), the curve defined by the locus of centers of maximal circles
contained in the region, and R(t), their associated radii.

Figure 6. A rectangle and its medial axis. The branches of the axis are formed by the centers
of maximal circles.

The curve m(t) gives a sort of skeleton for a planar region. In general, m can be
quite pathological; for example, it may be infinitely branched, and may even have
dimension > 1.1 However, for a region with real-analytic boundary, m consists of a
finite number of smooth branches [13] meeting at branch points.

Throughout we use the notation introduced above; see Figure 5. By a smooth
branch of the medial axis, we mean a smooth, arclength-parametrized (unless stated
otherwise) pair (m(t), R(t)) for a region with smooth boundary.

The following results can be found in [23]. We first show how to reconstruct the
boundary given the medial axis pair.

1C. Bishop, personal communication.
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Theorem 8. Along a smooth branch of the medial axis:

(1) The boundary curves corresponding to (m(t), R(t)) are given by

a(t) =
(
m + RṘeiτm −R

√
1− Ṙ2eiνm

)
(t),

b(t) =
(
m + RṘeiτm + R

√
1− Ṙ2eiνm

)
(t).

(2) Given associated boundary points a(s), b(s), the corresponding medial axis
pair is given by

R(s) =
|b(s)− a(s)|

2 sin φ(s)
, m(s) = a(s) + R(s)eiνa , = b(s) + R(s)eiνb .

Not all pairs (m(t), R(t)) are allowable. The following theorem identifies those
pairs which are.

Theorem 9. The smooth pair (m(t), R(t)) is locally the medial axis of a smooth
boundary curve if and only if

(1) |Ṙ| < 1,

(2) |κm| < 1− Ṙ2 −RR̈

r
√

1− Ṙ2
.

We will frequently need to use the following relationships. See [23] for various
other relationships which hold along a smooth branch.

Proposition 3. Along a smooth branch of the medial axis,

Ṙ = − cos φ,
|b− a|

2R
= sin φ, |ȧ| =

√
1− Ṙ2

1−Rκa

,

|ḃ| =
√

1− Ṙ2

1−Rκb

, κm =
√

1− Ṙ2

(
κa − κb

(1−Rκa)(1−Rκb)

)
.

We’ll also need a few variations on these formulas; the next proposition gives a
short proof of some relations we will use.

Proposition 4.

−φ̇ =
1

2
(κa|ȧ|+ κb|ḃ|),(5)

κm =
1

2
(κa|ȧ| − κb|ḃ|) =

|ȧ| − |ḃ|
2R

.(6)

Proof. At any time we have

νb = τm + θb + π, νa = τm + θa + π = τm − θb + π.

According to our sign convention, κb = −dνb

dt
and κa = dνa

dt
, so implicit differentiation

yields

κb|ḃ| = −κm|ṁ| − θ̇b, κa|ȧ| = κm|ṁ| − θ̇b.
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Formula (5) follows by adding these two equations; (6) follows by subtracting them.
We continue computation to obtain the remaining results:

2κm|ṁ| = κa|ȧ| − κb|ḃ|,

2κm|ṁ| =
√

1− Ṙ2

(
κa

1−Rκa

− κb

1−Rκb

)
=

√
1− Ṙ2

(
κa − κb

(1−Rκa)(1−Rκb)

)

=

√
1− Ṙ2

R

(
Rκa −Rκb

(1−Rκa)(1−Rκb)

)
=

√
1− Ṙ2

R

(
1

1−Rκa

− 1

1−Rκb

)

=
1

R
(|ȧ| − |ḃ|). ¤

The formulas for reconstructing the boundary curve from the axis seem to indicate
a derivative is lost when passing from one to the other. However, this is not the case.
The following result appears in [23].

Theorem 10. Let s, t and v be arclength parameters for a, b and m, respectively.
(1) If (m(v), R(v)) are a Cp, p ≥ 2, interior portion of the medial axis pair for

boundary curves a, b, with |Ṙ| < 1 and |κm| < 1−Ṙ2−RR̈

r
√

1−Ṙ2
, then a and b are also

Cp.
(2) If a(s), b(t) are portions of a Cp curve, p ≥ 2, corresponding via the medial

axis so

1− κab
|b− a|
2 sin φ

> 0

the the associated interior portion of m is Cp.
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