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Abstract. It is proved that the family of K quasiconformal mappings of the unit ball onto
itself satisfying PDE ∆u = g, g ∈ L∞(Bn), u(0) = 0, is a uniformly Lipschitz family. In addition,
it is showed that the Lipschitz constant tends to 1 as K → 1 and |g|∞ → 0. This generalizes a
similar two-dimensional case treated in [21] and solves the problem initialized in [16].

1. Introduction and statement of the main results

A twice differentiable function u defined in an open subset Ω of the Euclidean
space Rn is said to be harmonic if it satisfies the differential equation

∆u(x) := D11u(x) + D22u(x) + · · ·+ Dnnu(x) = 0.

In this paper we denote by Bn and by Sn−1 the unit ball and unit sphere in Rn,
respectively. Also we will assume that n > 2 (the case n = 2 has been already
treated in [21]). We will consider the vector norm |x| = (

∑n
i=1 x2

i )
1/2 and the matrix

norm |A| = sup{|Ax| : |x| = 1}.
A homeomorphism u : Ω → Ω′ between two open subsets Ω and Ω′ of the Eu-

clidean space Rn will be called a K-quasiconformal (K ≥ 1) or shortly a q.c. mapping
if

(i) u is absolutely continuous function in almost every segment parallel to some
of the coordinate axes, and there exist the partial derivatives which are locally
Ln integrable functions on Ω (we will write u ∈ ACLn), and

(ii) u satisfies the condition

|∇u(x)|n/K ≤ Ju(x) ≤ Kl(∇u(x))n

at almost every x in Ω where

l(∇u(x)) := inf{|∇u(x)ζ| : |ζ| = 1}
and Ju(x) is the Jacobian determinant of u (see [32]).

Notice that for a continuous mapping u the condition (i) is equivalent to the condition
that u belongs to the Sobolev space W 1

n,loc(Ω).
Let P be the Poisson kernel, i.e., the function

P (x, η) =
1− |x|2
|x− η|n ,
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and let G be the Green function, i.e., the function

(1.1) G(x, y) = cn

(
1

|x− y|n−2
− 1

(|x|y| − y/|y||)n−2

)

where cn = 1
(n−2)Ωn−1

, and Ωn−1 is the measure of Sn−1. Both functions P and G are
harmonic for |x| < 1 with x 6= y .

Let f : Sn−1 → Rn be a bounded integrable function on the unit sphere Sn−1,
and let g : Bn 7→ Rn be a continuous function. The solution of the equation (in the
sense of distributions) ∆u = g in the unit ball satisfying the boundary condition
u|Sn−1 = f ∈ L1(Sn−1) is given by

(1.2) u(x) = P [f ](x)−G[g](x) :=

∫

Sn−1

P (x, η)f(η) dσ(η)−
∫

Bn

G(x, y)g(y) dy,

|x| < 1. Here dσ is the Lebesgue n − 1 dimensional measure of the Euclid sphere
satisfying the condition: P [1](x) ≡ 1. It is well known that if f and g are continuous
in Sn−1 and in Bn, respectively, then the mapping u = P [f ]−G[g] has a continuous
extension ũ to the boundary and ũ = f on Sn−1. If g ∈ L∞, then G[g] ∈ C1,α(Bn).
See [12, Theorem 8.33] for this argument.

We will consider those solutions of the PDE ∆u = g that are quasiconformal as
well and investigate their Lipschitz character. A mapping f of a set A in the Euclidean
n-space Rn into Rn, n ≥ 2, is said to belong to the Lipschitz class Lipα(A), α > 0,
if there exists a constant M > 0 such that

(1.3) |f(x)− f(y)| ≤ M |x− y|α
for all x and y in A. If D is a bounded domain in Rn and if f is quasiconformal
in D with f(D) ⊂ Rn, then f is in Lipα(A) for each compact A ⊂ D, where
α = KI(f)1/(1−n) and KI(f) is the inner dilatation of f . Simple examples show
that f need not be in Lipα(D) even when f is continuous in D. However, Martio
and Näkki in [27] (see also [26]) showed that if f induces a boundary mapping which
belongs to Lipα(∂D), then f is in Lipβ(D), where

β = min(α,KI(f)1/(1−n));

the exponent β is sharp.
We are interested in the condition under which the quasiconformal mapping is in

Lip1(B
n). It follows from our results that the conditions that u is quasiconformal and

that |∆u| is bounded, guaranty that the selfmapping of the unit ball is in Lip1(B
n).

In particular, the results hold for quasiconformal harmonic mappings. It seems that
the family of q.c. harmonic mappings has first been considered in [25]. The papers
[8], [14], [15]–[24] and [31] bring much light on the topic of quasiconformal harmonic
mappings on the plane. In this paper we continue to study the same problem in the
space Rn which was started in the paper [16]. See also [3], [4] and [5] for the related
problem. The problem in the space is much more complicated because of the lack of
the techniques of complex analysis.

It is well known that the harmonic extension (via Poisson integral) of a home-
omorphism of the unit circle is always a diffeomorphism of the unit disk. In higher
dimensions, however, the situation is quite different. Namely, Melas ([29], see also
[22]) constructed a homeomorphism of the unit sphere Sn−1 (n ≥ 3) whose harmonic
extension fails to be diffeomorphic. See [7] for related results on the class of smooth
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quasiconformal mappings. The questions arise, do there exist such examples, assum-
ing both conditions, harmonicity and quasiconformality; in other words do some q.c.
harmonic mappings have critical points, i.e., the points in which the Jacobian is zero?
For K < 2n−1, such examples do not exist, see [19] or [33] for this argument. In [19],
the author and Mateljević proved that, under the condition K < 2n−1, a harmonic
quasiconformal mapping u of the unit ball onto itself is co-Lipschitz (meaning that
u−1 is Lipschitz). If w is a harmonic univalent function on a domain in the complex
plane, then by Lewy’s theorem (see [23] and [13]), w has a non-vanishing Jacobian,
and consequently, according to the inverse mapping theorem, w is a diffeomorphism.
However, in the space we cannot use this argument. Indeed, Lewy’s theorem fails
in higher dimensions, as it is shown in [36]. For this problem concerning q.c. hyper-
bolic harmonic selfmappings of the unit ball see [33], and for q.c. harmonic mappings
between complete Riemannian manifolds see [9].

The following theorem gives a positive answer to the question raised by the author
in [16]: whether a q.c. harmonic self-mapping of the unit ball is Lipschitz continuous
with Lipschitz constant depending only on a quasiconformality constant K? This
is a generalization of an analogous theorem for the unit disk due to the author and
Pavlović [21]. See also [16] and [30]. This is the main result of the paper as follows.

Theorem 1.1. Let K ≥ 1 be arbitrary, n ∈ N and let g ∈ L∞(Bn). Then
there exist constants M ′

1(n,K) and M ′
2(n,K) satisfying: if u is a K-quasiconformal

self-mapping of the unit ball Bn satisfying the PDE (in the sense of distributions)
∆u = g, with u(0) = 0, then:

(1.4) |u(x)− u(y)| ≤ (M ′
1(n,K) + M ′

2(n,K)|g|∞)|x− y|, x, y ∈ Bn.

Moreover, M ′
1(n,K) → 1 as K → 1.

The example 1.2 given below shows that the condition g ∈ L∞(Bn) of Theo-
rem 1.1 is necessary for u being Lipschitz. See also Example e) of Section 4 (the
mapping v).

Example 1.2. Let f(x) = |x|−1+K1/(1−n)
x. Then f is a K-quasiconformal map-

ping of the space onto itself. Let ϕ be a Möbius transformation of the unit ball Bn

onto the upper halfspace Hn; for example, ϕ(x) = (x − S)/|x − S|2 + S/2, where
S = (0, . . . , 0,−1). Then the mapping u(x) = ϕ−1 ◦ f ◦ ϕ is a C∞ K-quasiconformal
mapping of the unit ball onto itself, such that u is not Lipschitz, and therefore,
∆u /∈ L∞(Bn).

It is important to notice that the class of harmonic functions (mappings) con-
tains itself the class of holomorphic functions (mappings). Therefore, the class of
holomorphic automorphisms of the unit ball is a subclass of quasiconformal har-
monic self-mappings of the unit ball. On the other hand, according to Fefferman’s
theorem [10], every analytic bi-holomorphic mapping between two smooth domains
has a smooth extension to the boundary, and therefore, the class of bi-holomorphic
mappings between smooth domains is contained in the class of harmonic quasiconfor-
mal mappings. Therefore, our results can be considered as extensions of Fefferman’s
theorem. Some nontrivial examples of quasiconformal harmonic mappings are given
in Section 4.

The proof of Theorem 1.1, given in Section 3, depends on the following result:
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Proposition 1.3. [17] Let u : Bn → Ω be a twice differentiable q.c. mapping of
the unit ball onto the bounded domain Ω with C2 boundary satisfying the differential
inequality

|∆u| ≤ A|∇u|2 + B

for some A, B ≥ 0. Then ∇u is bounded and u is Lipschitz continuous.

One of the advantages of Theorem 1.1 in relation to Proposition 1.3 is that, in
Theorem 1.1 the Lipschitz constant does not depend on the mapping u, contrary to
the statement of Proposition 1.3. It also depends on Mori’s theorem in the theory of
quasiconformal mappings:

Proposition 1.4. [11] If u is a K-quasiconformal self-mapping of the unit ball
Bn with u(0) = 0, then there exists a constant M1(n,K), satisfying the condition
M1(n,K) → 1 as K → 1, such that

(1.5) |u(x)− u(y)| ≤ M1(n,K)|x− y|K1/(1−n)

.

See also [2] with some constant that is not asymptotically sharp.

The mapping |x|−1+K1/(1−n)
x shows that the exponent K1/(1−n) is optimal in the

class of arbitrary K-quasiconformal homeomorphisms.

2. Auxiliary results

By S and T we denote the spherical coordinates:

S : Qn
0 = [0, 1]× [0, π]× · · · × [0, π]× [0, 2π] 7→ Bn

and
T : Qn−1 = [0, π]× · · · × [0, π]× [0, 2π] 7→ Sn−1,

(S(r, θ0, . . . , θn−2, ϕ) = rT (θ1, . . . , θn−2, ϕ)), defined by S = (x1, x2, . . . , xn−1),

x1 = r cos θ1,

x2 = r sin θ1 sin θ2,

...
xn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos ϕ,

xn = r sin θ1 sin θ2 · · · sin θn−2 sin ϕ.

Then we have

(2.1) det∇S(r, θ1, . . . , θn−2, ϕ) = rn−1 sinn−2 θ1 · · · sin θn−2.

We will use notations θ = (θ1, . . . , θn−2, ϕ) and θn−1 = ϕ.

Lemma 2.1. Let u = P [f ] be a harmonic function defined on the unit ball, and
assume that its derivative v = ∇u is bounded on the unit ball (or equivalently, let u
be Lipschitz continuous). Then there exists a mapping A ∈ L∞(Sn−1) defined on the
unit sphere Sn−1 such that ∇u(x) = P [A](x) and for almost every η ∈ Sn−1 there
holds the relation

(2.2) lim
r→1−

∇u(rη) = A(η).

Moreover, the function f ◦ T is differentiable almost everywhere in Qn−1 and there
holds

A(T (θ)) · T ′(θ) = (f ◦ T )′(θ).
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Proof. For the proof of the first statement of the lemma, see for example [6,
Theorem 6.13 and Theorem 6.39]. Next, since

| ∂

∂θi

u(S(r, θ))| = |r∇u(S(r, θ))
∂

∂θi

T (θ)| ≤ |r∇u(S(r, θ))| · | ∂

∂θi

T (θ)|

≤ essupθ|A(T (θ))| · | ∂

∂θi

T (θ)| = Mi < ∞.

Now we make use of the following version Lebesgue Dominated Convergence Theo-
rem. Suppose that fn is a sequence of measurable functions in a measure space E,
that fn → f pointwise almost everywhere as n → ∞, and that |fn| < g for all n,
where g is integrable. Then f is integrable, and∫

E

f dµ = lim
n→∞

∫

E

fn dµ.

In our case we have g(θ) = Mi, fn =
∂

∂θi

u(S(rn, θ)), where rn → 1− 0. Thus

f(T (θ)) = lim
n→∞

u(S(rn, θ))

= lim
n→∞

∫ θi

θ0
i

∂

∂θi

u(S(rn, θ)) dθi + f(T (θ0))

=

∫ θi

θ0
i

lim
n→∞

∂

∂θi

u(rS(θ)) dθi + f(T (θ0))

=

∫ θi

θ0
i

lim
n→∞

rn∇u(S(rn, θ))
∂

∂θi

T (θ) dθi + f(T (θ0))

=

∫ θi

θ0
i

A(T (θ)) · ∂

∂θi

T (θ) dθi + f(T (θ0)).

(2.3)

Differentiating in θi for every i ∈ {1, . . . , n− 1} we get
∂

∂θi

f(T (θ)) = A(T (θ)) · ∂

∂θi

T (θ)

almost everywhere in Qn−1. Hence, we have

A(T (θ)) · T ′(θ) = (f ◦ T )′(θ)

almost everywhere in Qn−1. ¤

Lemma 2.2. Let u be a harmonic Lipschitz continuous mapping defined in the
unit ball Bn. Denote by ∇u the extension of the gradient up to the boundary
Sn−1 = ∂Bn, which exists almost everywhere in Sn−1. Then for x ∈ Bn

|∇u(x)| ≤ ess sup|η|=1|∇u(η)|,
where | · | is the matrix norm.

Proof. Let u = (u1, . . . un). For all pairs (i, j) the function ui,j = ∂ui

∂xj
is bounded

and harmonic. Hence, there exists a bounded integrable function gi,j defined on the
unit sphere such that ui,j = P [gi,j]. In other words,

∇u(x) =

∫

Sn−1

g(η)P (x, η) dσ(η),
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where g(η) is a n × n dimensional matrix (gi,j(η))n
i,j=1 and it coincides with ∇u(η).

For the induced matrix norm we have

|A| = max{〈Ah, k〉 : |h| = |k| = 1}.
Thus, for |h| = |k| = 1 we obtain

〈∇u(x)h, k〉 =

∫

Sn−1

〈g(η)h, k〉P (x, η) dσ(η) ≤
∫

Sn−1

|g(η)|P (x, η) dσ(η)

≤ ess sup|η|=1 |g(η)|
∫

Sn−1

P (x, η) dσ(η).

The proof is completed. ¤

Lemma 2.3. For every α < n the potential type integral

I(x) =

∫

Bn

dy

|x− y|α
exists for every x ∈ Rn, and achieves its maximum for x = 0. Furthermore,

(2.4) I(0) =
1

n− α
Ωn−1.

If |x| = 1 and α = n− 1, then

(2.5) I(x) =
2Γ(n

2
)

(n− 1)
√

πΓ(n−1
2

)
Ωn−1.

Moreover, there exists a decreasing function φ defined on [0, +∞) such that I(x) =
φ(r) on the sphere Sn−1(0, r) with r > 0.

Proof. Let A = Bn \ Bn(x, 1) and B = Bn ∩ Bn(x, 1). Then Bn = A ∪ B. If
y ∈ A, then |y − x| ≥ |y|. Thus

∫

A

dy

|x− y|α ≤
∫

A

dy

|y|α .

On the other hand, B = −B + x. Thus
∫

B

dy

|x− y|α =

∫

B

dy

|y|α .

Hence,

I(x) =

∫

Bn

dy

|x− y|α ≤ I(0) =

∫

Bn

dy

|y|α .

Introducing the spherical coordinates centered at 0 and at a point x on the integrals
I(0) and I(x), respectively we obtain the relations (2.4) and (2.5). Using the similar
argument it follows that φ is decreasing.

Lemma 2.4. [16] The integral

I =

∫

Sn−1

|a− η|γ dσ(η),

a ∈ Sn−1 converges if and only if γ > 1− n. If γ = 2− n, then I = 1. ¤
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Lemma 2.5. Let ρ be a bounded (absolutely) integrable function defined on a
bounded domain Ω ⊂ Rn. Then the potential type integral

I(x) =

∫

Ω

ρ(y) dy

|x− y|α
belongs to the space Cp(Rn), p ∈ N, such that α + p < n. Moreover,

∇I(x) =

∫

Ω

∇ 1

|x− y|α ρ(y) dy.

For the proof see for example [34, pp. 24–26].

Lemma 2.6. If g is continuous on B
n, then the mapping G[g] has a bounded de-

rivative, i.e., it is Lipschitz continuous. Moreover, ∇G[g] has a continuous extension
to the boundary and there holds

∇G[g](η)h =

∫

Bn

〈η, h〉
Ωn−1

1− |y|2
|η − y|n g(y) dy

for η ∈ Sn−1.

Proof. First of all for x 6= y we have

Gx(x, y) = cn
(2− n)(x− y)

|x− y|n + cn
(n− 2)(|y|2x− y)

|x|y| − y/|y| |n .

Thus for η ∈ Sn−1 we have

(2.6) lim
x→η

Gx(x, y) =
1

Ωn−1

η(1− |y|2)
|η − y|n .

Let

(2.7) G1(x, y) :=
1

Ωn−1

x− y

|x− y|n ,

and let

(2.8) G2(x, y) :=
1

Ωn−1

y − |y|2x
| x|y| − y/|y| |n .

The function G2 is harmonic for x ∈ Bn. According to Lemma 2.5, it follows

∇G[g](x)h =

∫

Bn

〈Gx(x, y), h〉 g(y) dy

=

∫

Bn

〈G1(x, y), h〉 g(y) dy +

∫

Bn

〈G2(x, y), h〉 g(y) dy.

(2.9)

The last statement of the lemma follows from relations (2.6) and (2.9) and Lebesgue
Dominated Convergence Theorem. ¤

Lemma 2.7. Let u be a solution of the PDE ∆u = g (g ∈ C(Bn)) that maps
the unit ball onto itself properly (|u(x)| → 1 as |x| → 1). Let in addition u be
Lipschitz continuous. Let χ(θ) = f(T (θ)) := f(t), t ∈ Sn−1. Then there exist almost
everywhere in Sn−1

(2.10) ∇u(t) := lim
r→1−

∇u(rt)
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and

(2.11) Ju(t) := lim
r→1−

Ju(rt),

t ∈ Sn−1. Furthermore, the following relation holds:

Ju(t) =
Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)

+
Dχ

DT

∫ 1

0

rn−1

(∫

Sn−1

P (rη, t) 〈g(rt), f(η)〉 dσ(η)

)
dr, t ∈ Sn−1.

(2.12)

Here Dχ and DT denote the square roots of Gram determinants of ∇χ and ∇T ,
respectively. If u is biharmonic (∆∆u = 0), then there holds

Ju(t) =
Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η) +

Dχ

DT

∫ 1

0

rn−1
〈
g(r2t), f(t)

〉
dr,(2.13)

t ∈ Sn−1. For arbitrary continuous function g and |g|∞ = max|x|≤1 |g(x)| there holds
the inequality

(2.14) |Ju(t)− Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)| ≤ Dχ

DT

|g|∞
n

, t ∈ Sn−1.

Proof. First of all, according to Lemma 2.6, G[g] has a bounded derivative,
and there exists the function ∇G[g](η), η ∈ Sn−1 which is continuous and satis-
fies the limit relation limx→η ∇G[g](x) = ∇G[g](η). Since u = P [f ] − G[g] has
a bounded derivative, according to the Lemma 2.1, it follows that there exists
limr→1−∇P [f ](rη) = ∇P [f ](η). Thus, limr→1−∇u(rη) = ∇u(η). It follows that
the mapping χ defines the outer normal vector field nχ almost everywhere in Sn−1

at the point χ(θ) = f(T (θ)) = (χ1, χ2, . . . , χn) by the formula

(2.15) nχ(χ(θ)) = χθ1 × · · · × χθn−2 × χϕ.

Since nχ(χ(θ)) is the normal vector to the unit sphere, there holds the equality

(2.16) nχ(χ(θ)) = Dχ · f(T (θ)).

Let u(S(r, θ)) = (y1, y2, . . . , yn), where S are spherical coordinates. According to
Lemma 2.1, we obtain

(2.17) lim
r→1−

yiϕ(r, θ) = χiϕ(θ), i ∈ {1, . . . , n},

(2.18) lim
r→1−

yiθj
(r, θ) = χiθj

(θ), i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 2}.

On the other hand, for almost every t ∈ Sn−1 we have

χi(θ)− yi(r, θ)

1− r
= yir(ρr,θ, θ),

where r < ρr,θ < 1. Thus we get

(2.19) lim
r→1−

yir(r, θ) = lim
r→1−

χi(θ)− yi(r, θ)

1− r
, i ∈ {1, . . . , n}.
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Hence, we find that

lim
r→1−

Ju◦S(r, θ) = lim
r→1−

〈
χ− P [f ]

1− r
, χθ1 × · · · × χθn−2 × χϕ

〉
+ Λ

= lim
r→1−

∫

Sn−1

1 + r

|η − rt|n
〈
χ− f(η), χθ1 × · · · × χθn−2 × χϕ

〉
dσ(η) + Λ

= lim
r→1−

∫

Sn−1

1 + r

|η − S(r, θ)|n 〈f(T (θ))− f(η),nf◦T (T (θ))〉 dσ(η) + Λ

= lim
r→1−

Dχ(θ)

∫

Sn−1

1 + r

|η − S(r, θ)|n 〈f(T (θ))− f(η), f(T (θ))〉 dσ(η) + Λ

= lim
r→1−

1 + r

2
Dχ(θ)

∫

Sn−1

|f(T (θ))− f(η)|2
|η − S(r, θ)|n dσ(η) + Λ,

(2.20)

where Λ = limr→1−
〈

G[g]
1−r

, χθ1 × · · · × χθn−2 × χϕ

〉
.

In order to estimate Λ, observe first that

(2.21) G(x, y) = cn
|x|y| − y/|y||n−2 − |x− y|n−2

|x− y|n−2 · |x|y| − y/|y||n−2
.

Next, we have

|x|y| − y/|y||n−2 − |x− y|n−2

= (|x|y| − y/|y|| − |x− y|)
n−2∑

k=1

(|x|y| − y/|y||)n−2−k · |x− y|k−1
(2.22)

and

|x|y| − y/|y|| − |x− y| = |x|y| − y/|y||2 − |x− y|2
|x|y| − y/|y||+ |x− y|

=
(1 + |x|2|y|2 − 2 〈x, y〉)− (|x|2 + |y|2 − 2 〈x, y〉)

|x|y| − y/|y||+ |x− y|
=

(1− |x|2)(1− |y|2)
|x|y| − y/|y||+ |x− y| .

(2.23)

Inserting (2.22) and (2.23) into (2.21), we obtain for a.e. t ∈ Sn−1

(2.24) lim
x→t

G(x, y)

1− |x| =
1

Ωn−1

P (y, t).

On the other hand, we have

1

Ωn−1

∫

Bn

P (y, t) 〈g(y), f(t)〉 dy

=

∫ 1

0

rn−1(

∫

Sn−1

P (rη, t) 〈g(rη), f(t)〉 dσ(η)) dr.

(2.25)

Next, there holds

(2.26) Ju◦S(r, θ) = rn−1Ju(rT (θ)) ·DT (θ).
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Combining (2.20), (2.24), (2.25) and (2.26) we obtain (2.12). Relations (2.13) and
(2.14) follow from (2.12) and (1.2). If u is biharmonic, then g is harmonic and thus,∫

Sn−1

P (rη, t) 〈g(rη), f(t)〉 dσ(η) =
〈
g(r2t), f(t)

〉
.

This yields the relation (2.13). ¤
Assume that A is an n × n matrix with entries from R. Define the (i, j)-minor

Mi,j of A as the determinant of the (n−1)× (n−1) matrix that results from deleting
i’th row and j’th column of A, and the (i, j)-cofactor of A as

Cij = (−1)i+jMij .

Then the adjugate of A is the n× n matrix

Ã = (Cji)
n
i,j=1 .

If A is an invertible matrix, then

A−1 = det(A)−1 Ã.

That is, the adjugate of A is the transpose of the cofactor matrix (Cij)
n
i,j=1 of A.

Lemma 2.8. Let A : Rn → Rn be a linear operator such that A = [aij]i,j=1,...,n.
If A is K-quasiconformal, then there holds the following double inequality:

(2.27) K1−n|A|n−1|x1× · · ·×xn−1| ≤ |Ax1× · · ·×Axn−1| ≤ |A|n−1|x1× · · ·×xn−1|.
Both inequalities in (2.27) are sharp.

Proof. Let e1 = (1, 0, . . . , 0), . . . en = (0, . . . , 0, 1). Let xi =
∑n

j=1 xijej, i =
1, . . . n− 1. Then

Ax1 × · · · × Axn−1 =
∑

σ

εσx1,σ1 . . . xn−1σn−1Aeσ1 × · · · × Aeσn−1 ,

where σ runs through all permutations of {1, 2, . . . , n− 1}. It follows that
(2.28) Ax1 × · · · × Axn−1 = Ãx1 × · · · × xn−1.

As A is K-quasiconformal, Ã is quasiconformal as well. Let λ2
1 ≤ · · · ≤ λ2

n be the
eigenvalues of the matrix AT A. Since A is K-quasiconformal, then

(2.29)
λn

λ1

≤ K.

From Ã = det A · A−1 it follows that

λ̃2
k = (det A)2 · 1

λ2
k

, k = 1, . . . n,

are eigenvalues of the matrix ÃT Ã. Moreover,

λ̃n ≤ λ̃n−1 ≤ · · · ≤ λ̃1

and consequently,
λ̃1

λ̃n

≤ K.

From (2.28) we obtain

(2.30) |Ax1 × · · · × Axn−1| ≤ |Ã| · |x1 × · · · × xn−1|.
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Furthermore

(2.31) |Ã| = λ̃1 =
det A

λ1

=
n∏

k=2

λk ≤ λn−1
n = |A|n−1.

The relations (2.30) and (2.31) yield the right inequality of (2.27).
In order to obtain the left inequality of (2.27), again we make use of (2.28). From

(2.28) it follows that

(2.32) |Ax1 × · · · × Axn−1| ≥ λ̃n · |x1 × · · · × xn−1|.
On the other hand,

λ̃n =
det A

λn

=
n−1∏

k=1

λk ≥ K1−nλn−1
n .

This inequality completes the proof of lemma. ¤

Lemma 2.9. Let u be a solution of the PDE ∆u = g, g ∈ C(B
n
), that is

Lipschitz continuous. Denote by ∇u its extension up to the boundary Sn−1 = ∂Bn,
which exists almost everywhere in Sn−1. Then for x ∈ Bn,

(2.33) |∇u(x)| ≤ ess sup|η|=1|∇u(η)|+
(

1 +
2Γ(n

2
)

(n− 1)
√

πΓ(n−1
2

)

)
|g|∞,

where | · | is any norm of matrices and |g|∞ = max{|g(x)|, x ∈ B
n}.

Proof. By using the notation of Lemma 2.6, we have

∇u = ∇P [f ](x)−∇G[g](x)

= ∇P [f ](x)−
∫

Bn

G1(x, y)g(y) dy −
∫

Bn

G2(x, y)g(y) dy.

Thus

∇u(x) +

∫

Bn

G1(x, y)g(y) dy = ∇P [f ](x)−
∫

Bn

G2(x, y)g(y) dy =: h(x).

Applying Lemma 2.2 to the harmonic mapping h, we have

|∇u(x) +

∫

Bn

G1(x, y)g(y) dy| ≤ ess sup|t|=1|h(t)|

≤ ess sup|t|=1|∇u(t)|+ sup
|t|=1

|
∫

Bn

G1(t, y)g(y) dy|.

Hence, for x ∈ Bn we have

|∇u(x)| ≤ ess sup|t|=1|∇u(t)|+ ess sup|x|≤1|
∫

Bn

G1(x, y)g(y) dy|

+ ess sup|t|=1

∫

Bn

|G1(t, y)||g(y)| dy.

Using now Lemma 2.3, we have

|∇u(x)| ≤ ess sup|t|=1|∇u(t)|+ (1 +
2Γ(n

2
)

(n− 1)
√

πΓ(n−1
2

)
)|g|∞. ¤
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Remark 2.10. It is known that harmonic and subharmonic functions satisfy the
maximum principle. However, if u ∈ C2(Bn) ∩ C1(Bn) satisfies the PDE ∆u = g,
with

(2.34) g ∈ C1(Ω), 〈∇u,∇g〉 ≤ |g|2∞
n

,

then the mapping ∇u satisfies the maximum principle

(2.35) sup
Bn

|∇u(x)| = sup
Sn−1

|∇u(x)|.

This estimate is better than the estimate (2.33), but the condition (2.34) is an es-
sential one. For the details, see [12, Theorem 15.1].

Lemma 2.11. If x ≥ 0 is a solution of the inequality x ≤ axα + b, where a ≥ 1
and 0 ≤ aα < 1, then

(2.36) x ≤ a + b− αa

1− αa
.

Observe that for α = 0, (2.36) coincides with x ≤ a + b, i.e., x ≤ axα + b.

Proof. We will use the Bernoulli’s inequality x ≤ axα + b = a(1 + x− 1)α + b ≤
a(1 + α(x− 1)) + b. The relation (2.36) now easily follows. ¤

3. The main results

Theorem 3.1. Let K ≥ 1 be arbitrary, n ∈ N, and let g ∈ C(Bn). Then there
exists a constant M ′ = M ′(n,K) such that if u is K-quasiconformal self-mapping of
the unit ball Bn satisfying the PDE ∆u = g, with u(0) = 0, then

(3.1) |u(x)− u(y)| ≤ M ′|x− y|, x, y ∈ Bn,

where M ′ = M ′
1(n,K)+M ′

2(n,K)|g|∞. Moreover, if u is harmonic, then M ′(n,K) →
1 as K → 1.

Proof. Let u(S(r, θ)) = (y1, y1, . . . , yn), where S are the spherical coordinates.
Combining Proposition 1.3 and Lemma 2.7, in the special case where the co-domain
is the unit ball, we obtain that there exists ∇u and Ju almost everywhere in Sn−1

and there holds the following inequality:

(3.2) Ju(t) ≤ Dχ

DT

(∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η) +

|g|∞
n

)
, t ∈ Sn−1.

Now from
|∇u(S(r, θ))|n ≤ KJu(S(r, θ))

we obtain

(3.3) lim
r→1−

|∇u(S(r, θ))|n ≤ lim
r→1−

KJu(S(r, θ))

almost everywhere in Qn−1. From Lemma 2.1 we deduce that

lim
r→1−

∂u ◦ S

∂θ1

(r, θ)× · · · × ∂u ◦ S

∂θn−2

(r, θ)× ∂u ◦ S

∂ϕ
(r, θ)

=
∂f ◦ T

∂θ1

(θ)× · · · × ∂f ◦ T

∂θn−2

(θ)× ∂f ◦ T

∂ϕ
(θ)
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almost everywhere in Qn−1. Since
∂u ◦ S

∂θi

(r, θ) = ru′(S(r, θ))
∂T

∂θi

,

using (2.27) we obtain that

(3.4) Dχ(θ) ≤ lim
r→1−

|∇u(S(r, θ))|n−1DT (θ).

From (3.2)–(3.4) we infer that

|∇u(T (θ))|n ≤ K|∇u(T (θ)|n−1

(∫

Sn−1

|f(T (θ))− f(η)|2
|η − T (θ)|n dσ(η) +

|g|∞
n

)
,

i.e.,

(3.5) |∇u(T (θ))| ≤ K

(∫

Sn−1

|f(T (θ))− f(η)|2
|η − T (θ)|n dσ(η) +

|g|∞
n

)
.

In view of Lemma 2.9, for every ε > 0 there exists θε ∈ Qn−1 such that
M := ess sup{|∇u(x)| : |x| < 1}

≤ (1− ε)−1

(
|∇u(T (θε))|+ (1 +

2Γ(n
2
)

(n− 1)
√

πΓ(n−1
2

)
)|g|∞

)
.

(3.6)

The mean value theorem yields

(3.7) |u(x)− u(y)| ≤ ess sup
t∈Bn

|∇u(t)| · |x− y|.

Let µ = K1/(1−n). It is clear that 0 < µ ≤ 1. Let γ = 1− n + µ2, and let ν = 1− µ.
Now applying the relation (3.5) for θ = θε, and using (1.5), (3.6) and (3.7), we obtain

(1− ε)M − (1 +
2Γ(n

2
)

(n− 1)
√

πΓ(n−1
2

)
)|g|∞

≤ K

(
M ν

∫

Sn−1

|η − T (θε)|γ |f(T (θε))− f(η)|2−ν

|T (θε)− η|µ2+µ
dσ(η) +

|g|∞
n

)

≤ KM νM1(n,K)1+µ

∫

Sn−1

|η − T (θε)|γ dσ(η) + K
|g|∞
n

.

Letting ε → 0 we obtain

M ≤ M2(n,K)M ν + M3(n,K)|g|∞,

where
M2(n,K) = KM1(n,K)1+µ

∫

Sn−1

|η − T (θ0)|γ dσ(η),

θ0 is a fixed vector in Qn−1, and

M3(n,K) = (1 +
2Γ(n

2
)

(n− 1)
√

πΓ(n−1
2

)
) +

K

n
.

First of all, there holds

M ≤ M4 := (M2(n,K) + M3(n,K)|g|∞)1/(1−ν)

= (M2(n,K) + M3(n,K)|g|∞)K1/(n−1)

.
(3.8)
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If νM2(K) < 1, from Lemma 2.11 we get

(3.9) M ≤ M5 :=
M2(n,K) + M3(n,K)|g|∞ − νM2(n,K)

1− νM2(n,K)
.

Therefore, the inequality (3.1) does hold for

M ′ = min({M4} ∪ {M5 : νM2(K) < 1}).
Using (1.5), Lemma 2.8 and Lemma 2.4, it follows that limK→1 M ′(n,K) = 1 if
g = 0. ¤

Concerning the co-Lipschitz character of these mappings we have the following
partial result.

Theorem 3.2. Let K < 2n−1 and assume that u is a K-q.c. solution of PDE
∆u = g that maps the unit ball onto itself satisfying the following conditions:

i) u ∈ C1(Bn),
ii) g ∈ C(Bn) such that |g|∞ < M0(n,K), where M0(n,K) is given in (3.14).

Then u is co-Lipschitz.

Proof. From (2.14) we obtain

(3.10) Ju(t) ≥ Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)− Dχ

DT

|g|∞
n

, t ∈ Sn−1.

Using (2.27) we obtain

(3.11) K1−n lim
r→1−

|∇u(S(r, θ))|n−1 ≤ Dχ

DT

≤ lim
r→1−

|∇u(S(r, θ))|n−1.

Combining (3.10) and (3.11) it follows that

lim
r→1−

|∇u(S(r, θ))|n ≥ K−n| lim
r→1−

|∇u(S(r, θ))|n−1

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)

− lim
r→1−

|∇u(S(r, θ))|n−1 |g|∞
n

, t ∈ Sn−1,

i.e.,

lim
r→1−

|∇u(S(r, θ))| ≥ K−n

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)− |g|∞

n
, t ∈ Sn−1.(3.12)

As u−1 is K-q.c., using (1.5) and (3.12) we get

lim
r→1−

|∇u(S(r, θ))| ≥ M0(n,K)− |g|∞
n

, t ∈ Sn−1,(3.13)

where

(3.14) M0(n,K) =

∫

Sn−1

nK1−n(M1(n,K))2K1/(1−n)

|η − t|n−2K1/(n−1)
dσ(η).

The rest of the proof follows from the condition i) and [33, Lemma 4.5]. ¤
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4. Examples of quasiconformal self-mappings of Bn

satisfying the Poisson equation

In this section we give some examples of quasiconformal and harmonic map-
pings on the space that are not trivial, i.e., that are not linear transformation of the
space. We also deduce some sufficient conditions for radial homeomorphisms to be
quasiconformal solutions of a Poisson’s equation.

a) Let B2n ⊂ Cn and let f be a holomorphic automorphism of the unit ball B2n

onto itself. Then f is a q.c. harmonic mapping. To prove this fact, observe that
∂̄f = 0 ⇒ ∂∂̄f = 0. Also, f has a holomorphic extension up to the boundary. This
means that it is bi-Lipschitz. Therefore, f is a q.c. harmonic mapping. In this setting
it is interesting to note that the composition of harmonic and holomorphic mapping
is itself harmonic.

b) Define Iδ(x) = x + δ(x), where x ∈ Bn and δ(x) ∈ Bn, and take

φδ = Iδ/|Jδ|,
where

|Jδ|2 = 1 + 2 〈x, δ(x)〉+ |δ(x)|2.
Let Φδ(x) = P [φδ](x), where φδ is C2 smooth perturbation of the identity mapping
of the unit sphere onto itself. It was shown in [19] that Φδ(x) is a quasiconformal
harmonic mapping if δ is close enough to zero mapping in C2 norm.

In the example (c) given below it is shown that for the class of radial twice
differentiable q.c. selfmappings of the unit ball (which is quite large), Theorem 3.1
yields also a sufficient condition. In its particular case (d) it is shown that the
condition K < 2n of Theorem 3.2 is the best possible.

c) Consider now u(x) = h(|x|)x, where r 7→ rh(r) is a twice differentiable diffeo-
morphism of [0, 1) onto itself. Then for r = |x|,

(4.1) Ju(x) = hn(r)

(
1 +

h′(r)
h(r)

r

)
,

and

(4.2) |∇u(x)|n = hn(r)

(
1 +

h′(r)
h(r)

r

)n

.

From (4.1) and (4.2) we obtain

|∇u(x)|n
Ju(x)

=

(
1 +

h′(r)
h(r)

r

)n−1

.

Thus, u is a self-mapping of the unit ball satisfying PDE

∆u(x) = g(x) :=

(
h′′(r) +

(n + 1)h′(r)
r

)
x,

and it is quasiconformal if and only if

(4.3) lim sup
r→1

h′(r) < ∞,

or what is the same if and only if |∇u(x)| is bounded.
d) Take u(x) = |x|αx with α ≥ 1. Then

(4.4) Ju(x) = (1 + α)|x|nα,
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and

(4.5) |∇u(x)| = (α + 1)|x|α.

By (4.4) and (4.5) it follows that
|∇u(x)|n

Ju(x)
= (α + 1)n−1.

Therefore, u is twice differentiable (1+α)n−1-quasiconformal self-mapping of the unit
ball with Ju(0) = 0. This means that the constant 2n−1 is the best possible.

e) It was suggested to me by professor Mateljević [28] that the Kalvin transform
of the identity, i.e., the mapping

f(x) = |x|−nx,

is a quasiconformal harmonic mappings of the extended space to itself with maximal
dilatation equal to n− 1. Namely, for |h| = 1,

f ′(x)h =
h

|x|n −
nx 〈x, h〉
|x|n+2

,

and this implies that

|f ′(x)h|2 =
|h|2
|x|2n

+ (n2 − 2n)
〈x, h〉2
|x|2n+2

.

Therefore,

(4.6)
1

|x|2n
≤ |f ′(x)h|2 ≤ (n− 1)2

|x|2n
.

In view of (2.29), this implies the fact that f is a n−1-quasiconformal mapping. We
conclude that the Kelvin transform of every quasiconformal harmonic mapping is a
quasiconformal harmonic mapping. Let ϕ be a Möbius transformation of the unit
ball Bn onto the upper halfspace Hn. Then the mapping u(x) = ϕ−1 ◦ f ◦ϕ is a C∞

n− 1-quasiconformal mapping of the unit ball onto itself. Namely,

ϕ(x) = A[(x− b)∗ − (a− b)∗]

for some constant conformal matrix A, a, b are some vectors from the unit sphere.
Here y∗ := y/|y|2 for y 6= 0, see [1]. An example of a mapping of the unit ball onto
the upper half-space is the mapping

ϕ(x) = (x− S)∗ + S/2,

where S = (0, 0, . . . , 0,−1) is the south pole of the sphere. It satisfies the condition
ϕ(S) = ∞, ϕ(N) = 0, where N is the north pole and

ψ(y) = ϕ−1(y) = (y − S/2)∗ + S.

Now we have
u′(x) = ψ′(f) · f ′(ϕ) · ϕ′(x).

On the other hand,

|ϕ′(x)| = 1

|x− S|2 ,

and
|ψ′(f)| = 1

|f − S/2|2 .
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From (4.6) it follows that

(4.7) |u′(x)| ≤ (n− 1)
1

|f(ϕ(x))− S/2|2 ·
1

|ϕ(x)|n ·
1

|x− S|2 .

Since |f(ϕ(x))−S/2| ≥ 1/2 for x ∈ Bn, the only points at which the right hand side
of (4.7) is possibly unbounded are the points S and N . However, it is straightforward
that these points are removable singularities of the right hand side of (4.7), namely
u′(S) = 0 and u′(N) = 0. Thus, u is Lipschitz but it is not bi-Lipschitz. It seems
that ∆u ∈ L∞(Bn), but I didn’t verify this fact.

On the other hand, the mapping v = u−1 = ϕ−1◦f−1◦ϕ is a (n−1)-quasiconformal
mapping of the unit ball onto itself such that it is not Lipschitz and therefore, ∆v 6∈
L∞(Bn). Recall that we have a priori the assumption that n > 2. The case n = 2 is
excluded because the mappings u and v are anti-conformal.

Remark 4.1. The condition (4.3) together with the condition r 7→ rh(r) is a
twice differentiable diffeomorphism of [0, 1) onto itself, implies that g = ∆u(x) ∈
L1(Bn) but not g ∈ L∞(Bn) which is a subject of our a priori conditions throughout
the paper. The question arises, can the condition g ∈ L∞(Bn) be replaced by g =
∆u(x) ∈ Lp(Bn) (for some p in our context).
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