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Abstract. In this paper, we prove that a large class of Moran sets on the line with Hausdorff
dimension 1 are 1-dimensional quasisymmetrically minimal. We also obtain a general theorem on
the Hausdorff dimension of Moran set on the line.

1. Introduction

Let (X, dX), (Y, dY ) be metric spaces. A topological homeomorphism f : X → Y
is called quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such that

dY

(
f(x), f(a)

)

dY

(
f(x), f(b)

) ≤ η

(
dX(x, a)

dX(x, b)

)

for all triples a, b, x of distinct points in X. In particular, we also say that f is
an n-dimensional quasisymmetric mapping when X = Y = Rn. Quasisymmetry is
an important notion in the theory of analysis on metric spaces ([9]) and complex
analysis ([2]). It is the generalization of quasiconformality in Euclidean spaces to
general metric spaces (see [19]).

Unlike bi-Lipschitz mappings, quasisymmetric mappings do not preserve Haus-
dorff dimension. So there is a natural problem that how the quasisymmetric mappings
change the Hausdorff dimension. Many efforts have been devoted to this problem, es-
pecially in Euclidean spaces. For example, if dimH E = 0, then dimH f(E) = 0 for any
quasisymmetric mapping f, since f is Hölder continuous (see [1]); if 0 < dimH E < n,
Bishop [3] showed that for any ε > 0 there is an n-dimensional quasisymmetric map-
ping f such that dimH f(E) > n−ε; Tyson and Wu [21] obtained that the Sierpinski
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gasket can be mapped by a 2-dimensional quasisymmetric mapping onto a set with
Hausdorff dimension arbitrarily close to one.

We call a set E ⊂ Rn quasisymmetrically minimal if

dimH f(E) ≥ dimH E

for any n-dimensional quasisymmetric map f . Let E ⊂ Rn and f be an n-dimensional
quasisymmetric mapping. The following are some known facts.

(1) Tyson [20] proved that for all α ∈ [1, n], there exists a set E ⊂ Rn which is
quasisymmetrically minimal with dimH E = α.

(2) Kovalev [14] pointed out that there is no quasisymmetrically minimal set E
with 0 < dimH E < 1.

(3) If n ≥ 2, Gehring et al. [6, 7] showed that n-dimensional quasisymmetric
mappings preserve sets of Hausdorff dimension n.

(4) However, when n = 1, Tukia [18] obtained that there exists E ⊂ R of Haus-
dorff dimension 1 with dimH f(E) < 1 for some 1-dimensional quasisymmetric
mapping f .

From the above results, we will focus attention on the question that which sets
in R of Hausdorff dimension 1 are minimal. There are some related result:

(1) The first known examples of minimal subsets of R are quasisymmetrically
thick sets. Recall from [17], a set E ∈ R is called a quasisymmetrically thick
set if f(E) has positive Lebesgue measure for all quasisymmetric mapping f .

(2) Hakobyan [8] proved that middle interval Cantor sets of Hausdorff dimension 1
are all minimal. It was shown that these sets need not be quasisymmetrically
thick sets.

(3) Recently, Hu and Wen [10] extended the results in [8]. They proved that
uniform Cantor sets of Hausdorff dimension 1 are minimal.

It is worth noting that all minimal sets appearing in [8, 10] are some special kinds
of Moran sets—homogeneous Cantor sets (see Definition 1 and 2).

In this paper, we will show that the results of [8, 10] are no accidents. In fact,
a large class of Moran sets on the line with Hausdorff dimension 1 are minimal
(Theorem 1). The main tool in the proof of Theorem 1 is some Gibbs-like measures.
Moveover, the measures are also useful to determine the Hausdorff dimension of
Moran sets. With this measure in hand, we can generalize some classic results in [13]
on the Hausdorff dimension of Moran sets (Theorem 2).

This paper is organized as follows. In the rest of Section 1, we state Theorems 1
and 2 in Section 1.1, before the introduction to the Moran sets (Section 1.2). In
Section 2, we introduce the so called Gibbs-like measures. The proof of Theorem 1
is given in Section 3, which based on some ideas of Hakobyan [8]. In Section 4.1, we
prove Theorem 2. Some remarks on the Hausdorff dimension of Moran sets appear
in Section 4.2.

1.1. Main results. With the technical notations and definition of Moran set in
Section 1.2, we state our main results. The first one concerns the quasisymmetrically
minimal sets on the line.
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Theorem 1. Let E ∈ M (J, {nk}, {ck,j}). If s∗ = 1, supk nk < ∞ and there
exists a constant α ∈ (0, 1) such that

(1.1) lim inf
n→∞

card{1 ≤ k ≤ n : Dk ≤ α}
n

> 0,

then dimH E = 1 and E is minimal for 1-dimensional quasisymmetric mapping.

Remark 1. Theorem 1 includes the results in [8, 10]. In fact, [8] requires nk ≡ 2,
ck,1 = ck,2 = Dk < 1/2 for all k, [10] requires supk nk < ∞, ck,1 = · · · = ck,nk

= Dk ≤
1/2 for all k, and all the minimal sets in [8, 10] are homogeneous Cantor sets (see
Section 1.2) with s∗ = 1. In above cases, s∗ = 1, supk nk < ∞ and (1.1) holds for
α = 1/2. Therefore the conditions in Theorem 1 is much weaker than those in [8, 10].

As far as we know, there is no theorem to ensure dimH E = 1 under the conditions
of Theorem 1. This enlightens a more general theorem on the Hausdorff dimension
of Moran sets in the Moran class M (J, {nk}, {ck,j}).

Theorem 2. Let E ∈ M (J, {nk}, {ck,j}). If

(1.2) lim
k→∞

log(knk)

−∑k
i=1 log Di

= 0,

then dimH E = s∗. Moreover, when s∗ = 1, the condition that

(1.3)
∞∑

k=1

nk

( k∏
i=1

Di

)δ

< +∞ for some δ ∈ (0, 1)

ensures dimH E = 1.

Remark 2. The condition (1.2) is equivalent to

(1.4)
∞∑

k=1

nk

( k∏
i=1

Di

)δ

< +∞ for all δ > 0.

So the condition (1.3) is weaker than the condition (1.2).

Remark 3. By Theorem 2, it is plain to see that dimH E = 1 under the con-
ditions of Theorem 1. In fact, supk nk < ∞ implies log(knk) ∼ log k as k → ∞,
and conation (1.1) implies

∑k
i=1 log Di = O(k) as k → ∞. And so the condition of

Theorem 2 follows.

Remark 4. In the proof of Theorem 2, we can loosen the restriction nk ≥ 2 and
ck,j ∈ (0, 1) in the definition of Moran sets, here we permit the case that nk = 1 or
ck,j = 1.

1.2. Definition of Moran sets. Let {nk}k≥1 be a sequence of positive integers
and {ck,j}k≥1,1≤j≤nk

a sequence of positive numbers satisfying nk ≥ 2 and ck,j ∈ (0, 1)
for all k ≥ 1, 1 ≤ j ≤ nk. Write

(1.5) Dk = max
1≤j≤nk

ck,j, dk = min
1≤j≤nk

ck,j, c∗ = inf
k,j

ck,j

and

(1.6) s∗ = lim inf
k→∞

sk and s∗ = lim sup
k→∞

sk,
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where sk is defined by the equation

(1.7)
k∏

i=1

ni∑
j=1

csk
i,j = 1.

Let Ω0 = {∅}, where ∅ is the empty word. For any positive integer k, let

Ωk =
{
(σ1, . . . , σk) : σj ∈ [1, nj] ∩N for 1 ≤ j ≤ k

}
.

Define Ω =
⋃

k≥0 Ωk. For any integers l, k with l > k ≥ 1, let

Ωk,l =
{
(τk+1, . . . , τl) : τj ∈ [1, nj] ∩N for k + 1 ≤ j ≤ l

}
.

Define σ ∗ τ = (σ1, . . . , σk, τk+1, . . . , τl) ∈ Ωl for any σ ∈ Ωk and τ ∈ Ωk,l. The length
of σ ∈ Ωk will be denoted by |σ|(= k) and the diameter of set A ⊂ Rn will be denoted
by |A|. For convenience, we also use σ1 . . . σi to denote (σ1, . . . , σi).

Definition 1. (Moran set) Suppose that J ⊂ R is a closed interval. For a
collection F = {Jσ : σ ∈ Ω} of closed subintervals of J with J∅ = J , we say F has
Moran structure, if for all k ≥ 1, there are constants ck,1, · · · , ck,nk

such that for any
σ ∈ Ωk−1, Jσ∗1, Jσ∗2, · · · , Jσ∗nk

are subintervals of Jσ with their interiors pairwise
disjoint, and for any 1 ≤ j ≤ nk,

|Jσ∗j|/|Jσ| = ck,j.

A Moran set determined by F is defined by

E(F ) :=
⋂

k≥1

⋃
σ∈Ωk

Jσ.

Here any Jσ in F is called a basic element of E. Denote by M (J, {nk}, {ck,j}) the
class of all Moran sets associated with J , {nk} and {ck,j}.

Definition 2. (Homogenous Cantor set) We call E(F ) a homogeneous Cantor
set, if furthermore the Moran structure F satisfies the following conditions:

(i) for any k, ck,j take the same value ck independent of j;
(ii) for any k ≥ 1 and σ ∈ Ωk−1, the gaps between Jσ∗j and Jσ∗(j+1) (1 ≤ j < nk)

are equal;
(iii) for any k ≥ 1 and σ ∈ Ωk−1, the left endpoint of Jσ∗1 is the same as that of

Jσ, and the right endpoint of Jσ∗nk
is the same as that of Jσ.

Some special cases of Moran sets were first studied by Moran [15]. The later
works [5, 11, 12, 13, 16, 22] developed the theory on the geometrical structure and
dimensions of Moran sets systematically. Roughly speaking, the Moran sets general-
ize the classic self-similar sets from the following points (see Definition 1):

• the placements of the basic sets at each step of the construction can be arbi-
trary;

• the contraction ratios may be different at each step;
• the lower limit of the contraction ratios permits zero.

Sometimes, these generalizations make it possible to find a Moran subset B in a
given fractal set A with dim B = dim A. As a result, the theory on the dimensions
of Moran sets has become a powerful tool in dimension computation.

When c∗ > 0, Hua et al. [11, 12] showed that

(1.8) dimH E = s∗ and dimP E = dimBE = s∗
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for all E ∈ M (J, {nk}, {ck,j}) (for s∗ and s∗, recall (1.6)). When c∗ = 0, Hua et al. [13]
also obtained two sufficient conditions under which the dimension formula (1.8) holds
(see Theorems A and B in Section 4.2). However, except for the two sufficient
conditions, it is little known about the dimensions of Moran sets in the case of c∗ = 0.
We even don’t know what conditions ensure that all Moran sets in M (J, {nk}, {ck,j})
assume the same Hausdorff (or packing) dimension. It seems very difficult to give a
complete answer to this problem. In Theorem 2, we give a more general sufficient
condition compared with the two conditions in [13] (see Section 4.2 for details). We
hope this result leads to some deep discoveries on the dimensions of Moran sets.

2. The Gibbs-like measures

Let E ∈ M (J, {nk}, {ck,j}). For every d ∈ (0, 1), by the extension theorem of
measures, there exists a unique probability measure µ supported on E such that
µ(J∅) = µ(E) = 1 and

(2.1) µ(Jσ∗j′) = µ(Jσ) · |Jσ∗j′|d∑nk

j=1 |Jσ∗j|d

for all k ≥ 1, σ ∈ Ωk−1 and 1 ≤ j′ ≤ nk. Similarly, for very d ∈ (0, 1) and
every 1-dimensional quasisymmetric mapping f , there also exists a unique probability
measure ν supported on f(E) such that ν(f(J∅)) = ν(f(E)) = 1 and

(2.2) ν(f(Jσ∗j′)) = ν(f(Jσ)) · |f(Jσ∗j′)|d∑nk

j=1 |f(Jσ∗j)|d

for all k ≥ 1, σ ∈ Ωk−1 and 1 ≤ j′ ≤ nk.
The measures µ and ν are so called Gibbs-like measures. We have some lemmas

on the properties of measures µ and ν.

Lemma 1. Let k ≥ 1. Suppose that σ ∈ Ωk and d ≤ sk, then

|Jσ|d
µ(Jσ)

≥
k∏

i=1

Dd−sk
i ,

where µ is the Gibbs-like measure defined by (2.1).

Proof. By (2.1), we have

µ(Jσ) = |Jσ|d
|Jσ1...σk−1

|d
|Jσ1...σk−1∗1|d + · · ·+ |Jσ1...σk−1∗nk

|d · · ·
1

|J1|d + · · ·+ |Jn1|d

= |Jσ|d 1

cd
k,1 + · · ·+ cd

k,nk

· · · 1

cd
1,1 + · · ·+ cd

1,n1

.

By the definition of sk (see (1.7)), we have

|Jσ|d
µ(Jσ)

=
k∏

i=1

ni∑
j=1

cd
i,j =

k∏
i=1

∑ni

j=1 cd
i,j∑ni

j=1 csk
i,j

≥
k∏

i=1

Dd−sk
i ,

since Di = max1≤j≤ni
ci,j and d ≤ sk. ¤
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Let d ∈ (0, 1) and f be a 1-dimensional quasisymmetric mapping. For k > 1 and
σ ∈ Ωk−1, write

(2.3) φσ =

∑nk

j=1 |f(Jσ∗j)|d(∑nk

j=1 |f(Jσ∗j)|
)d

and ϕσ =

∑nk

j=1 |f(Jσ∗j)|
|f(Jσ)| .

For σ = ∅, write

(2.4) φ∅ =

∑n1

j=1 |f(Jj)|d(∑n1

j=1 |f(Jj)|
)d

and ϕ∅ =

n1∑
j=1

|f(Jj)|.

By a similar argument as in the proof of Lemma 1, we have

Lemma 2. Let d ∈ (0, 1) and f be a 1-dimensional quasisymmetric mapping,
then for all k ≥ 1 and σ ∈ Ωk,

|f(Jσ)|d
ν(f(Jσ))

= φ∅ϕ
d
∅ ·

k−1∏
i=1

φσ1...σi
ϕd

σ1...σi
,

where ν is the Gibbs-like measure defined by (2.2).

We need the following lemma to estimate φσ and ϕσ, which is an invariant for-
mulation of Lemma 1 in Wu [23].

Lemma 3. Let f be a 1-dimensional quasisymmetric mapping. Then

γ
|J |q
|I|q ≤

|f(J)|
|f(I)| ≤ 4

|J |p
|I|p

for all intervals I, J with J ⊂ I, where γ, p, q are three constants dependent on f
with γ > 0, 0 < p ≤ 1 ≤ q.

Lemmas 4 and 5 are devoted to the lower bound of φσ and ϕσ.

Lemma 4. Let k ≥ 1, σ ∈ Ωk−1 and φσ as in (2.3) and (2.4), then φσ > 1.
Moreover, if

∑nk

j=1 ck,j ≥ β > α ≥ Dk for some constants α, β with 1 > β > α > 0,
then φσ > 1 + ε, where ε > 0 is a constant dependent on α, β, nk and f .

Proof. Since d ∈ (0, 1), it is obvious that φσ > 1. Now suppose that
∑nk

j=1 ck,j ≥
β > α ≥ Dk. Without loss of generality, we assume that

Mσ = max
1≤j≤nk

|f(Jσ∗j)| = |f(Jσ∗1)|.

Write

x =

∑nk

j=2 |f(Jσ∗j)|
Mσ

.

By Lemma 3,
∑nk

j=2 |f(Jσ∗j)|
|f(Jσ)| ≥ γ

nk∑
j=2

cq
k,j ≥ γ(nk − 1)1−q

( nk∑
j=2

ck,j

)q

≥ γ(β − α)q

nq
k

,

and Mσ · |f(Jσ)|−1 ≤ 4Dp
k ≤ 4αp. Therefore,

(2.5) x ≥ γ(β − α)q

4αpnq
k

> 0.
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We return to estimate φσ. Since |f(Jσ∗j)| ·M−1
σ ≤ 1 for 1 ≤ j ≤ nk, we have

φσ =

∑nk

j=1 |f(Jσ∗j)|d ·M−d
σ(∑nk

j=1 |f(Jσ∗j)| ·M−1
σ

)d
≥

∑nk

j=1 |f(Jσ∗j)| ·M−1
σ(∑nk

j=1 |f(Jσ∗j)| ·M−1
σ

)d
= (1 + x)1−d.

Together with (2.5), we complete the proof. ¤

Lemma 5. Let k > 1, σ ∈ Ωk−1 and ϕσ as in (2.3). Let γ, p, q be as in Lemma 3,
then ϕσ ≥ γn1−q

k

(∑nk

j=1 ck,j

)q. Moreover, when
∑nk

j=1 ck,j is sufficiently close to 1, the
following lower bound is useful:

(2.6) ϕσ ≥ 1− 8nk

(
1−

nk∑
j=1

ck,j

)p

.

Proof. By Lemma 3 and (2.3), it follows that

ϕσ ≥ γ

nk∑
j=1

cq
k,j ≥ γn1−q

k

( nk∑
j=1

ck,j

)q

.

We now turn to the other lower bound. Let ∆0, . . . , ∆nk
(some ∆j may be empty)

be the connected components of Jσ \
⋃nk

j=1 Jσ∗j and δj = |∆j|/|Jσ|. Then
∑nk

j=1 ck,j +∑nk

j=0 δj = 1. Together with Lemma 3, we have

ϕσ =

∑nk

j=1 |f(Jσ∗j)|
|f(Jσ)| =

|f(Jσ)| −∑nk

j=0 |f(∆j)|
|f(Jσ)| ≥ 1− 4

nk∑
j=0

δp
j

≥ 1− 4(nk + 1)

( nk∑
j=0

δj

)p

≥ 1− 8nk

(
1−

nk∑
j=1

ck,j

)p

. ¤

3. 1-dimensional quasisymmetrically minimal set

This section is devoted to the proof of Theorem 1. We begin with some lemmas.

Lemma 6. Suppose that limk→∞ sk = 1 and supk nk < ∞. Then
(a) limk→∞ k−1

∑k
i=1 log

∑ni

j=1 ci,j = 0;
(b) limk→∞ k−1 card

{
1 ≤ i ≤ k :

∑ni

j=1 ci,j < β
}

= 0 for any β ∈ (0, 1);
(c) limk→∞ k−1

∑k
i=1

(
1−∑ni

j=1 ci,j

)p
= 0 for any p > 0.

Proof. (a) By the Jensen’s inequality,

n−1
i

ni∑
j=1

ci,j ≥
(

n−1
i

ni∑
j=1

csk
i,j

)1/sk

for all 1 ≤ i ≤ k,

since sk ≤ 1. By (1.7), a simple computation shows that

1

k

k∑
i=1

log

ni∑
j=1

ci,j ≥
∑k

i=1 log ni

k

(
1− s−1

k

) ≥ (
1− s−1

k

) · log sup
i≥1

ni.

Together with
∑ni

j=1 ci,j ≤ 1 and limk→∞ sk = 1, we have

0 ≥ lim
k→∞

1

k

k∑
i=1

log

ni∑
j=1

ci,j ≥ lim
k→∞

(
1− s−1

k

) · log sup
i≥1

ni = 0.
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(b) It follows immediately from (a).
(c) For any β ∈ (0, 1), we have

1

k

k∑
i=1

(
1−

ni∑
j=1

ci,j

)p

≤ (1− β)p +
1

k
card

{
1 ≤ i ≤ k :

ni∑
j=1

ci,j < β

}
.

Then (c) follows from (b) and the arbitrariness of β. ¤

Lemma 7. Let d ∈ (0, 1) and f be a 1-dimensional quasisymmetric mapping.
Let ν be the Gibbs-like measure defined by (2.2). Suppose that the conditions in
Theorem 1 hold, then there exists a constant ζ > 0 such that for sufficiently large k,

|f(Jσ)|d
ν(f(Jσ))

> (1 + ζ)k for all σ ∈ Ωk.

Proof. Let α be as in (1.1). Pick a β ∈ (α, 1). Then by (1.1) and Lemma 6 (b),

lim inf
k→∞

1

k
card

{
1 ≤ i ≤ k :

ni∑
j=1

ci,j ≥ β > α ≥ Di

}
> λ > 0.

Together with Lemma 4 and supi≥1 ni < ∞, it follows that there exists ε > 0 such
that for sufficiently large k,

(3.1)
k−1∏
i=0

φσ1...σi
> (1 + ε)λk for all σ ∈ Ωk.

By Lemma 2 and (3.1), to complete the proof, it suffices to show that for every
ε > 0,

(3.2) ε >
1

k

k−1∑
i=0

log ϕσ1...σi
> −ε,

for sufficiently large k and all σ ∈ Ωk.
The left inequality is obvious since ϕτ ≤ 1 for all τ 6= ∅. For the right one, we

apply Lemma 5. Since supi ni < ∞, we can pick a β′ ∈ (0, 1) such that

(3.3) 8 sup
i≥1

ni · (1− β′)p <
1

2
,

where p is as in (2.6). For k ≥ 1, write

Λk =

{
1 ≤ i ≤ k :

ni∑
j=1

ci,j ≥ β′
}

and Λ∗k =

{
1 ≤ i ≤ k :

ni∑
j=1

ci,j < β′
}

.

Then by Lemma 5, for every σ ∈ Ωk, we have

1

k

∑

i∈Λ∗k

log ϕσ1...σi−1
≥ 1

k

∑

i∈Λ∗k

log

(
γn1−q

i

( ni∑
j=1

ci,j

)q
)

≥ 1

k
card Λ∗k ·

(
log γ + (1− q) log sup

i≥1
ni

)
+

q

k

k∑
i=1

log

ni∑
j=1

ci,j → 0,

(3.4)
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as k → +∞, according to (b) and (a) of Lemma 6. Also by Lemma 5, for every
σ ∈ Ωk,

1

k

∑
i∈Λk

log ϕσ1...σi−1
≥ 1

k

∑
i∈Λk

log

(
1− 8ni

(
1−

ni∑
j=1

ci,j

)p
)

≥ −16

k

∑
i∈Λk

ni

(
1−

ni∑
j=1

ci,j

)p

≥ −16 sup
i≥1

ni · 1

k

k∑
i=1

(
1−

ni∑
j=1

ci,j

)p

→ 0,

(3.5)

as k → +∞, according to (c) of Lemma 6. The second inequality of above esti-
mation follows from (3.3) and the fact that log(1 − t) ≥ −2t for all t ∈ (0, 1/2).
Inequalities (3.4) and (3.5) implies the right inequality of (3.2), and so the proof is
completed. ¤

The following lemma concerns the geometrical structure of f(E).

Lemma 8. Let U be an interval. For k ≥ 1, write

ΘU
k =

{
σ ∈ Ωk : f(Jσ) ⊂ U and f(Jσ1...σk−1

) 6⊂ U
}
,

then card ΘU
k ≤ 2nk.

Proof. Write Θ = {τ ∈ Ωk−1 : f(Jτ ) ∩ U 6= ∅ and f(Jτ ) 6⊂ U}, then
ΘU

k ⊂ {τ ∗ j : τ ∈ Θ and 1 ≤ j ≤ nk}.
Therefore, we only need to show that card Θ ≤ 2. If otherwise, suppose that
τ 1, τ 2, τ 3 ∈ Θ and the position of f(Jτ1), f(Jτ2) and f(Jτ3) are from left to right.
Since f(Jτ1)∩U 6= ∅, f(Jτ3)∩U 6= ∅ and U is an interval, we must have f(Jτ2) ⊂ U .
Contradiction! ¤

We are now ready for the proof of Theorem 1.

The proof of Theorem 1. It suffices to prove that dimH f(E) ≥ d for all d ∈ (0, 1)
and all 1-dimensional quasisymmetric mapping f . To this end, fix d and f , let ν be
the Gibbs-like measure defined by (2.2). We will show that there exists a constant
c > 0 such that

ν(U) ≤ c|U |d for all interval U.

Then the conclusion dimH f(E) ≥ d follows from the mass distribution principle
(see [4, Proposition 2.1]).

By Lemma 7, there exists a constant c0 > 0 such that

ν
(
f(Jσ)

) ≤ c0 · |f(Jσ)|d
(1 + ζ)|σ|

for all σ ∈ Ω.

Let U be an interval and ΘU
k as in Lemma 8, then

ν(U) = ν

(⋃

k≥0

⋃

σ∈ΘU
k

f(Jσ)

)
=

∑

k≥0

∑

σ∈ΘU
k

ν
(
f(Jσ)

) ≤ c0 ·
∑

k≥0

∑

σ∈ΘU
k

|f(Jσ)|d
(1 + ζ)k

≤ c0 ·
∑

k≥0

(
card ΘU

k

)1−d(∑
σ∈ΘU

k
|f(Jσ)|)d

(1 + ζ)k
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≤ c0

(
2 sup

i≥1
ni

)1−d ∑

k≥0

(∑
σ∈ΘU

k
|f(Jσ)|)d

(1 + ζ)k

≤ c0

(
2 sup

i≥1
ni

)1−d
(∑

k≥0

(1 + ζ)−k/(1−d)

)1−d(∑

k≥0

∑

σ∈ΘU
k

f(Jσ)

)d

≤ c|U |d.

The second and the fourth inequality of the above estimation follow from the Hölder
inequality. Thus we complete the proof. ¤

4. The Hausdorff dimension of Moran set

In this section, we will prove Theorem 2 and give some remarks on the Hausdorff
dimension of Moran set.

4.1. The proof of Theorem 2. We begin with a lemma similar to Lemma 8.

Lemma 9. Let U be an interval. For k ≥ 1, write

ΞU
k =

{
σ ∈ Ωk : Jσ ⊂ U and Jσ1...σk−1

6⊂ U
}
,

then card ΞU
k ≤ 2nk.

Proof of Theorem 2. According to [13, Proposition 2.1], the statement dimH E ≤
s∗ is true. This implies that Theorem 2 holds when s∗ = 0. So we may assume s∗ > 0
and only need to show that dimH E ≥ d for all d ∈ (0, s∗). For this, fix d ∈ (0, s∗),
let µ be the Gibbs-like measure defined by (2.1). We will show that

µ(U) ≤ c|U |d for all interval U with |U | small enough,

where c > 0 is a constant. Then by the mass distribution principle, we obtain
dimH E ≥ d and the proof is completed.

Since d < s∗, for every δ ∈ (0, 1), there is an integer Kδ such that δ(s∗−d) ≤ sk−d
for all k ≥ Kδ. Together with Lemma 1, it follows that

µ(Jσ) ≤ |Jσ|d ·
|σ|∏
i=1

D
δ(s∗−d)
i for all σ ∈

⋃

k≥Kδ

Ωk.

Let U be an interval with |U | < minσ∈ΩKδ
|Jσ| and ΞU

k as in Lemma 9, then

µ(U) = µ

( ⋃

k>Kδ

⋃

σ∈ΞU
k

Jσ

)
=

∑

k>Kδ

∑

σ∈ΞU
k

µ(Jσ) ≤
∑

k>Kδ

∑

σ∈ΞU
k

(
|Jσ|d

k∏
i=1

D
δ(s∗−d)
i

)

≤
∑

k>Kδ

((
card ΞU

k

)1−d ·
( ∑

σ∈ΞU
k

|Jσ|
)d

·
k∏

i=1

D
δ(s∗−d)
i

)

≤ 21−d
∑

k>Kδ

(
n1−d

k

k∏
i=1

D
δ(s∗−d)
i ·

( ∑

σ∈ΞU
k

|Jσ|
)d

)
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≤ 21−d

( ∑

k>Kδ

nk

k∏
i=1

D
δ(s∗−d)

1−d

i

)1−d( ∑

k>Kδ

∑

σ∈ΞU
k

|Jσ|
)d

≤ 21−d

( ∑

k>Kδ

nk

k∏
i=1

D
δ(s∗−d)

1−d

i

)1−d

· |U |d.

The Hölder inequality is used in the second and the fourth inequality of above com-
putation.

When s∗ = 1, taking δ as in (1.3), we obtain µ(U) ≤ c|U |d for U with |U | small
enough. For general s∗, since s∗ − d can be arbitrarily small, we must require the
condition (1.4) to ensure µ(U) ≤ c|U |d.

It remains to show that the condition (1.4) is equivalent to (1.2). When (1.2)
holds,

∞∑

k=1

nk

( k∏
i=1

Di

)δ

< cδ

∞∑

k=1

nk · (knk)
−2 < ∞ for all δ > 0.

Conversely, suppose that (1.4) is true. Then nk

∏k
i=1 Dδ

i → 0 for all δ > 0, and so

lim
k→∞

log nk

−∑k
i=1 log Di

= 0.

Noting that the sequence
{∏k

i=1 Dδ
i

}
k
is decreasing and summable for all δ > 0, so

we have
∏k

i=1 Dδ
i < k−1 when k large enough. It follows that

lim
k→∞

log k

−∑k
i=1 log Di

= 0.

Therefore, (1.4) implies (1.2). ¤
4.2. Some remarks. When c∗ = 0, there are two theorems which concern the

dimensions of Moran sets obtained in [13].

Theorem A. Let M = M (J, {nk}, {ck,j}) be a Moran class. Suppose that
(i) supk nk < ∞;
(ii) 0 < infi Di ≤ supi Di < 1.

Then for all E ∈ M , dimension formula (1.8) holds.

Theorem B. Let M = M (J, {nk}, {ck,j}) be a Moran class. Suppose that

lim
k→∞

log dk∑k
i=1 log Di

= 0,

then for all E ∈ M , dimension formula (1.8) holds.

We will show that the conditions in Theorem A and B both imply the condi-
tion (1.2). For the conditions of Theorem A, it is easy to check. For Theorem B,
since nkdk ≤

∑nk

j=1 ck,j ≤ 1, we have limk→∞
log nk

−∑k
i=1 log Di

= 0. So it remains to show
that

lim
k→∞

log k

−∑k
i=1 log Di

= 0.
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If otherwise, suppose that there exist a constant c > 0 and a sequence {kj}j≥1 such
that

(4.1)
log kj

−∑kj

i=1 log Di

> c.

Then we can find K > 0 such that
log dk∑k

i=1 log Di

<
c

2
<

log kj

−2
∑kj

i=1 log Di

for all k ≥ K and all kj.

Thus for all K ≤ k ≤ kj, we have dk ≥ k
−1/2
j , and so Dk ≤ 1 − dk ≤ 1 − k

−1/2
j . It

follows that for all kj ≥ 2K,
log kj

−∑kj

i=1 log Di

≤ log kj

−∑kj

i=K+1 log Di

≤ log kj

−∑kj

i=K+1 log(1− k
−1/2
j )

≤ 2 log kj

k
1/2
j

→ 0,

as kj →∞. This contradicts (4.1).
By above discussion, we see that Theorem 2 generalizes Theorem A and B in

some sense.
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