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Abstract. We study compact embeddings for weighted spaces of Besov and Triebel–Lizorkin
type where the weights belong to Muckenhoupt Ap classes. We focus our attention on the influence
of singular points of the weights on the compactness of the embeddings as well as on the asymptotic
behaviour of their entropy and approximation numbers.

1. Introduction

In recent years some attention has been paid to the compactness of embeddings of
weighted function spaces of Besov and Sobolev (or, more generally, Triebel–Lizorkin)
type as well as to analytic and geometric quantities describing this compactness, in
particular, corresponding approximation and entropy numbers. The investigations in
the above described context started by the work of the first named author and Triebel,
cf. [15, 19] (note that there is a partial forerunner in [27, Ch. V, §3, Thm. 9]), and
were continued and extended by Kühn, Leopold, Sickel and the second author in the
series of papers [21, 22, 23, 33]. As an application one obtains spectral estimates of
certain pseudo-differential operators in the way of the program proposed by Edmunds
and Triebel [10].

In all above papers the class of so-called ‘admissible’ weights was considered.
These are smooth weights with no singular points. One can take w(x) = (1+ |x|2)α/2,
α ∈ R, x ∈ Rn, as a prominent example. Developing these investigations the authors
started in [17] to consider similar problems for weights from the Muckenhoupt class
A∞. In contrast to ‘admissible’ weights the A∞ weights may have local singularities
which can influence properties of the embeddings of function spaces. Now, the weight
w(x) = |x|α, α > −n, may serve as a typical example. In [17] we obtained necessary
and sufficient conditions on the parameters and weights of the Besov spaces which
guarantee continuity and compactness of such embeddings. Moreover, the exact
asymptotic behaviour of entropy and approximation numbers of the embeddings of
the spaces with weights that have purely polynomial growth, both near some singular
point and at infinity, is determined. Our method in [17] essentially relies on a wavelet
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decomposition in weighted spaces which admits to deal with weighted sequence spaces
instead of weighted function spaces in the sequel.

In this paper we study general A∞ weights with a bounded set of singularities.
We observed in [17] that in case of Muckenhoupt weights of polynomial type such
singularities have influence on the compactness of the embeddings, but not on the
asymptotic behaviour of their entropy and approximation numbers. The main aim of
this paper is to prove a similar phenomenon for general A∞ weights with a bounded
set of singularities Ssing(w): it turns out that concerning embeddings of spaces on Rn,
only the behaviour of the weight at infinity together with properties of the embed-
dings of function spaces on bounded sets are decisive for the asymptotic behaviour of
their entropy and approximation numbers. In particular, we can prove the following
result. Let w ∈ A∞ with rw := inf{r ≥ 1: w ∈ Ar}, and the set Ssing(w) of singular
points of the weight w be bounded. If

s1 − n

p1

− s2 +
n

p2

> n max
( 1

p2

− 1

p1

, 0
)

+
n

p1

(rw − 1),

and Q is some sufficiently large cube with Ssing(w) ( Q̊, then both

idQ
w : As1

p1,q1
(Q, w) ↪→ As2

p2,q2
(Q) and idQ

ww : As1
p1,q1

(Q,w) ↪→ As2
p2,q2

(Q,w)

are compact with

ek

(
idQ

w

) ∼ ek

(
idQ

ww

) ∼ k−
s1−s2

n , k ∈ N,

where Asi
pi,qi

(Q,w) and Asi
pi,qi

(Q) stand for (un)weighted spaces of Besov or Triebel–
Lizorkin type on Q. Consequently, the behaviour of entropy numbers is the same as
in the unweighted case. There is a parallel result for the corresponding approximation
numbers.

The paper is organized as follows. In Section 2 we recall basic facts about Muck-
enhoupt weights and weighted spaces needed later on. Section 3 is devoted to the
continuity and compactness of the embeddings. In the last section we introduce the
set Ssing(w1, w2) of singular points of the weights w1, w2 ∈ A∞. We prove that this
set is of measure zero and finally determine the exact asymptotic behaviour of the
entropy and approximation numbers for weights with a bounded set of singularities.
We illustrate this concept with some well-known examples.

2. Weighted function spaces

First of all we need to fix some notation. By N we denote the set of natural
numbers, by N0 the set N∪{0}, and by Zn the set of all lattice points in Rn having
integer components. The positive part of a real function f is given by f+(x) =
max(f(x), 0). If 0 < u ≤ ∞, the number u′ is given by 1

u′ = (1 − 1
u
)+. For two

positive real sequences {αk}k∈N and {βk}k∈N we mean by αk ∼ βk that there exist
constants c1, c2 > 0 such that c1 αk ≤ βk ≤ c2 αk for all k ∈ N; similarly, for positive
functions.

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by c, occasionally with sub-
scripts. For convenience, let both dx and |·| stand for the (n-dimensional) Lebesgue
measure in the sequel. If not otherwise indicated, log is always taken with respect to
base 2.
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2.1. Muckenhoupt weights. We briefly recall some fundamentals on Muck-
enhoupt classes Ap.

Definition 2.1. Let w be a positive, locally integrable function on Rn, and
1 < p < ∞. Then w belongs to the Muckenhoupt class Ap, if there exists a constant
0 < A < ∞ such that for all balls B the following inequality holds

(2.1)
(

1

|B|
∫

B

w(x) dx

)1/p

·
(

1

|B|
∫

B

w(x)−p′/p dx

)1/p′

≤ A,

where p′ is the dual exponent to p given by 1/p′ + 1/p = 1 and |B| stands for the
Lebesgue measure of the ball B.

The limiting cases p = 1 and p = ∞ can be incorporated as follows. By a
weight w we shall always mean a locally integrable function w ∈ Lloc

1 (Rn), positive
a.e. in the sequel. Let M stand for the Hardy–Littlewood maximal operator given
by

(2.2) Mf(x) = sup
B(x,r)∈B

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy, x ∈ Rn,

where B is the collection of all open balls

B(x, r) =
{

y ∈ Rn : |y − x| < r
}

, r > 0.

Definition 2.2. A weight w belongs to the Muckenhoupt class A1 if there exists
a constant 0 < A < ∞ such that the inequality

(2.3) Mw(x) ≤ Aw(x)

holds for almost all x ∈ Rn. The Muckenhoupt class A∞ is given by

(2.4) A∞ =
⋃
p>1

Ap.

Since the pioneering work of Muckenhoupt [24, 25, 26], these classes of weight
functions have been studied in great detail, we refer, in particular, to the monographs
[14], [34, Ch. V], [35], and [36, Ch. IX] for a complete account on the theory of
Muckenhoupt weights. Let us mention the important feature of decomposition of Ap

weights into A1 weights based on the fact that for 1 ≤ p < ∞,

(2.5) w ∈ Ap if and only if there are w1, w2 ∈ A1 with w = w1w
1−p
2 .

Moreover, it is known that the minimum, maximum, and the sum of finitely many
A1 weights yields again an A1 weight. We refer to the above-mentioned literature
for proofs and further details. As usual, we use the abbreviation

(2.6) w(Ω) =

∫

Ω

w(x) dx,

where Ω ⊂ Rn is some bounded, measurable set. Then a positive, locally integrable
function w on Rn belongs to Ap, 1 ≤ p < ∞ if and only if

1

|B|
∫

B

f(y) dy ≤
(

c

w(B)

∫

B

f p(x)w(x) dx

)1/p
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holds for all nonnegative f and all balls B. In particular, with E ⊂ B and f = χE,
this implies that

(2.7)
|E|
|B| ≤ c′

(
w(E)

w(B)

)1/p

, E ⊂ B,

whenever w ∈ Ap, 1 ≤ p < ∞. Another property of Muckenhoupt weights that
will be used in the sequel is that w ∈ Ap implies the existence of some number
r < p such that w ∈ Ar. This is closely connected with the so-called ‘reverse Hölder
inequality’, see [34, Ch. V, Prop. 3, Cor.]. In our case this fact will re-emerge in the
number

(2.8) rw := inf{r ≥ 1: w ∈ Ar}, w ∈ A∞,

that plays an essential role later on. Obviously, 1 ≤ rw < ∞, and w ∈ Arw implies
rw = 1.

Examples 2.3. One of the most prominent examples of a Muckenhoupt weight
w ∈ Ap, 1 ≤ p < ∞, is given by w(x) = |x|%, where

w(x) = |x|% ∈ Ap

if and only if {
−n < % < n(p− 1) if 1 < p < ∞,

−n < % ≤ 0 if p = 1.

Thus rw = 1 + %+

n
and w ∈ Arw if % ≤ 0, whereas w 6∈ Arw for % > 0. We modified

this example in [17] by

(2.9) wα,β(x) =

{
|x|α if |x| ≤ 1,

|x|β if |x| > 1,
with α > −n, β > −n,

which belongs to Ap, 1 < p < ∞, if and only if −n < α, β < n(p − 1), and to A1 if
−n < α, β ≤ 0. Note that rwα,β

= 1 + max(α,β,0)
n

.
For later use we recall a ‘fractal’ example studied in [16]. Let Γ ⊂ Rn be a d-set,

0 < d < n, in the sense of [39, Def. 3.1], [20] (which is different from [11]), i.e.,
there exists a Borel measure µ in Rn such that supp µ = Γ and there are constants
c1, c2 > 0 such that for arbitrary γ ∈ Γ and all 0 < r < 1 holds

c1r
d ≤ µ(B(γ, r) ∩ Γ) ≤ c2r

d.

We proved in [16] that the weight wκ,Γ, given by

(2.10) wκ,Γ(x) =

{
dist(x, Γ)κ, dist(x, Γ) ≤ 1,

1, dist(x, Γ) ≥ 1,

satisfies

wκ,Γ ∈ Ap if and only if − (n− d) < κ < (n− d)(p− 1), 1 < p < ∞.

Consequently, rwκ,Γ
= 1 + max(κ,0)

n−d
. For further examples we refer to [12, 17, 18].
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2.2. Function spaces of type Bs
p,q(R

n, w) and F s
p,q(R

n, w) with w ∈ A∞.
Let w ∈ A∞ be a Muckenhoupt weight and 0 < p < ∞. Then the weighted Lebesgue
space Lp(R

n, w) contains all measurable functions such that

(2.11) ‖f |Lp(R
n, w)‖ =

(∫

Rn

|f(x)|pw(x) dx

)1/p

is finite. Note that for p = ∞ one obtains the classical (unweighted) Lebesgue space,

(2.12) L∞(Rn, w) = L∞(Rn), w ∈ A∞.

We thus mainly restrict ourselves to p < ∞ in what follows.
The Schwartz space S (Rn) and its dual S ′(Rn) of all complex-valued tempered

distributions have their usual meaning here. Let ϕ0 = ϕ ∈ S (Rn) be such that

supp ϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,

and for each j ∈ N let ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x). Then {ϕj}∞j=0 forms a smooth
dyadic resolution of unity. Given any f ∈ S ′(Rn), we denote by Ff and F−1f its
Fourier transform and its inverse Fourier transform, respectively. Let f ∈ S ′(Rn),
then the Paley–Wiener–Schwartz theorem implies that F−1(ϕjFf) is an entire an-
alytic function on Rn.

Definition 2.4. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R and {ϕj}j a smooth dyadic
resolution of unity. Assume w ∈ A∞.
(i) The weighted Besov space Bs

p,q(R
n, w) is the set of all distributions f ∈ S ′(Rn)

such that
∥∥f |Bs

p,q(R
n, w)

∥∥ =

( ∞∑
j=0

2jsq
∥∥F−1(ϕjFf)|Lp(R

n, w)
∥∥q

)1/q

(2.13)

is finite. In the limiting case q = ∞ the usual modification is required.
(ii) The weighted Triebel–Lizorkin space F s

p,q(R
n, w) is the set of all distributions

f ∈ S ′(Rn) such that

∥∥f |F s
p,q(R

n, w)
∥∥ =

∥∥∥∥
( ∞∑

j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q

|Lp(R
n, w)

∥∥∥∥(2.14)

is finite. In the limiting case q = ∞ the usual modification is required.

Remark 2.5. The spaces Bs
p,q(R

n, w) and F s
p,q(R

n, w) are independent of the
particular choice of the smooth dyadic resolution of unity {ϕj}j appearing in their def-
initions. They are quasi-Banach spaces (Banach spaces for p, q ≥ 1), and S (Rn) ↪→
Bs

p,q(R
n, w) ↪→ S ′(Rn), where the first embedding is dense if q < ∞, similarly for

the F -case; cf. [3]. Moreover, for w0 ≡ 1 ∈ A∞ we re-obtain the usual (unweighted)
Besov and Triebel–Lizorkin spaces; we refer, in particular, to the series of mono-
graphs by Triebel, [37, 38, 39, 40] for a comprehensive treatment of the unweighted
spaces.

The above spaces with weights of type w ∈ A∞ have been studied systematically
by Bui first in [3, 4], with subsequent papers [5, 6]. It turned out that many of
the results from the unweighted situation have weighted counterparts: e.g., we have
F 0

p,2(R
n, w) = hp(R

n, w), 0 < p < ∞, where the latter are Hardy spaces, see [3, Thm.
1.4], and, in particular, hp(R

n, w) = Lp(R
n, w) = F 0

p,2(R
n, w), 1 < p < ∞, w ∈ Ap,
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see [35, Ch. VI, Thm. 1]. Concerning (classical) Sobolev spaces W k
p (Rn, w) (built

upon Lp(R
n, w) in the usual way) it holds

(2.15) W k
p (Rn, w) = F k

p,2(R
n, w), k ∈ N0, 1 < p < ∞, w ∈ Ap,

cf. [3, Thm. 2.8]. Further details can be found in [3, 4, 14, 30].
Rychkov extended in [31] the above class of weights in order to incorporate locally

regular weights, too, creating in that way the class A loc
p . Recent works are due to

Roudenko [29, 30, 13], and Bownik [1, 2]. We partly rely on our approaches in [16, 17].

We shall later deal with function spaces of the above type on some domain
Ω ⊂ Rn. We define these spaces by restriction, i.e.,

(2.16) Bs
p,q(Ω, w) =

{
f ∈ D ′(Ω) : ∃ g ∈ Bs

p,q(R
n, w), g

∣∣
Ω

= f
}

normed with

(2.17) ‖f |Bs
p,q(Ω, w)‖ = inf

{‖g|Bs
p,q(R

n, w)‖ : g ∈ Bs
p,q(R

n, w), g
∣∣
Ω

= f
}

,

similarly for F -spaces. In case of w ≡ 1 we have Bs
p,q(Ω, w) = Bs

p,q(Ω).
Finally, we briefly describe the wavelet characterizations of Besov spaces with A∞

weights proved in [17]. Let for m ∈ Zn and ν ∈ N0, Qν,m denote the n-dimensional
cube with sides parallel to the axes of coordinates, centered at 2−νm and with side
length 2−ν . For 0 < p < ∞, ν ∈ N0 and m ∈ Zn we denote by χ

(p)
ν,m the p-normalized

characteristic function of the cube Qν,m,

χ(p)
ν,m(x) = 2

νn
p χν,m(x) =

{
2

νn
p for x ∈ Qν,m,

0 for x /∈ Qν,m,
(2.18)

hence ‖χ(p)
ν,m|Lp(R

n)‖ = 1. Apart from function spaces with weights we introduce
sequence spaces with weights. For 0 < p < ∞, 0 < q ≤ ∞, σ ∈ R, and w ∈ A∞, let

bσ
p,q(w) :=

{
λ = {λν,m}ν,m : λν,m ∈ C,

‖λ|bσ
p,q(w)‖ =

∥∥∥
{

2νσ
∥∥∥

∑
m∈Zn

λν,mχ(p)
ν,m|Lp(R

n, w)
∥∥∥
}

ν∈N0

|`q

∥∥∥ < ∞
}(2.19)

and

`p(w) :=

{
λ = {λm}m : λm ∈ C, ‖λ|`p(w)‖ =

∥∥∥
∑

m∈Zn

λmχ
(p)
0,m|Lp(R

n, w)
∥∥∥ < ∞

}
.

Let φ̃ be an orthogonal scaling function on R with compact support and of
sufficiently high regularity. Let ψ̃ be an associated wavelet. Then the tensor-product
ansatz yields a scaling function φ and associated wavelets ψ1, . . . , ψ2n−1, all defined
now on Rn. We suppose φ̃ ∈ CN1(R) and supp φ̃ ⊂ [−N2, N2] for certain natural
numbers N1 and N2. This implies

(2.20) φ, ψi ∈ CN1(Rn) and supp φ, supp ψi ⊂ [−N3, N3]
n,

for i = 1, . . . , 2n − 1. We use the standard abbreviations

(2.21) φν,m(x) = 2νn/2φ(2νx−m) and ψi,ν,m(x) = 2νn/2ψi(2
νx−m).
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For smooth weights and compactly supported wavelets it makes sense to consider
the Fourier-wavelet coefficients of tempered distributions f ∈ S ′(Rn) with respect
to such an orthonormal basis. In [17, Thm. 1.13] we proved the following result.

Theorem 2.6. Let 0 < p, q ≤ ∞ and let s ∈ R. Let φ be a scaling function and
let ψi, i = 1, . . . , 2n − 1, be the corresponding wavelets satisfying (2.20). We assume
that |s| < N1. Then a distribution f ∈ S ′(Rn) belongs to Bs

p,q(R
n, w) if and only if

‖f |Bs
p,q(R

n, w)‖? =
∥∥∥ {〈f, φ0,m〉}m∈Zn |`p(w)

∥∥∥ +
2n−1∑
i=1

∥∥∥ {〈f, ψi,ν,m〉}ν∈N0,m∈Zn |bσ
p,q(w)

∥∥∥

is finite, where σ = s + n
2
− n

p
. Furthermore, ‖f |Bs

p,q(R
n, w)‖? may be used as an

equivalent (quasi-)norm in Bs
p,q(R

n, w).

We adopt the nowadays usual custom to write As
p,q instead of Bs

p,q or F s
p,q, re-

spectively, when both scales of spaces are meant simultaneously in some context.

3. Continuity and compactness of embeddings

We collect some embedding results for weighted spaces that will be used later. Es-
sentially we are interested in situations where either only the source space is weighted
and the target space unweighted, or where both source and target space are weighted
with the same weight. The considerations of these model cases are preceded by some
general results on embeddings with possibly different weights.

3.1. General setting. We begin with a criterion obtained in [17].

Proposition 3.1. Let w1 and w2 be two A∞ weights and let−∞ < s2 ≤ s1 < ∞,
0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞. We put

(3.1)
1

p∗
:=

(
1

p2

− 1

p1

)

+

and
1

q∗
:=

(
1

q2

− 1

q1

)

+

.

(i) There is a continuous embedding Bs1
p1,q1

(Rn, w1) ↪→ Bs2
p2,q2

(Rn, w2) if and only if

(3.2)
{

2−ν(s1−s2)‖{(w2(Qν,m))1/p2(w1(Qν,m))−1/p1}m|`p∗‖
}

ν
∈ `q∗ .

(ii) The embedding Bs1
p1,q1

(Rn, w1) ↪→ Bs2
p2,q2

(Rn, w2) is compact if and only if (3.2)
holds and, in addition,

(3.3) lim
ν→∞

2−ν(s1−s2)
∥∥∥{(w2(Qν,m))1/p2(w1(Qν,m))−1/p1}m|`p∗

∥∥∥ = 0 if q∗ = ∞,

and

(3.4) lim
|m|→∞

(w2(Qν,m))−1/p2(w1(Qν,m))1/p1 = ∞ for all ν ∈ N0 if p∗ = ∞.

Remark 3.2. The result is proved in [17, Prop. 2.1] based on the wavelet de-
composition Theorem 2.6, the commutative diagram

Bs1
p1,q1

(Rn, w1)
T−−−−⇀↽−−−−
T−1

bσ1
p1,q1

(w1)

Id
y

y id

Bs2
p2,q2

(Rn, w2)
S

↼−−−−−−−−⇁
S−1

bσ2
p2,q2

(w2)
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with appropriate isomorphisms S and T and the general result [22, Thm. 1]. Sim-
ilarly, with an appropriate isomorphism A one can reduce the investigation of the
embeddings of two weighted sequence spaces to the study of embeddings of a weighted
space into an unweighted one, using

bσ1
p1,q1

(w1)
A−−−−⇀↽−−−−
A−1

bσ1
p1,q1

(
w1

w2

)

Id
y

y id

bσ2
p2,q2

(w2)
A−1

↼−−−−−−−−⇁
A

bσ2
p2,q2

Remark 3.3. In view of (2.12) it is clear that we obtain unweighted Besov
spaces if p1 = p2 = ∞. Then by (2.6), w1(Qν,m) = w2(Qν,m) = 2−νn for all ν ∈ N0

and m ∈ Zn, such that (3.2) leads to p∗ = ∞, i.e., p1 ≤ p2, and

(3.5) δ := s1 − n

p1

− s2 +
n

p2

> 0,

with the extension to δ = 0 if q1 ≤ q2, i.e., q∗ = ∞. Moreover, by (3.4), the
embedding is never compact (as is well-known in this case).

As already mentioned, we might restrict ourselves to the situation when only the
source space is weighted, and the target space unweighted,

(3.6) idw : Bs1
p1,q1

(Rn, w) ↪→ Bs2
p2,q2

(Rn),

where w ∈ A∞. Moreover, we shall assume in the sequel that p1 < ∞ for convenience,
as otherwise we have Bs1

p1,q1
(Rn, w) = Bs1

p1,q1
(Rn), recall (2.12), and we arrive at the

unweighted situation in (3.6) which is well-known already. Then we stick to the
general assumptions

(3.7) −∞ < s2 ≤ s1 < ∞, 0 < p1 < ∞, 0 < p2 ≤ ∞, 0 < q1, q2 ≤ ∞.

Occasionally we will formulate some results in the ‘double-sided’ weighted situation,
in particular, corresponding to the setting

(3.8) idww : Bs1
p1,q1

(Rn, w) ↪→ Bs2
p2,q2

(Rn, w),

with

(3.9) −∞ < s2 ≤ s1 < ∞, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞.

Before we collect and extend our results from [17] according to (3.6) and (3.8),
we insert some short preparation in view of Proposition 3.1. We have to consider
expressions of type w2(Qν,m)1/p2w1(Qν,m)−1/p1 , i.e., 2−νn/p2w(Qν,m)−1/p1 in case of
(3.6), and w(Qν,m)

1
p2
− 1

p1 in case of (3.8). Let w ∈ Ar, 1 ≤ r < ∞, then by (2.7),

(3.10) w(Qν,m) ≥ c2−νnrw(Q0,l) for all Qν,m ⊂ Q0,l, ν ∈ N0, m, l ∈ Zn,

such that for any κ < 0, w(Qν,m)κ ≤ c′2−νnrκw(Q0,l)
κ, where Qν,m ⊂ Q0,l, and thus

(3.11)
∥∥{w(Qν,m)κ}m |`∞

∥∥ ≤ c 2−νrnκ
(
inf

l
w(Q0,l)

)κ
, κ < 0, ν ∈ N0.

Moreover, for arbitrary γ > 0, (3.10) leads to

lim
|m|→∞

w(Qν,m)γ = ∞ for all ν ∈ N0 if and only if lim
|l|→∞

w(Q0,l) = ∞.
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Summarizing the above considerations, we find that for embeddings of type (3.6) or
(3.8) the conditions

(3.12) inf
l

w(Q0,l) ≥ c > 0

and

(3.13) lim
|l|→∞

w(Q0,l) = ∞

are essential when p1 ≤ p2, that is, p∗ = ∞. If p∗ < ∞, then careful calculation leads
to

∥∥{w(Qν,m)κ}m |`p∗
∥∥ ≤ c 2−νrnκ+ν n

p∗
∥∥{w(Q0,l)

κ}l |`p∗
∥∥ , κ < 0, ν ∈ N0,

as the counterpart of (3.11). Therefore, the adequate extension of (3.12) to p∗ < ∞
reads as

(3.14)
∥∥{

w(Q0,l)
−1/p1

}
l
|`p∗

∥∥ ≤ c < ∞.

3.2. Embeddings in one-sided weighted situations. We begin with a
special case studied in [17].

Example 3.4. For later use we recall the corresponding result for a weight of
type (2.9) with α, β > −n. Let the parameters be given by (3.7). In [17, Prop. 2.6]
we proved the following:
(i) The embedding Bs1

p1,q1
(Rn, wα,β) ↪→ Bs2

p2,q2
(Rn) is continuous if and only if

(3.15)




either β ≥ 0 if p∗ = ∞,

or
β

p1

>
n

p∗
if p∗ < ∞,

and one of the following conditions is satisfied,

δ ≥ max

(
α

p1

,
n

p∗

)
if q∗ = ∞, with

n

p∗
6= α

p1

if p∗ < ∞,(3.16)

δ > max

(
α

p1

,
n

p∗

)
otherwise.(3.17)

(ii) The embedding As1
p1,q1

(Rn, wα,β) ↪→ As2
p2,q2

(Rn) is compact if and only if

(3.18)
β

p1

>
n

p∗
and δ > max

(
n

p∗
,

α

p1

)
.

We now briefly summarize our results [17, Cors. 2.11, 2.13].

Corollary 3.5. Let the parameters be given by (3.7), and w ∈ A∞ with rw

given by (2.8).
(i) Let

(3.19) δ >
n

p∗
+

n

p1

(rw − 1).

If p1 ≤ p2, then idw in (3.6) is continuous if and only if (3.14) is satisfied. It is
compact if and only if (3.13) holds.
If p1 > p2, then idw in (3.6) is compact if and only if (3.14) holds.

(ii) Let δ < n
p∗ , then Bs1

p1,q1
(Rn, w) is not embedded in Bs2

p2,q2
(Rn).
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(iii) Let δ = n
p∗ . If q∗ < ∞, then Bs1

p1,q1
(Rn, w) is not embedded in Bs2

p2,q2
(Rn).

If q∗ = ∞ and w ∈ Arw , that is, rw = 1, then idw in (3.6) is continuous if and
only if (3.14) is satisfied.

(iv) If n
p∗ < δ < n

p∗ + n
p1

(rw − 1), then for every r > rw there exists an Ar weight v

satisfying (3.14) such that the space Bs1
p1,q1

(Rn, v) is not embedded in Bs2
p2,q2

(Rn).

Remark 3.6. Apart from the case w ∈ A1, see also Corollary 3.7 below, there
remains the gap

n

p∗
< δ ≤ n

p∗
+

n

p1

(rw − 1)

where we only have the complementing assertion (iv). However, it is not surprising
that general features of w like rw and (3.14) are not appropriately adapted for the
interplay with the parameters (3.7) as required in Proposition 3.1. Reviewing, for
instance, Example 3.4 one realizes that more information of the weight is used than
reflected by rw and (3.14) only. For example, Corollary 3.5 covers only the cases
β ≥ 0 and δ > max(α,β)

p1
in Example 3.4 (with p1 ≤ p2), thus neglecting the (admitted)

situations when max(α,0)
p1

≤ δ ≤ max(α,β)
p1

. But this requires further information on the
weight, as already mentioned.

Before we come to the double-sided weighted situation we want to clarify the
situation for A1 weights, for which rw = 1.

Corollary 3.7. Let the parameters be given by (3.7) and let w ∈ A1 such that
rw = 1.
(i) Then idw in (3.6) is continuous if and only if the following three conditions

hold,

a) inf
l

w(Q0,l) ≥ c > 0,(3.20)

b)

{
δ > 0 if q∗ < ∞,

δ ≥ 0 if q∗ = ∞,
(3.21)

c) p1 ≤ p2.(3.22)

Otherwise Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn).
(ii) The embedding idw in (3.6) is never compact.

Proof. In view of Corollary 3.5 it is sufficient to prove that for w ∈ A1 conditions
(3.13) and (3.14) are never satisfied, that is, we only have to disprove (3.13) in that
case. So assume that w ∈ A∞ and (3.13) holds. Then there is some number k0 ∈ Zn

such that

(3.23) inf
l∈Zn

w(Q0,l) = w(Q0,k0) > 0.

On the other hand, (3.13) implies for arbitrary N ∈ N the existence of some number
L = L(N) ∈ N such that w(Q0,l) > Nw(Q0,k0) for all l ∈ Zn, |l| > L(N). Let
ΛN = {m ∈ Zn : |m| ≤ L(N)} ⊂ Zn, that is, we have

(3.24) w(Q0,l) > Nw(Q0,k0) for all l 6∈ ΛN .

Clearly, k0 ∈ ΛN , hence #ΛN ≥ 1. Let ΓN ⊃ ΛN be the index set of a collection of
cubes that contains twice the number of cubes as for ΛN , that is, #(ΓN \ΛN) = #ΛN .
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We set
BN =

⋃
m∈ΓN

Q0,m ⊃
⋃

l∈ΛN

Q0,l, |BN | =
∑

m∈ΓN

|Q0,m| = 2#ΛN .

This leads to

w(BN)

|BN | =

∑
m∈ΛN

w(Q0,m) +
∑

m∈ΓN\ΛN
w(Q0,m)

2#ΛN

>
w(Q0,k0)#ΛN + Nw(Q0,k0)#(ΓN \ ΛN)

2#ΛN

=
N + 1

2
w(Q0,k0)

(3.25)

in view of (3.23) and (3.24). On the other hand, k0 ∈ ΛN implies Q0,k0 ⊂ BN such
that (2.7) with p = 1, E = Q0,k0 and B = BN reads as

w(BN)

|BN | ≤ c′
w(Q0,k0)

|Q0,k0|
= c′ w(Q0,k0)

for some c′ > 0 which contradicts (3.25) for N →∞. ¤

Remark 3.8. We compare the above result with Example 3.4. We have wα,β ∈
A1 if −n < α, β ≤ 0 by Example 2.3, hence Example 3.4(i) leads to α ≤ β = 0,
p1 ≤ p2 and (3.21), and Example 3.4(ii) gives (ii) above.

3.3. Embeddings in double-sided weighted situations. We turn to double-
sided weighted embeddings and begin with natural counterparts of well-known un-
weighted situations.

Proposition 3.9. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R and w ∈ A∞.
(i) Let −∞ < s1 ≤ s0 < ∞ and 0 < q0 ≤ q1 ≤ ∞, then

As0
p,q(R

n, w) ↪→ As1
p,q(R

n, w) and As
p,q0

(Rn, w) ↪→ As
p,q1

(Rn, w).

(ii) We have

(3.26) Bs
p,min(p,q)(R

n, w) ↪→ F s
p,q(R

n, w) ↪→ Bs
p,max(p,q)(R

n, w).

(iii) Assume that there are numbers c > 0, d > 0 such that for all balls,

(3.27) w (B(x, r)) ≥ crd, 0 < r ≤ 1, x ∈ Rn.

Let 0 < p0 < p < p1 < ∞, −∞ < s1 < s < s0 < ∞ satisfy

(3.28) s0 − d

p0

= s− d

p
= s1 − d

p1

.

Then

Bs0
p0,q(R

n, w) ↪→ Bs1
p1,q(R

n, w),(3.29)

and

(3.30) Bs0
p0,p(R

n, w) ↪→ F s
p,q(R

n, w) ↪→ Bs1
p1,p(R

n, w).

Remark 3.10. The above embeddings are natural extensions from the unweighted
case w ≡ 1, see [37, Prop. 2.3.2/2, Thm. 2.7.1] and [32, Thm. 3.2.1]. The above result
essentially coincides with [3, Thm. 2.6] and can be found in [17, Prop. 1.8].
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We next come to situation (3.8). First note that we only have to consider the case
p1 ≤ p2 since there cannot be a continuous embedding of type if p1 > p2, w ∈ A∞,
for if (at least) (3.12) is assumed to hold, then (3.10) implies for some r, 1 ≤ r < ∞,
that

(3.31) w(Qν,m) ≥ c′2−νnr for all ν ∈ N0, m ∈ Zn,

such that
∥∥∥
{

w(Qν,m)
1

p2
− 1

p1

}
m
|`p∗

∥∥∥ =

(∑
m

w(Qν,m)

)1/p∗

diverges for any ν ∈ N0.

Example 3.11. Let the parameters be given by (3.9). In [17, Prop. 2.8] we
obtained the following counterpart of Example 3.4.
(i) The embedding Bs1

p1,q1
(Rn, wα,β) ↪→ Bs2

p2,q2
(Rn, wα,β) is continuous if and only if

p1 ≤ p2, β

(
1

p1

− 1

p2

)
≥ 0,

and one of the following conditions is satisfied,

δ ≥ max(α, 0)

(
1

p1

− 1

p2

)
if q∗ = ∞,(3.32)

δ > max(α, 0)

(
1

p1

− 1

p2

)
if q∗ < ∞.(3.33)

(ii) The embedding As1
p1,q1

(Rn, wα,β) ↪→ As2
p2,q2

(Rn, wα,β) is compact if and only if

β > 0 , p1 < p2 and δ > max(α, 0)

(
1

p1

− 1

p2

)
.

Our general result in the double-sided weighted context [17, Cor. 2.14] reads as
follows.

Corollary 3.12. Let the parameters be given by (3.9) with p1 < p2. Let w ∈ A∞
and rw be given by (2.8).
(i) Let

(3.34) δ > (rw − 1)

(
n

p1

− n

p2

)
.

The embedding (3.8) is continuous if and only if (3.12) is satisfied. It is compact
if and only if (3.13) is satisfied.

(ii) Let δ < 0, then Bs1
p1,q1

(Rn, w) is not embedded into Bs2
p2,q2

(Rn, w).
(iii) Let δ = 0. When q∗ < ∞, then Bs1

p1,q1
(Rn, w) is not embedded into Bs2

p2,q2
(Rn, w).

When q∗ = ∞ and w ∈ Arw , that is, rw = 1, then idww in (3.8) is continuous if
and only if (3.12) is satisfied.

(iv) If the condition (3.34) does not hold, then for every r > rw there exists an Ar

weight v satisfying (3.12) such that the space Bs1
p1,q1

(Rn, v) is not embedded into
Bs2

p2,q2
(Rn, v).
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Remark 3.13. Note that the compactness in (i) is in some sense surprising as it
is different from the unweighted situation w ≡ 1 (where one cannot have a compact
embedding as is well-known). Of course, there is no contradiction as (3.13) is not
satisfied in this case.

Moreover, Corollary 3.12 refines Proposition 3.9(iii) in some sense: Assume that
(3.12) is satisfied, then since for an arbitrary ball B(x, %) with radius 0 < % < 1 there
is some m ∈ Zn such that B(x, %) ⊂ Q0,m (apart from a universal constant) and (2.7)
implies for w ∈ Ar that

w(B(x, %)) ≥ c %nr w(Q0,m),

we obtain (3.27) with d = rn. The limiting case δ = (r−1)( n
p1
− n

p2
) in (3.34) coincides

with (3.28) for d = nr such that (3.29) covers the continuity of the embedding (3.8).

Again we clarify the result for A1 weights.

Corollary 3.14. Let the parameters be given by (3.7) with p1 < p2 and let
w ∈ A1 such that rw = 1.
(i) Then idww in (3.8) is continuous if and only if the following two conditions hold,

a) inf
l

w(Q0,l) ≥ c > 0,(3.35)

b)

{
δ > 0 if q∗ < ∞,

δ ≥ 0 if q∗ = ∞.
(3.36)

Otherwise Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn, w).
(ii) The embedding idww in (3.8) is never compact.

Proof. Recall from the proof of Corollary 3.7 that w ∈ A1 contradicts (3.13). ¤
In case of p1 = p2 there is no direct influence of the weights on the continuity or

compactness of the embedding (3.8).

Corollary 3.15. Let the parameters be given by (3.9) with p1 = p2. Let w ∈
A∞. Then the embedding (3.8) is continuous if and only if

{
s1 − s2 > 0 if q∗ < ∞,

s1 − s2 ≥ 0 if q∗ = ∞.

The embedding (3.8) is never compact.

Remark 3.16. Before we turn to a refined study of compact embeddings in the
next section it seems worth noticing that the weight class A1 is obviously too small
or weak in order to imply compactness of either the embedding idw in (3.6) or idww

in (3.8), recall Corollaries 3.7(ii), 3.14(ii), and 3.15. This resembles the unweighted
situation, see also Remark 3.3.

4. Singularities, entropy and approximation numbers

We concentrate on compact embeddings now, in particular, on their entropy and
approximation numbers. Let X, Y be two quasi-Banach spaces and let T : X → Y
be a bounded linear operator. The k-th (dyadic) entropy number of T , k ∈ N, is
defined as

ek(T ) = inf{ε > 0: T (BX) can be covered by 2k−1 balls of radius ε in Y },



124 Dorothee D. Haroske and Leszek Skrzypczak

where BX denotes the closed unit ball in X. Due to the well known fact that

T : X → Y is compact if and only if lim
k→∞

ek(T : X → Y ) = 0,

the entropy numbers can be viewed as a quantification of the notion of compactness.
On the other hand, the k-th approximation number of T is defined as

ak(T ) = inf{‖T − L‖ : rankL < k}.
If ak(T ) → 0 for k → ∞, then T is compact. So the asymptotic behaviour of ap-
proximation numbers also gives us the quantitative analysis of compactness of the
operator. Further properties like multiplicativity and additivity, as well as applica-
tions of entropy and approximation numbers can be found in [8, 9, 10, 28].

We study the case of compact embeddings of type (3.6) or (3.8) for (general)
weights w ∈ Ar, r ≥ 1, but first motivate our approach by recalling the result
corresponding to Example 3.4(ii). In [17, Thms. 3.4, 4.3] we proved the following.

Example 4.1. Let the parameters satisfy (3.7) and let the weight w ∈ A∞ be
of type (2.9) with (3.18).
(i) If β

p1
6= δ, then

ek

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn)

)
∼ k

−min
(

s1−s2
n

, β
np1

+ 1
p1
− 1

p2

)
, k ∈ N.

(ii) If β
p1

= δ and τ = s1−s2

n
+ 1

q2
− 1

q1
6= 0, then

ek

(
Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn)

)
∼ k−

s1−s2
n (1 + log k)max(τ,0), k ∈ N.

(iii) Let β
p1
6= δ, then

ak

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn)

) ∼ k−κ, k ∈ N,

where

κ =





min(δ,β/p1)
n

+ 1
p∗ if 0 < p1 ≤ p2 ≤ 2, or 2 ≤ p1 ≤ p2 ≤ ∞,

or p1(
β
n

+ 1)−1 < p2 < p1 < ∞,
min(δ,β/p1)

n
+ 1

2
− 1

min(p′1,p2)
if 0 < p1 < 2 < p2 ≤ ∞ with (p1, p2) 6= (1,∞)

and min( β
p1

, δ) > n
min(p′1,p2)

,
min(δ,β/p1)

n
· min(p′1,p2)

2
if 0 < p1 < 2 < p2 ≤ ∞ with (p1, p2) 6= (1,∞)

and min( β
p1

, δ) < n
min(p′1,p2)

.

Apart from the (well-known) special phenomenon of approximation numbers to
distinguish between situations where both parameters pi are on the same or different
sides of the number 2, it is obvious that the asymptotic behaviour of entropy and
approximation numbers depends upon the differential dimension δ and the singular-
ity behaviour of w characterized in the above example in terms of α and β, recall
(2.9). More precisely, the influence of the local singularities—indicated by α here—
is restricted to condition (3.18) ensuring compactness. This observation is further
strengthened by the corresponding proofs in [17]: even the entropy and approxima-
tion numbers of the local version of these embeddings (denoted by Id1 in [17]) are
independent of α (apart from (3.18), of course).

Therefore we want to investigate this phenomenon in general and begin with a
refined study of the singularity behaviour of Muckenhoupt A∞ weights.
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4.1. Singularities. Let w1, w2 ∈ A∞. We introduce the following notion of
their set of singularities Ssing(w1, w2).

Definition 4.2. For w1, w2 ∈ A∞ we define the set of singularities Ssing(w1, w2)
by

Ssing(w1, w2) = S0(w1, w2) ∪ S∞(w1, w2),

where

S0(w1, w2) =

{
x0 ∈ Rn : inf

Qν,m3x0

w1(Qν,m)

w2(Qν,m)
= 0

}
,

S∞(w1, w2) =

{
x0 ∈ Rn : sup

Qν,m3x0

w1(Qν,m)

w2(Qν,m)
= ∞

}
.

Remark 4.3. In case of w2 ≡ 1, w1 ≡ w ∈ A∞, we shall only write S∞(w) =
S∞(w, 1) and S0(w) = S0(w, 1), that is,

S0(w) =

{
x0 ∈ Rn : inf

Qν,m3x0

w(Qν,m)

|Qν,m| = 0

}
,

S∞(w) =

{
x0 ∈ Rn : sup

Qν,m3x0

w(Qν,m)

|Qν,m| = ∞
}

,

such that

Ssing(w) = S0(w) ∪ S∞(w).

Plainly, if w1 ∼ w2, i.e., there are positive numbers c2 > c1 such that for all x ∈ Rn,
c1w2(x) ≤ w1(x) ≤ c2w2(x), then Ssing(w1, w2) = ∅, in particular, Ssing(w, w) = ∅.

Examples 4.4. Let w = wα,β given by (2.9), then

(4.1) Ssing(wα,β) = {0}, α 6= 0,

with Ssing(wα,β) = ∅ if α = 0; thus

(4.2) |Ssing(wα,β)| = 0, α, β > −n.

Assertion (4.1) can be seen as follows. Note that

wα,β(Qν,m) ∼ 2−νn





2−να if m = 0,

|2−νm|α if 1 ≤ |m| < 2ν ,

|2−νm|β if |m| ≥ 2ν .

Hence we obtain for x0 = 0 that

sup
Qν,m3x0

wα,β(Qν,m)

|Qν,m| ≥ sup
ν∈N0

2−να = ∞ for α < 0, that is, 0 ∈ S∞(wα,β),

and

inf
Qν,m3x0

wα,β(Qν,m)

|Qν,m| ≤ inf
ν∈N0

2−να = 0 for α > 0, that is, 0 ∈ S0(wα,β).

Conversely, straightforward reasoning gives for |x0| ≥ 1 that
wα,β(Qν,m)

|Qν,m| ∼ |x0|β for all Qν,m 3 x0, that is, x0 6∈ Ssing(wα,β),
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and for 0 < |x0| < 1 that

sup
Qν,m3x0

wα,β(Qν,m)

|Qν,m| ∼ max(1, |x0|α) < ∞, that is, x0 6∈ S∞(wα,β),

as well as

inf
Qν,m3x0

wα,β(Qν,m)

|Qν,m| ∼ min(1, |x0|α) > 0, that is, x0 6∈ S0(wα,β).

We return to our example wκ,Γ introduced in (2.10) in Example 2.3 where Γ is a d-set
in Rn with 0 < d < n and κ > −(n − d). Then one can prove similar to our above
considerations, see also [16], that

Ssing(wκ,Γ) =





Γ = S0(wκ,Γ), S∞(wκ,Γ) = ∅, if κ > 0,

∅ = S0(wκ,Γ) = S∞(wκ,Γ), if κ = 0,

Γ = S∞(wκ,Γ), S0(wκ,Γ) = ∅, if κ < 0.

Note that |Γ| = 0, cf. [39, Cor. 3.6], such that finally

(4.3) |Ssing(wκ,Γ)| = 0, κ > −(n− d).

Inspired by the above examples we assume in the sequel that Ssing(w1, w2) is
bounded in Rn. Moreover, another common feature of the above examples (4.2),
(4.3), that is, |Ssing(w)| = 0, w ∈ A∞, can be proved in general.

Proposition 4.5. For any w1, w2 ∈ A∞ the set Ssing(w1, w2) has Lebesgue mea-
sure 0, i.e., |Ssing(w1, w2)| = 0.

Proof. Step 1. It follows directly from the definition and elementary properties
of inf and sup that

S0(w1, w2) ( S0(w1) ∪ S∞(w2) and S∞(w1, w2) ( S∞(w1) ∪ S0(w2).

So, it is sufficient to prove that for any w ∈ A∞ the set Ssing(w) is of measure 0,
since Ssing(w1, w2) = S0(w1, w2) ∪ S∞(w1, w2). In the rest of the proof we will thus
assume that w1 = w ∈ A∞ and w2 ≡ 1.

Step 2. First we assume that w ∈ A1. We prove that S0(w) = ∅ and |S∞(w)| = 0.
If w ∈ A1, then w(x) is finite a.e. in Rn and by (2.3) there is a constant C > 0 such
that M w(x) ≤ C w(x) for a.e. x ∈ Rn. Thus |S∞(w)| = 0. On the other hand, (2.3)
implies for x0 ∈ Q0,` and some ` ∈ N0 that

(4.4) |Q0,`|−1w(Q0,`) ≤ C ess inf
Q0,`

w(x) ≤ C inf
Q0,`⊃Qν,m3x0

w(Qν,m)

|Qν,m| .

This gives S0(w) = ∅ and

(4.5) |Ssing(w)| = 0, w ∈ A1.

Step 3. Let w(x) = v(x)1−p for some v ∈ A1 and 1 < p < ∞, then w ∈ Ap in
view of (2.5) (with w1 ≡ 1). We show that S0(v) = S∞(w) and S∞(v) = S0(w).
Note that this leads to Ssing(v) = Ssing(w) immediately and thus by (4.5) to

(4.6) |Ssing(w)| = 0 for w = v1−p, v ∈ A1.

By (2.1) we obtain

(4.7)
w(Q)

|Q| ≤ C
(v(Q)

|Q|
)1−p
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for any cube Q ⊂ Rn. The weight v belongs to the class A1 therefore (2.7) reads as

(4.8)
v(Q0,`)

|Q0,`| ≤ C
v(Qν,m)

|Qν,m|
for any cube Q0,` and Qν,m such that Qν,m ⊂ Q0,`. Thus the inequalities (4.7) and
(4.8) imply that for any cube Q0,` there exists a positive constant C > 0 such that

w(Qν,m)

|Qν,m| ≤ C

for any Qν,m ⊂ Q0,`. This enables us to conclude S∞(w) = ∅ = S0(v) in view of
Step 2. It remains to prove S∞(v) = S0(w).

If x ∈ S∞(v), then by (4.7) and p > 1 we get

inf
Qν,m3x

w(Qν,m)

|Qν,m| ≤ C

(
sup

Qν,m3x

v(Qν,m)

|Qν,m|

)1−p

= 0.

Thus S∞(v) ⊂ S0(w). Conversely, let x ∈ S0(w), then for any ε > 0 there is a cube
Qε

ν,m 3 x such that w(Qε
ν,m)

|Qε
ν,m| < ε. Moreover, if x ∈ Q0,`, then there exists a constant

c > 0 such that ess supQ0,`
w(x) ≤ c since v ∈ A1 implies ess infQ0,`

v(x) > Cv(Q0,`)

by (4.4).
We apply Hölder’s inequality with p > 1, 1

p
+ 1

p′ = 1, and get

1 = |Qε
ν,m|−1

∫

Qε
ν,m

w
1
p (x)v(p−1) 1

p (x) dx ≤
(

w(Qε
ν,m)

|Qε
ν,m|

)1/p (
v(Qε

ν,m)

|Qε
ν,m|

)1/p′

≤ Cε1/p

(
v(Qε

ν,m)

|Qε
ν,m|

)1/p′

.

But this implies

sup
Qν,m3x

v(Qν,m)

|Qν,m| = ∞,

hence, S0(w) ⊂ S∞(v).

Step 4. Let w ∈ A∞, then (2.4) and (2.5) imply the existence of some 1 < p < ∞
and v1, v2 ∈ A1 with w = v1−p

1 v2 ∈ Ap. It is sufficient to show that S∞(w) ⊂ S∞(v2)
and S0(w) ⊂ S∞(v1) since then (4.5), (4.6) imply

|Ssing(w)| ≤ |S0(w)|+ |S∞(w)| ≤ |S∞(v1)|+ |S∞(v2)| ≤ |Ssing(v1)|+ |Ssing(v2)| = 0.

Recall that by (4.4) for any cube Q0,` there are constants c1, c2 > 0 such that

(4.9) ess inf
y∈Q0,`

v2(y) > c1 and ess sup
y∈Q0,`

v1−p
1 (y) < c2.

Let x ∈ S∞(w) and x ∈ Qν,m ⊂ Q0,`. It follows by (4.9) that

w(Qν,m) ≤ Cv2(Qν,m)

such that x ∈ S∞(v2), in other words, S∞(w) ⊂ S∞(v2). Assume now x ∈ S0(w) and
x ∈ Qν,m ⊂ Q0,`, then the right-hand side of (4.9) implies

w(Qν,m) ≥ Cv1−p
1 (Qν,m),
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that is, x ∈ S0(v
1−p
1 ) = S∞(v1) in view of Step 3. This establishes S0(w) ⊂ S∞(v1)

and hence completes the proof. ¤
Let Q be some (closed) dyadic cube in Rn by which we mean a cube with sides

parallel to the axes and of side length L2−ν0 for suitable L ∈ N0 and ν0 ∈ N0 such
that

Q =
⋃

m∈Iν0

Qν0,m =
⋃

ν≥ν0

⋃
m∈Iν

Qν,m

for suitable finite index sets Iν ⊂ Zn. This ensures by the construction of the cubes
Qν,m that we have at each level ν ≥ ν0 either Qν,m ⊂ Q or Qν,m ∩ Q = ∅. Let
Bs

p,q(Q,w) defined by restriction, that is, (2.16) with Ω = Q, normed by (2.17). We
first show that such a space ‘ignores’ the influence of a weight if the corresponding
set of singularities Ssing(w1, w2) is at some distance from Q.

Proposition 4.6. Let s ∈ R, 0 < p, q ≤ ∞, w1, w2 ∈ A∞, and assume
dist(Q,Ssing(w1, w2)) > 0. Then

Bs
p,q(Q,w1) = Bs

p,q(Q,w2),

(in the sense of equivalent norms), in particular,

Bs
p,q(Q,w) = Bs

p,q(Q) for w ∈ A∞ with dist(Q,Ssing(w)) > 0.

Proof. Step 1. First we remark that one can define Bs
p,q(Q,wi) by the restriction

of distributions belonging Bs
p,q(R

n, wi) and supported in any open set Ω ⊂ Rn such
that Q ⊂ Ω, i = 1, 2. This follows easily from the fact that any smooth compactly
supported function is a pointwise multiplier in Bs

p,q(R
n, wi), cf. [31].

We choose an integer ν1 such that ν1 ≥ ν0 and dist(Q,Ssing(w1, w2)) > 2
√

n2−ν1 .
We put

Iν1 = {m ∈ Zn : Qν1,m ∩Q 6= ∅} and Q1 =
⋃

m∈Iν1

Qν1,m,

and
Jν1 = {m ∈ Zn : Qν1,m ∩Q1 6= ∅} and Q2 =

⋃
m∈Jν1

Qν1,m.

Then
Q ⊂ Q1 ⊂ Q1 ⊂ Q2 and dist(Q2,Ssing(w1, w2)) > 0.

Let B̃s
p,q(Q1, wi) = {f ∈ Bs

p,q(Q1, wi) : supp f ⊂ Q1}. Then B̃s
p,q(Q1, wi) ↪→

B̃s
p,q(Q1, wj) implies Bs

p,q(Q,wi) ↪→ Bs
p,q(Q,wj), i, j = 1, 2.

Now we apply Theorem 2.6 and Proposition 3.1 with s1 = s2 = s, p1 = p2 = p,
q1 = q2 = q, hence p∗ = q∗ = ∞. Since the wavelets used in Theorem 2.6 are
compactly supported we obtain that

B̃s
p,q(Q1, w1) ↪→ B̃s

p,q(Q1, w2) if sup
Qν,m⊂Q2

w2(Qν,m)

w1(Qν,m)
< ∞,

that is,

B̃s
p,q(Q1, w1) ↪→ B̃s

p,q(Q1, w2) if inf
Qν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
> 0.
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Similarly, interchanging the roles of w1 and w2, we get

B̃s
p,q(Q1, w2) ↪→ B̃s

p,q(Q1, w1) if sup
Qν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
< ∞.

Step 2. It remains to show that dist(Q2,Ssing(w1, w2)) > 0 implies

(4.10) 0 < inf
Qν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
≤ sup

Qν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
< ∞.

We proceed by contradiction and first assume that

inf
Qν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
= 0.

Then by our assumption on Q2 there is at least some m0 ∈ Jν1 such that

inf
Qν,m⊂Qν1,m0

w1(Qν,m)

w2(Qν,m)
= 0.

There are 2n sub-cubes Qν1+1,m ⊂ Qν1,m0 of side length 2−(ν1+1) where again there
must exist at least one number m1 ∈ Jν1+1 such that

inf
Qν,m⊂Qν1+1,m1

w1(Qν,m)

w2(Qν,m)
= 0.

By this construction we obtain a decreasing sequence of cubes {Qν1+j,mj
}j∈N0 with

Q2 ⊃ Qν1,m0 ⊃ Qν1+1,m1 ⊃ · · · ⊃ Qν1+j,mj
⊃ · · · , and

inf
Qν,m⊂Qν1+j,mj

w1(Qν,m)

w2(Qν,m)
= 0.

Since Q2 is compact, there exists some x1 ∈
⋂

j∈N0

Qν1+j,mj
⊂ Q2 with

inf
Qν,m3x1

w1(Qν,m)

w2(Qν,m)
= 0 such that x1 ∈ S0(w1, w2) ∩Q2.

Consequently, Ssing(w1, w2) ∩ Q2 6= ∅ which contradicts dist(Q2,Ssing(w1, w2)) > 0.
The argument in case of supQν,m⊂Q2

w1(Qν,m)

w2(Qν,m)
= ∞ is parallel and leads to the existence

of some x1 ∈ S∞(w1, w2)∩Q2, which again contradicts dist(Q2,Ssing(w1, w2)) > 0. ¤
4.2. Entropy and approximation numbers for one-sided weighted sit-

uations. We first deal with the situation w1 ≡ w and w2 ≡ 1 which corresponds to
(3.6). Recall Example 4.1 for the special weight of type (2.9).

Theorem 4.7. Let w ∈ A∞ with rw given by (2.8) and Ssing(w) bounded. Let
the parameters be given by (3.1), (3.5), (3.7), and assume

(4.11) δ >
n

p∗
+

n

p1

(rw − 1).

Let Q be some sufficiently large cube with Ssing(w) ( Q̊. Then

(4.12) idQ
w : As1

p1,q1
(Q,w) ↪→ As2

p2,q2
(Q)

is compact with

(4.13) ek

(
idQ

w

) ∼ k−
s1−s2

n , k ∈ N.
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Proof. Step 1. First note that it is sufficient to deal with the case A = B in
(4.12), i.e., with Besov spaces, in view of (3.26). Our assumptions on Ssing(w) and
Q imply the existence of some smaller cube Q̃ ⊂ Q with dist(Q̃,Ssing(w)) > 0. This
leads by Proposition 4.6 to

0 < c1 ≤ w(Q̃) ≤ c2|Q̃| ≤ c3 < ∞ and Bs1
p1,q1

(Q̃, w) = Bs1
p1,q1

(Q̃).

We decompose idQ̃ : Bs1
p1,q1

(Q̃) ↪→ Bs2
p2,q2

(Q̃) into idQ̃ = re ◦ idQ
w ◦ ext in the following

way,

(4.14)

Bs1
p1,q1

(Q̃) = Bs1
p1,q1

(Q̃, w)
ext−−−→ Bs1

p1,q1
(Q,w)

idQ̃

y
y idQ

w

Bs2
p2,q2

(Q̃) ←−−−−
re

Bs2
p2,q2

(Q)

where re and ext are the usual restriction and extension operators. Since they are
bounded, the multiplicativity of entropy numbers leads to

ek(idQ̃) ≤ cek(id
Q
w), k ∈ N.

Note that δ > n
p∗ as a consequence of (4.11). Therefore, we can apply the unweighted

result for entropy numbers in [10, Thm. 3.3.3/2] which yields

ek(idQ̃) ≥ c′k−
s1−s2

n , k ∈ N,

leading to the lower estimate in (4.13).

Step 2. We deal with the estimate from above and begin with the case w ∈ A1

such that (4.11) reads as δ > n
p∗ . Similar to the proof of Proposition 4.6 we know

that
id1 : Bs1

p1,q1
(Q,w) ↪→ Bs1

p1,q1
(Q) if and only if inf

Qν,m⊂Q

w(Qν,m)

|Qν,m| > 0.

Note that
inf

Q0,l⊂Q

w(Q0,l)

|Q0,l| = inf
Q0,l⊂Q

w(Q0,l) ≥ c > 0

(as there are only finitely many such cubes Q0,l ⊂ Q), we now apply (2.7) with p = 1
and Qν,m ⊂ Q0,l for some l ∈ Zn, thus

inf
Qν,m⊂Q

w(Qν,m)

|Qν,m| ≥ c′ inf
Q0,l⊂Q

w(Q0,l)

|Q0,l| ≥ c′′,

such that S0(w) = ∅ and Ssing(w) = S∞(w) with w(x) ≥ C > 0 a.e. in Q. This
implies the continuity of id1 and the counterpart of (4.14) looks like

(4.15)
Bs1

p1,q1
(Q,w)

id1−−−→ Bs1
p1,q1

(Q)

idQ
w
↘ ↙idQ

Bs2
p2,q2

(Q)

that is, idQ
w = idQ ◦ id1,

such that the multiplicativity of entropy numbers gives

ek(id
Q
w) ≤ cek(idQ) ≤ c′k−

s1−s2
n , k ∈ N,

where we used δ > n
p∗ and the unweighted result [10, Thm. 3.3.3/2] for idQ.
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Step 3. Assume now w ∈ Ap, p > 1. By (4.11) we may choose some r > rw ≥ 1
such that

(4.16) δ >
n

p∗
+

n

p1

(r − 1) >
n

p∗
+

n

p1

(rw − 1)

and w ∈ Ar. This implies
(∫

Q

w(x) dx

)1/r (∫

Q

w(x)−r′/r dx

)1/r′

≤ A|Q| < ∞,

and consequently, (∫

Q

w(x)−r′/r dx

)1/r′

≤ C < ∞.

Thus Hölder’s inequality ensures Lp1(Q,w) ↪→ L p1
r
(Q) since

∥∥∥f |L p1
r
(Q)

∥∥∥ =
∥∥∥fw

1
p1 w

− 1
p1 |L p1

r
(Q)

∥∥∥

≤ ‖f |Lp1(Q,w)‖
∥∥∥w− 1

r |Lr′(Q)
∥∥∥

r
p1 ≤ C ‖f |Lp1(Q,w)‖ .

In a similar way as in Step 2 we get

idr
1 : Bs1

p1,q1
(Q,w) ↪→ Bs1

p1
r

,q1
(Q),

and (4.15) is replaced by

(4.17)
Bs1

p1,q1
(Q,w)

idr
1−−−→ Bs1

p1
r

,q1
(Q)

idQ
w
↘ ↙idr

Q

Bs2
p2,q2

(Q)

that is, idQ
w = idr

Q ◦ idr
1,

leading to ek(id
Q
w) ≤ cek(id

r
Q), k ∈ N. The (unweighted) embedding idr

Q is compact
with ek(id

r
Q) ∼ k−

s1−s2
n if

s1 − s2 − n

(
r

p1

− 1

p2

)

+

> 0.

If p1 ≤ p2, then p∗ = ∞ and (4.16) gives the desired estimate, since

s1 − s2 − n

(
r

p1

− 1

p2

)

+

= s1 − s2 − nr

p1

+
n

p2

= δ − n

p1

(r − 1) > 0.

When p1 > p2, then either 1 ≤ rw < r ≤ p1

p2
such that

s1 − s2 − n

(
r

p1

− 1

p2

)

+

= s1 − s2 >
n

p1

(r − 1) > 0,

or 1 < p1

p2
≤ rw < r such that

s1 − s2 − n

(
r

p1

− 1

p2

)

+

= δ − n

p1

(r − 1) > 0.

This concludes the proof. ¤
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Remark 4.8. In the unweighted case w ≡ 1 we have the asymptotic behaviour
of entropy numbers (4.13) whenever δ > n

p∗ , see [10, Thm. 3.3.3/2]. This fits well
together with the above condition (4.11), since we have rw = 1 in the unweighted
case, see Example 2.3.

The above result has some immediate consequences for the asymptotic estimate
of the corresponding approximation numbers. Recall that in case of bounded domains
the parallel result to [10, Thm. 3.3.3/2] was achieved in [10, Thm. 3.3.4] with the
extension in [7]. In case of δ > n

p∗ it reads as

(4.18) ak

(
As1

p1,q1
(Ω) ↪→ As2

p2,q2
(Ω)

) ∼ k−κ, k ∈ N,

where

(4.19) κ =
δ

n
− 1

p∗
+

(
min(p′1, p2)

2
− 1

)

+

·min

(
δ

n
,

1

min(p′1, p2)

)
,

with the additional assumption that (p1, p2) 6= (1,∞) and δ 6= n
min(p′1,p2)

in case of
p1 < 2 < p2. Note that this coincides with Example 4.1(iii) when β →∞.

Corollary 4.9. Let w ∈ A∞ with rw given by (2.8) and Ssing(w) bounded. Let
the parameters be given by (3.7) with (4.11). Let Q be some sufficiently large cube
with Ssing(w) ( Q̊ and idQ

w the compact embedding

idQ
w : As1

p1,q1
(Q,w) ↪→ As2

p2,q2
(Q).

(i) If w ∈ A1, then
ak(id

Q
w) ∼ k−κ, k ∈ N,

with κ given by (4.19).
(ii) If w ∈ Ap with p > 1, then there exists some c > 0 such that for all k ∈ N,

(4.20) ak(id
Q
w) ≥ c k−κ,

where κ is given by (4.19). In particular, for p1 > rwp2 ≥ p2, then

(4.21) ak(id
Q
w) ∼ k−

s1−s2
n , k ∈ N.

Proof. Again we may restrict ourselves to the case A = B in view of (3.26).
Inspecting the above proof we find that Steps 1 and 2 provide for w ∈ A1 that

ak(id
Q
w) ∼ ak(idΩ : Bs1

p1,q1
(Ω) ↪→ Bs2

p2,q2
(Ω)), k ∈ N,

where Ω = Q̃ or Ω = Q, neglecting the dependence of the constants upon the domain
(as usual). This proves (i).

In case of w ∈ Ap, p > 1, we get the two-sided estimate (in the above interpre-
tation)

c1ak(idΩ : Bs1
p1,q1

(Ω) ↪→ Bs2
p2,q2

(Ω)) ≤ ak(id
Q
w) ≤ c2ak(id

r
Ω : Bs1

p1
r

,q1
(Ω) ↪→ Bs2

p2,q2
(Ω))

where r is appropriately chosen according to (4.16). Plainly this gives (4.20) in view
of (4.18). Moreover, when p1 > rwp2 ≥ p2, then κ = s1−s2

n
in (4.19) and (4.18) reads

as
ak

(
Bs1

p1,q1
(Ω) ↪→ Bs2

p2,q2
(Ω)

) ∼ k−
s1−s2

n , k ∈ N, p2 < p1, s1 > s2.
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This gives the lower estimate in (4.21) with Ω = Q̃. Conversely, we choose again r
appropriate, i.e., 1 ≤ rw < r < p1

p2
, such that (4.18) with Ω = Q completes the upper

estimate in (4.21). ¤

Remark 4.10. If w ∈ Ap with p > 1, and p1 ≤ rwp2, then one can only prove
two-sided estimates by the above method. For instance, let 0 < p1 ≤ p2 ≤ 2 or
2 ≤ 2rw < p1 ≤ p2, then there is some positive c > 0 and for any ε > 0 some number
cε > 0 such that

ck−
δ
n ≤ ak(id

Q
w) ≤ cεk

− δ
n

+ rw−1
p1

+ε
, k ∈ N,

and for p2 ≤ p1 ≤ rwp2 with either p1 > 2rw ≥ 2 or p2 ≤ 2, then

c k−
s1−s2

n ≤ ak(id
Q
w) ≤ cεk

− s1−s2
n

+( rw
p1
− 1

p2
)+ε

, k ∈ N.

Similarly it works for all other cases, but we do not explicate it since the outcome is
not yet satisfying.

4.3. Entropy and approximation numbers for double-sided weighted
situations. We study the corresponding double-sided weighted situation now, recall
Corollaries 3.12, 3.14, 3.15. The counterpart of Example 4.1 is the following, cf. [17,
Thm. 3.6, Rem. 4.4].

Example 4.11. Let the parameters satisfy (3.9) and let the weight w ∈ A∞ be
of type (2.9) with

β > 0, p1 < p2, δ > max(α, 0)

(
1

p1

− 1

p2

)
.

(i) If β( 1
p1
− 1

p2
) 6= δ, then for all k ∈ N,

ek

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn, w)

)
∼ k

−min
(

s1−s2
n

, (1+ β
n

)( 1
p1
− 1

p2
)
)
.

(ii) If β( 1
p1
− 1

p2
) = δ and τ = s1−s2

n
+ 1

q2
− 1

q1
6= 0, then for all k ∈ N,

ek

(
Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn, w)

)
∼ k−

s1−s2
n (1 + log k)max(τ,0).

(iii) Let β( 1
p1
− 1

p2
) 6= δ, then for all k ∈ N,

ak

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn, w)

) ∼ k−κ,

where

κ =





min( δ
n
, β

n
( 1

p1
− 1

p2
)) if 0 < p1 ≤ p2 ≤ 2, or 2 ≤ p1 ≤ p2 ≤ ∞,

min( δ
n
, β

n
( 1

p1
− 1

p2
))+ 1

2
− 1

min(p′1,p2)
if 0 < p1 < 2 < p2 ≤ ∞, with (p1, p2) 6=
(1,∞) and min(β( 1

p1
− 1

p2
), δ) > n

min(p′1,p2)
,

min( δ
n
, β

n
( 1

p1
− 1

p2
)) · min(p′1,p2)

2
if 0 < p1 < 2 < p2 ≤ ∞, with (p1, p2) 6=
(1,∞) and min(β( 1

p1
− 1

p2
), δ) < n

min(p′1,p2)
.

Recall Ssing(w,w) = ∅, Ssing(w) = Ssing(w, 1). The counterpart of Theorem 4.7
and Corollary 4.9 reads as follows.
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Theorem 4.12. Let w ∈ A∞ with rw given by (2.8) and Ssing(w) bounded. Let
the parameters be given by (3.9) with p1 ≤ p2, and assume

(4.22) δ > (rw − 1)

(
n

p1

− n

p2

)
.

Let Q be some sufficiently large cube with Ssing(w) ( Q̊. Then

(4.23) idQ
ww : As1

p1,q1
(Q,w) ↪→ As2

p2,q2
(Q,w)

is compact with

(4.24) ek

(
idQ

ww

) ∼ k−
s1−s2

n , k ∈ N,

and

(4.25) ak

(
idQ

ww

) ∼ k−κ, k ∈ N,

if δ 6= n
min(p′1,p2)

, where κ is defined in (4.19).

Proof. Step 1. First note that it is sufficient to deal with the case A = B in
(4.12), i.e., with Besov spaces, in view of (3.26). We proceed similar to the proof of
Theorem 4.7 and decompose idQ̃ : Bs1

p1,q1
(Q̃) ↪→ Bs2

p2,q2
(Q̃) into idQ̃ = re ◦ idQ

ww ◦ ext in
the following way,

(4.26)

Bs1
p1,q1

(Q̃) = Bs1
p1,q1

(Q̃, w)
ext−−−→ Bs1

p1,q1
(Q,w)

idQ̃

y
y idQ

ww

Bs2
p2,q2

(Q̃) = Bs2
p2,q2

(Q̃, w) ←−−
re

Bs2
p2,q2

(Q,w)

where we applied Proposition 4.6 with w1 ≡ 1, w2 ≡ w in the left-hand part of the
diagram. This leads to

ek(idQ̃) ≤ cek(id
Q
ww), ak(idQ̃) ≤ cak(id

Q
ww), k ∈ N.

Since δ > 0 by (4.22), we can apply the unweighted result for entropy numbers in
[10, Thm. 3.3.3/2] which yields

ek(idQ̃) ≥ c′k−
s1−s2

n , k ∈ N,

leading to the lower estimate in (4.24). As for the counterpart in (4.25) we use (4.18)
with (4.19).

Step 2. We prove the estimates from above. We need the following closed sub-
spaces of the sequence spaces bσ

p,q(w) from (2.19),

b̃σ
p,q(w) :=

{
λ = {λν,m}ν,m : λν,m ∈ bσ

p,q(w), λν,m = 0 if |m| > c2ν
}

.
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Here c is a positive constant depending on the context. First we prove that there exist
bounded linear operators T̃ and S̃ such that the following diagram is commutative,

(4.27)

Bs1
p1,q1

(Q,w)
T̃−−−−→ b̃σ1

p1,q1
(w)

idQ
ww

y
y IdQ

ww

Bs2
p2,q2

(Q,w) ←−−−−
S̃

b̃σ2
p2,q2

(w).

Let rQ denote the cube concentric with Q and of size r
times the size of Q, r > 0. Since Ssing(w) ( Q̊ there ex-
ists some r0 < 1 such that Ssing(w) ( r0Q̊. We choose
a number r1 such that r0 < r1 < 1. Assume that
ϕ, ψ ∈ C∞(Rn) are compactly supported smooth func-
tions such that

supp ϕ ⊂ r1Q, ϕ(x) = 1 if x ∈ r0Q,

supp ψ ⊂ 2Q, ψ(x) = 1 if x ∈ 3

2
Q.

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

Q
E1

E0

Ssing(w)

If f ∈ Bs1
p1,q1

(Q, w), then also f − ϕf ∈ Bs1
p1,q1

(Q,w) and

(4.28) ‖f − ϕf |Bs1
p1,q1

(Q,w)‖ ≤ C‖f |Bs1
p1,q1

(Q,w)‖,
since ϕ is a pointwise multiplier in the space Bs1

p1,q1
(Rn, w), cf. [31]. But supp (f −

ϕf) ⊂ E0 = Q\ r0Q and E0 is a Lipschitz domain with dist(E0,Ssing(w)) > 0, so one
can prove in the same way as in Proposition 4.6 that

f − ϕf ∈ Bs1
p1,q1

(E0, w) = Bs1
p1,q1

(E0)

(in the sense of equivalent norms). Extending f − ϕf by zero onto r0Q we get
f − ϕf ∈ Bs1

p1,q1
(Q) and by (4.28),

(4.29) ‖f − ϕf |Bs1
p1,q1

(Q)‖ ≤ C‖f |Bs1
p1,q1

(Q,w)‖.
Let extQ : Bs1

p1,q1
(Q) → Bs1

p1,q1
(Rn) denote a linear extension operator. The distri-

bution ψ extQ(f − ϕf) is supported in E1 = 2Q \ r0Q and dist(E1,Ssing(w)) > 0,
hence

ψextQ(f − ϕf) ∈ Bs1
p1,q1

(E1) = Bs1
p1,q1

(E1, w)

(in the sense of equivalent norms). We define

(4.30) T̃f = T
(
ψ

(
ϕf + extQ(f − ϕf)

))
,

where T is the operator mentioned in Remark 3.2. It follows from Theorem 2.6, the
extension property of Besov spaces defined on Lipschitz domains and (4.29) that T̃

is a bounded linear operator from Bs1
p1,q1

(Q,w) into b̃σ1
p1,q1

(w) (with the constant c
depending on Q and the size of supports of the wavelets.)

On the other hand, we put

(4.31) S̃(λ) = reQ

(
S(λ)

)
,

where S is the operator from Remark 3.2 and reQ : Bs2
p2,q2

(Rn, w) → Bs2
p2,q2

(Q,w) is a
restriction operator. It should be clear by the construction that the diagram (4.27)
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is commutative. The operator S̃ is a bounded linear operator from b̃σ2
p2,q2

(w) into
Bs2

p2,q2
(Q,w). Consequently,

(4.32) ek(id
Q
ww) ≤ cek(Id

Q
ww) ≤ cek(id : b̃σ1

p1,q1
→ b̃σ2

p2,q2
)

and

(4.33) ak(id
Q
ww) ≤ cak(Id

Q
ww) ≤ cak(id : b̃σ1

p1,q1
→ b̃σ2

p2,q2
),

cf. Remark 3.2. But

ek(id : b̃σ1
p1,q1

→ b̃σ2
p2,q2

) ∼ ek

(
id : `q1

(
2jδ`C2nj

p1

) → `q2

(
`C2nj

p2

)) ≤ c′k−
s1−s2

n ,(4.34)

where

`q(2
jδ`C2jn

p ) =

{
λ = {λj,m}j,m : λj,m ∈ C, j, m ∈ N0, 0 ≤ m ≤ C2jn,

‖λ|`q(2
jδ`p(w))‖ =

( ∞∑
j=0

2jδq
( C2jn∑

m=0

|λj,m|p
) q

p

) 1
q

< ∞
}

(appropriately modified if q = ∞). The final estimate in (4.34) is a consequence
of the results in [22, Thm 4.14, Cor. 4.16] related to entropy numbers of the above
sequence space embeddings. (Note that it is sufficient to take α > δ in [22, Cor. 4.16]
since `q(2

jδ`C2jn

p ) ↪→ `q(2
jδ`p(wα)).) In a similar way we get

ak(id : b̃σ1
p1,q1

→ b̃σ2
p2,q2

) ∼ ak

(
id : `q1

(
2jδ`C2nj

p1

) → `q2

(
`C2nj

p2

)) ≤ ck−κ

using results of [33]. ¤

Remark 4.13. It might be surprising at first glance that unlike in the one-sided
weighted situation presented in Corollary 4.9(ii) we have in the double-sided weighted
situation (4.23) the optimal outcome not only for entropy, but also for approxima-
tion numbers (4.25). The main trick, however, is the reduction to a corresponding
unweighted setting (4.32), (4.33) which gives the correct upper estimates (the lower
estimates (4.20) are clear in both situations). This recommends a refined study of
embeddings of type

id : b̃σ1
p1,q1

(w) ↪→ b̃σ2
p2,q2

,

and their corresponding approximation numbers. Our special example w = wα,β

given by (2.9) suggests that (4.20) indicates the asymptotic behaviour of the approx-
imation numbers correctly, see also [17, Lemma 4.2].
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