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Abstract. In this paper we study a mean-value property for solutions of the eigenvalue equa-
tion of the Laplace—Beltrami operator

Albh = —(n — 1)h

with respect to the volume and the surface integrals on the Poincaré upper-half space RTFI =
dacg+dx?+~~~+d.ti

2
:ETL

{(zg,...,2,) € R"1: 2, > 0} with the Riemannian metric ds® =

1. Preliminaries

In this section we recall the Laplace—Beltrami operator in the Poincaré upper-half
space and formulate its connections with the so called hypermonogenic functions. Let
us denote R = {(zg,21,...,2,) € R"™ : 2, > 0}. The Poincaré half-space is the
Riemannian manifold (R’ ds?), where the Riemannian metric is

e daf +dz? + -+ da?
The Laplace-Beltrami operator on the Poincaré upper-half space is the operator
(details are available for example in [7])
of
Apf =22Af — (n— 1z, ——,
wf=2,Af —(n—1)z o,

where f: Q — R is a smooth enough function defined on an open subset ) of R
and A = 88—;% + ot %ﬁ‘ The solutions of the Laplace—Beltrami equation A, f = 0
are called hyperbolic harmonic functions.

The Clifford algebra %y ,, is the free associative algebra with unit generated by
the symbols ey, ..., e, together with the defining relations

eie; +eje; = —20;;,

fori,7 =1,...,n. As a vector space the dimension of the Clifford algebra €/, is 2".
A canonical basis is given by eq = e, - - - €4,, Where A = {ay,...,ax} C {1,...,n}
and 1 <a; <...<a <n. In particular, we denote ey = ¢y = 1 and ey;; = e;. The
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(n+ 1)-dimensional Euclidean space R"™! is a subspace of €/, under the canonical
embedding

n
(0, X1, ..., Tpn) — Z:Bjej
7=0

and thus we may assume that R"*! C Cloyn. An element a € €Y, is called a
Clifford number and often the algebra 6/, ,, is called the algebra of Clifford numbers.
Elements x = Y7, xje; € €l are called vectors. Thus we see that an element z
of R""! may be written as

r=2xy+X

with x = x1e1 + - - - + x,€, and it is called a paravector.

The conjugation is the algebra anti-automorphism on the Clifford algebra defined
by T = zy — X, that is, if a,b € €ly,,, then ab = ba. Also, x*> = xx = —2? — .- — 22,
Thus we may compute

a7 = (10 +xX)(zg —X) =25 + 2]+ - + 22

for # € R""!. The Euclidean norm is then |x|?> = 2Z = Tx. The main-involution is
the algebra automorphism denoted and defined by 2’ = xo—x, that is, if a,b € €y,
then (ab)’ = da'l’.

Let us consider the Clifford algebra valued functions f: Q — %¥;,, where
Q C RT“I is an open subset. Since the Clifford algebra €/, is generated by the
symbols ey, ..., e,, we obtain that then the Clifford algebra €/, is generated by
the symbols ey, ..., e,_1. Hence each a € €/, may be represented in the form

a=>b+ ce,,
where b,c € €{y,,—1. We abbreviate Pa = b and Qa = ¢ and Q'a = (Qa)’ and
P'a = (Pa)’. Then we define the modified Dirac operator by
1
Q'f,

n —

Mf=Df+

Tn

where D = 8% + 618%1 + 4 en% is the Dirac operator on R"*1. The theory of
null-solutions of the modified Dirac operator is called hyperbolic function theory, see,
e.g., |4].

The function f: Q — €y, is called a hypermonogenic on  if M f(xz) = 0 for
each = € (). Hypermonogenic functions have many nice function theoretic properties,
for example, they have Cauchy-type integral formulas. Also, the function z — ",
where k € Z, is hypermonogenic. Many properties and more references can be found
from the survey article [4].

The conjugate of the modified Dirac operator is defined by
1

Q'f,

n —

Mf=Df -

Tn

D=9 _, 0 _ . .. ._, 9
where D = oz — €13 engo

In the hyperbolic function theory we define hyperbolic harmonic functions f: 2 —
€Ly, as solutions of the equation

MMf(z)=0
for x € Q.
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The next theorem give us a connection between hypermonogenic functions and
hyperbolic harmonic functions. Also, we see that the equation in above is really a
good generalization for real-valued hyperbolic harmonic functions.

Theorem 1.1. [2] Let Q@ C R*" be an open subset and let f: Q@ — €4y, be a
twice differentiable function. Then

POIMS) = Apf— = LOP]
T, Ox,
" 901 Q/
— n—1
QUTMf) = AQF — =3 4 (n— 1)y
If f is hypermonogenic, then P f satisfies the equation
APf—n_lan:O
T, Ox,
and @) f satisfies the equation
n—10Qf Qf _
AQf . axn—i—(n )= =0.

n
Thus we see that the Q)-part of a hypermonogenic function is a solution of the
following eigenvalue equation

Albh = —(n — 1)h

In the next section we shall study more detailed what is the structure of the above
eigenfunctions.

Also, we see that the P-part of a hypermonogenic function is a direct generaliza-
tion of a real-valued hyperbolic harmonic function. For a %'/, _;-valued function,
especially for the P-part of a hypermonogenic function, we obtained the following
structure theorem.

Theorem 1.2. [5| Let Q2 C R’}fl be open and g: Q0 — €'y ,,_1 be a differentiable
function. The following properties are equivalent.

(a) g is a solution of the equation

n—1 dg

Ag =0.

Ty, OZn
(b) g is smooth and

T,
a) = ————— x) dop(x
90) = R th(a,Rh)g( ) dow(x)

for all By(a, R,) C Q. In the formula w,,; denotes the surface area of the
n-dimensional unit sphere.
(c) g is smooth and

1
o) = ST / gl dn(e)

for all By(a, Ry) C Q, where V(By(a, Rp)) = op fORh sinh™ t dt is the volume
of the ball By,(a, Ry,).
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In the previous theorem By (a, Ry) is the hyperbolic ball with the center a and
the radius Rj. In the next section we shall give more detailed description for it. Since
R is a canonical subset of €/, ,,, we obtain the following obvious corollary.

Corollary 1.3. The preceding theorem is true also for real valued functions.

In the next section we shall state and prove a similar theorem for the preceding
eigenfunctions.

2. A mean-value theorem for some eigenfunctions
of the Laplace—Beltrami operator

Our aim is to give a detailed proof for the following structure theorem of the
eigenfunctions represented in the previous section. First we recall a few basic facts
from the hyperbolic geometry. A more detailed survey to the topic is available in [6].
In [6] it is shown that the hyperbolic ball with the radius R, and the center a is the
Euclidean ball with the center 7(a, R),) and the radius R.(a, Rp,),

By(a,R,) = {z e RM: |v — 7(a, Ry)| < Rela, Ry)},
where
7(a, Rp) = ap + are; + -+ + an_1€,-1 + aye, cosh Ry,
and
R.(a, Rp) = a, sinh Ry,

The n-form .

do = (~1)e; d;
j=0
is often very useful vector valued differential form on R:ﬁ“, where dz; = dzg - - - dz;_4-
d[L‘j+1 s den
Let K be an (n + 1)-dimensional manifold-with-boundary. On the boundary
OK the form do admits the representation do = vdS, where v is the outer unit
normal vector field and dS a scalar n-form. The corresponding surface form on the

hyperbolic space is doj, = i—i and if dz is the volume form on the Euclidean space

then the corresponding hyperbolic form is dx;, = %. More detailed introduction
to integration and certain differential forms in the Poincaré upper-half space can be
found from [6].
Theorem 2.1. Let Q2 C RTl be an open subset and let h: Q0 — €'{y,,_1 be a
smooth function. The following properties are equivalent:
(i) h is an eigenfunction of the Laplace—Beltrami operator with the eigenvalue
—(n — 1), i.e, is a solution of
Aph(z) = —(n — 1)h(x)
for x € €.
(i)
1

h(a) = —wn+1"¢(Rh) /th(mRh) h(z) dop(x),

Ry,
Y(Ry,) = sinh Ry, / sinh™ 2 (t) dt
0

where
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whenever B(a, Ry) C .
(ii)
n—1

( ) wn+1¢(Rh) Bh(a,Rh) ( )
where w,, .1 is the surface area of the (n + 1)-unit sphere and

Ry,
¢(Rp) = (n— 1) cosh Ry, / sinh"2(t) dt — sinh™ ' Ry,
0

whenever B(a, Ry,) C .

The corresponding result in the case n = 2 is already known. Leutwiler proved
the theorem in his paper [8] using Green’s functions which are simple in the case
n = 2. Authors wishes to emphasize that the methods of Leutwiler are available only
in the special case n = 2 since the Green’s functions have much more complicated
form in higher dimensions.

The first consequence is the following remark.

Corollary 2.2. The preceding theorem is true also for functions h: {2 — R.

The proof of the theorem is based on a sequence of lemmata. First we recall
the Cauchy’s formula for the @-part of a hypermonogenic function and other useful
results.

Proposition 2.3. [1]| If f is a hypermonogenic function on € and K C ) is an
oriented (n + 1)-dimensional manifold-with-boundary, then for each a € K we have

Q1) = 25 [ Quate.auto) ) ds(o),

where dS' is the scalar surface element, v is the outer unit normal vector field, and

j 1 lz—a)t+(x—a)
q(a:,a) - D n—1 ~n—1 _< )nfl aln—1 °
2(n—1) |z —a|* |z —al 2 |z —a|* 1tz —al
The kernel in the above integral admits the following expression.

Theorem 2.4. (6]

(z — 7(a,z)) coshdy(x,a) — a, sinh® dy(x, a)e,
(2a,2,)" sinh™ ™ dj (x, a) ’

q(z,a) =

where
T(a,x) = ag + areg + -+ + ap_1€p_1 + a, coshdy(z,a)e,
and dj, is the distance function with respect to the hyperbolic metric.

Also we need the following integration result. We define a generalized version of
the modified Dirac operator by

M,.f=Df - Q.

Theorem 2.5. [3] Let 2 be an open subset of R, If K C Q is an oriented
(n+1)-dimensional manifold-with-boundary and g is a smooth Clifford algebra-valued
function on (2, then

[ Poween S = [ P
oK K

n
xTL xn
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Using the preceding resukt we are able to prove the following lemma.
Lemma 2.6. Assume that f is hypermonogenic on ) and By (a, R,) C Q. Then

env/(2)f ()
/8Bh(a’Rh)Q<T)dS(I) = /Bh(ath) Qf(z)dxy,.

n

Proof. It is easy to see that Q(e,v(x)f(z)) = P'(v(x)f(z)). Using Theorem 2.5

we have @) i
[, (e isw = [ Ponsen
Since
Mf(r) = Df(r) + Q) =0,
we obtain '
M, f(a) = Mf(@) + LD _ @I
The proof is complete. ' ' O

Also we shall need the following result.

Lemma 2.7. [5] If f is a twice continuously differentiable function from 2 C
R into €y, and By(e,, Ry) C €2, we obtain

d ( 1 / 1 /
— do ) = Ay f dxy,.
dRy, \sinh™ Ry, 8By (a,Ry) f h sinh”™ Ry, B (a,Rp,) hf '

Next we deduce that any eigenfunction of the Laplace—Beltrami operator is a
@-part of some hypermonogenic function. The theorem is formulated only for a ball
but similar theorem holds also for more general star-shaped domains (cf. [2]).

Theorem 2.8. [2] Let h: By(a, R) — €y -1 be a solution of the equation
Aph(z) = —(n — 1)h(x).
There exists a hypermonogenic function f: By(a, R) — €l satisfying h = Qf on
Bh(a, R)

Now we may start to give the proof for the Theorem 2.1. First we show that the
statement (1) implies (2).
Lemma 2.9. Let h: Q — 64,1 be a solution of
Aph(z) = —(n — 1)h(x)
on Q and let By(a, R,) C Q. Then
1
ha) = (n — 1)wy41 sinh Ry, fORh sinh™2(t) dt /BBh(a,Rh) (@) dow()

Proof. Let f be a hypermonogenic function satisfying Qf = h on By(a, Ry,).
Applying Proposition 2.3 and Theorem 2.4 we obtain

wn1Q f(a)
= /BB . )Q<(5E — 7(a,x)) coshdy(x,a) — a, sinh” dj(z, a>€nV($)f(x))dS(x),

anrn sinh™ ™ dy, (2, a)
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z—7(a,x)
Re (ath) ’

Since on the ball By (a, Rp,) the unit normal field is given by v(z) = we infer

wn1Qf(a)
— /63 » )Q(R .(a, Ry)v(z) cosh dy,(x, a) — a, sinh dh(x’a)env(x)f(x))dé’(az)

apzn sinh" ™ d, (x, a)

Since v(z)v(z) = 1, we obtain

R.(a, Ry) cosh Ry, /
n - d
wnt1Q f(a) a FRGE R, I Qf(z)doy,

1 env(x) f(x)
~ sinh™ TR, /th (a,Rp) Q< Ty )dS(q;).

Since R.(a, Ry) = a, sinh Ry, by virtue of Lemma 2.6 we have

cosh Ry, 1
—_— dop, — ————— dzp,.
cenQfto) = g | Qpwin e [ Qf@)dn,

Using Lemma 2.7 and the assumption we have

cosh Rh
n - d
wn1Qf(a) = Snh” Ry R, /th ) Qf(x)doy,

sinh R;, d 1
— doy, ).
n—1 dRy (Slnh Ry, /th (a,Rp) Qf () 0h>

The equation in above give us the differential equation
sinh(R,)g'(Ry) + (n — 1) cosh(R)g(Ry) = C,
where C' = (n — 1)Q f(a) and

1
9(Ry) = BT /(93,1(@73,1) Qf (x) do.
The general solution of this equation is
C fORh sinh" 2t dt + Cy
sinh"*(Ry,)
Since ¢ is a continuous function, we have
R}ILEI%)+9<Rh) = Qf(a)

and then Cy = 0. The proof is complete. O

We show next that the statement (2) implies (3).

9<Rh) =

Lemma 2.10. Assume

1
hia) = / h(x) doy(x).
(a) Wn1 sinh Ry, fORh sinh" " 2(t) dt JoBy,(a.Ry) (&) don(z)
Then
Moy =" [ Qi
wn+1¢(Rh) By (a,Rp) "
where

Ry,
#(Rp) = (n — 1) cosh Rh/ sinh"2(t) dt — sinh" ! Ry,
0
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Proof. Using Lemma 2.7 we have
n—1 d 1
- h(x) dx;, = < / h(x) do )
sinh Rh /Bh(a,Rh) ( ) h dRh sinh™ Rh 0By, (a,Rp) ( ) 4

By the assumptions

n—1
- h(x) dx
Wnt1 sinh Rh /Bh(ath) ( ) h
1 h Ry [T sinh™ 2 ¢ dt
_ ( j - 1)cos hfo nsm >h(a).
sinh Ry, sinh” Ry,

n—1
h(a) = — — / h(x) dxy,,
Wny1(n — 1) cosh Ry, fo sinh"~(t) dt — sinh" ™" Ry, J By, (a,Rp)

and the proof is complete. 0
We show next that (3) implies (2). First we need the following lemma.
Lemma 2.11. Let T': By(e,, Ry) — By(a, Ry) be the mapping

T(x) = ayx + Pa,

where a € R’fl. Then T is diffeomorphism, and the following transformation rules

hold:
(a) fth (a,Rp) f(y) don(y) = fth(en,Rh) foT Y (x)doy(x),
b> fth ar) f© T(z)don(z) = fth(en,Rh) f(y) don(y),
) th(a wy W) A = [ o gy B0 T4 () da,
th(a,Rh hoT(z)dry = th(en,Rh) h(y) dyp.
That allows us to prove the following lemma.
Lemma 2.12. Assume

h(a) =

n—1 /
Wnt18(Rn) J B, (a,ry) () d

Then
1

h(a) = / h(x)do .
(@) W1 sinh Ry, fORh sinh”_Q(t) dt JoBy(a,Ry) (z) do ()

Proof. Using the previous proposition we infer

n—1
h(a _— hoT 'h(zx)dzy,.
( ) u1n+1¢<Rh) /Bh (en,Rp) ( ) "

Using the polar coordinates we have

)= e [ e e
a o g
Wn—i—l(b Rh OB} (en,t) n

Ry,
wn 1 (R ) n—l/ /63( ho T=Y(x) doy () dt.

Then
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Since n
h
&/(Ry) = (n— 1) sinh R, / sinh™2 (1) dt,
0

using Lemma 2.7 we have
1

h(a) = / hoT Ya)doy(x).
(@) Wy sinh Ry, foRh sinh™ 2(t) dt JoBy (en,Rp) (z) donlz)

Then using the (a)-part of the preceding proposition we have

1
h(a) = / h(y) doy(y).
(@) Wn1 Sinh Ry, fORh sinh"~2(t) dt JoBy,(a,Rn) ) don(y)
The proof is complete. U

Lastly we deduce that (2) implies (1).

Lemma 2.13. Assume

h(a) = ! /8 o )2

Wn+1 sinh Ry, fORh sinh™2(t) dt

Then
Aph(z) = —(n — 1)h(x)
for x € By(a, Ry,).
Proof. Since

d sinh™ 'R,  sinh" 7’ Ryo(Ry)

Ry foRh sinh"~*(t) dt - (fORh sinh™ 2 (t) dt)z’
using Lemma 2.7 we obtain
sinh™ 2 Ry (Ry,) — 1n / h(z) doy (z)
(fORh sinh" 2 (t) dt) sinh” Ry Jop, (a.r0)

0=

sinh” ' R 1
+ R . 5 h T n / Albh(ﬂf) d;Uh.
fo sinh" ™= (¢) dt sinh" Ry, By (a,Rp)
Since (2) and (3) are equivalent, we obtain the formula

inh Ry, [ sinh™2(¢) dt
/ h(z) dop(z) = (n — 1) nJo s (E) / h(z) dz,.
0By (a,Rp) ¢<Rh) By (a,Rp)
Then

(n —1)p(Ry) 1 sinh R, fORh sinh™(t) dt

0= , / h(z) dzp,
( S sinh=2 (t) dt>2 sinh® Ry () Ba(a.R1)

1 1 /
+ . Aph(x) dzy,
fORh sinh™2(t) dt sinh Ry, J g, (a,ry)
that is,

1
. Ry . n—2
sinh Ry, [ sinh™™*(t) dt

/ (Auwh(z) + (n — 1)h(z)) dzy = 0.
B (a,Rp)
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Since Ry, is arbitrary, we obtain that
Albh(a) + (n - 1)h(a) =0.
The proof is complete. 0J
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