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Abstract. In this paper we study a mean-value property for solutions of the eigenvalue equa-
tion of the Laplace–Beltrami operator

∆lbh = −(n− 1)h

with respect to the volume and the surface integrals on the Poincaré upper-half space Rn+1
+ =

{(x0, . . . , xn) ∈ Rn+1 : xn > 0} with the Riemannian metric ds2 = dx2
0+dx2

1+···+dx2
n

x2
n

.

1. Preliminaries

In this section we recall the Laplace–Beltrami operator in the Poincaré upper-half
space and formulate its connections with the so called hypermonogenic functions. Let
us denote Rn+1

+ = {(x0, x1, . . . , xn) ∈ Rn+1 : xn > 0}. The Poincaré half-space is the
Riemannian manifold (Rn+1

+ , ds2), where the Riemannian metric is

ds2 =
dx2

0 + dx2
1 + · · ·+ dx2

n

x2
n

.

The Laplace–Beltrami operator on the Poincaré upper-half space is the operator
(details are available for example in [7])

∆lbf = x2
n∆f − (n− 1)xn

∂f

∂xn

,

where f : Ω → R is a smooth enough function defined on an open subset Ω of Rn+1
+

and ∆ = ∂2

∂x2
0

+ · · · + ∂2

∂x2
n
. The solutions of the Laplace–Beltrami equation ∆lbf = 0

are called hyperbolic harmonic functions.
The Clifford algebra C `0,n is the free associative algebra with unit generated by

the symbols e1, . . . , en together with the defining relations

eiej + ejei = −2δij,

for i, j = 1, . . . , n. As a vector space the dimension of the Clifford algebra C `0,n is 2n.
A canonical basis is given by eA = ea1 · · · eak

, where A = {a1, . . . , ak} ⊂ {1, . . . , n}
and 1 ≤ a1 < . . . < ak ≤ n. In particular, we denote e∅ = e0 = 1 and e{j} = ej. The
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(n+1)-dimensional Euclidean space Rn+1 is a subspace of C `0,n under the canonical
embedding

(x0, x1, . . . , xn) 7→
n∑

j=0

xjej

and thus we may assume that Rn+1 ⊂ C `0,n. An element a ∈ C `0,n is called a
Clifford number and often the algebra C `0,n is called the algebra of Clifford numbers.
Elements x =

∑n
j=1 xjej ∈ C `0,n are called vectors. Thus we see that an element x

of Rn+1 may be written as
x = x0 + x

with x = x1e1 + · · ·+ xnen and it is called a paravector.
The conjugation is the algebra anti-automorphism on the Clifford algebra defined

by x = x0−x, that is, if a, b ∈ C `0,n, then ab = ba. Also, x2 = xx = −x2
1− · · · − x2

n.
Thus we may compute

xx = (x0 + x)(x0 − x) = x2
0 + x2

1 + · · ·+ x2
n

for x ∈ Rn+1. The Euclidean norm is then |x|2 = xx = xx. The main-involution is
the algebra automorphism denoted and defined by x′ = x0−x, that is, if a, b ∈ C `0,n,
then (ab)′ = a′b′.

Let us consider the Clifford algebra valued functions f : Ω → C `0,n, where
Ω ⊂ Rn+1

+ is an open subset. Since the Clifford algebra C `0,n is generated by the
symbols e1, . . . , en, we obtain that then the Clifford algebra C `0,n−1 is generated by
the symbols e1, . . . , en−1. Hence each a ∈ C `0,n may be represented in the form

a = b + cen,

where b, c ∈ C `0,n−1. We abbreviate Pa = b and Qa = c and Q′a = (Qa)′ and
P ′a = (Pa)′. Then we define the modified Dirac operator by

Mf = Df +
n− 1

xn

Q′f,

where D = ∂
∂x0

+ e1
∂

∂x1
+ · · · + en

∂
∂xn

is the Dirac operator on Rn+1. The theory of
null-solutions of the modified Dirac operator is called hyperbolic function theory, see,
e.g., [4].

The function f : Ω → C `0,n is called a hypermonogenic on Ω if Mf(x) = 0 for
each x ∈ Ω. Hypermonogenic functions have many nice function theoretic properties,
for example, they have Cauchy-type integral formulas. Also, the function x 7→ xk,
where k ∈ Z, is hypermonogenic. Many properties and more references can be found
from the survey article [4].

The conjugate of the modified Dirac operator is defined by

Mf = Df − n− 1

xn

Q′f,

where D = ∂
∂x0

− e1
∂

∂x1
− · · · − en

∂
∂xn

.
In the hyperbolic function theory we define hyperbolic harmonic functions f : Ω →

C `0,n as solutions of the equation

MMf(x) = 0

for x ∈ Ω.
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The next theorem give us a connection between hypermonogenic functions and
hyperbolic harmonic functions. Also, we see that the equation in above is really a
good generalization for real-valued hyperbolic harmonic functions.

Theorem 1.1. [2] Let Ω ⊂ Rn+1
+ be an open subset and let f : Ω → C `0,n be a

twice differentiable function. Then

P (MMf) = ∆Pf − n− 1

xn

∂Pf

∂xn

and

Q(MMf) = ∆Qf − n− 1

xn

∂Qf

∂xn

+ (n− 1)
Qf

x2
n

.

If f is hypermonogenic, then Pf satisfies the equation

∆Pf − n− 1

xn

∂Pf

∂xn

= 0

and Qf satisfies the equation

∆Qf − n− 1

xn

∂Qf

∂xn

+ (n− 1)
Qf

x2
n

= 0.

Thus we see that the Q-part of a hypermonogenic function is a solution of the
following eigenvalue equation

∆lbh = −(n− 1)h.

In the next section we shall study more detailed what is the structure of the above
eigenfunctions.

Also, we see that the P -part of a hypermonogenic function is a direct generaliza-
tion of a real-valued hyperbolic harmonic function. For a C `0,n−1-valued function,
especially for the P -part of a hypermonogenic function, we obtained the following
structure theorem.

Theorem 1.2. [5] Let Ω ⊂ Rn+1
+ be open and g : Ω → C `0,n−1 be a differentiable

function. The following properties are equivalent.
(a) g is a solution of the equation

∆g − n− 1

xn

∂g

∂xn

= 0.

(b) g is smooth and

g(a) =
1

ωn+1 sinhn Rh

ˆ

∂Bh(a,Rh)

g(x) dσh(x)

for all Bh(a,Rh) ⊂ Ω. In the formula ωn+1 denotes the surface area of the
n-dimensional unit sphere.

(c) g is smooth and

g(a) =
1

V (Bh(a,Rh))

ˆ

Bh(a,Rh)

g(x) dxh(x)

for all Bh(a,Rh) ⊂ Ω, where V (Bh(a,Rh)) = σn

´ Rh

0
sinhn t dt is the volume

of the ball Bh(a,Rh).
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In the previous theorem Bh(a,Rh) is the hyperbolic ball with the center a and
the radius Rh. In the next section we shall give more detailed description for it. Since
R is a canonical subset of C `0,n, we obtain the following obvious corollary.

Corollary 1.3. The preceding theorem is true also for real valued functions.

In the next section we shall state and prove a similar theorem for the preceding
eigenfunctions.

2. A mean-value theorem for some eigenfunctions
of the Laplace–Beltrami operator

Our aim is to give a detailed proof for the following structure theorem of the
eigenfunctions represented in the previous section. First we recall a few basic facts
from the hyperbolic geometry. A more detailed survey to the topic is available in [6].
In [6] it is shown that the hyperbolic ball with the radius Rh and the center a is the
Euclidean ball with the center τ(a,Rh) and the radius Re(a,Rh),

Bh(a, Rn) = {x ∈ Rn+1
+ : |x− τ(a,Rh)| < Re(a,Rh)},

where
τ(a,Rh) = a0 + a1e1 + · · ·+ an−1en−1 + anen cosh Rh

and
Re(a,Rh) = an sinh Rh.

The n-form

dσ =
n∑

j=0

(−1)jej dx̂j

is often very useful vector valued differential form on Rn+1
+ , where dx̂j = dx0 · · · dxj−1·

dxj+1 · · · dxn.
Let K be an (n + 1)-dimensional manifold-with-boundary. On the boundary

∂K the form dσ admits the representation dσ = νdS, where ν is the outer unit
normal vector field and dS a scalar n-form. The corresponding surface form on the
hyperbolic space is dσh = dσ

xn
n
and if dx is the volume form on the Euclidean space

then the corresponding hyperbolic form is dxh = dx
xn+1

n
. More detailed introduction

to integration and certain differential forms in the Poincaré upper-half space can be
found from [6].

Theorem 2.1. Let Ω ⊂ Rn+1
+ be an open subset and let h : Ω → C `0,n−1 be a

smooth function. The following properties are equivalent:
(i) h is an eigenfunction of the Laplace–Beltrami operator with the eigenvalue

−(n− 1), i.e, is a solution of

∆lbh(x) = −(n− 1)h(x)

for x ∈ Ω.
(ii)

h(a) =
1

ωn+1ψ(Rh)

ˆ

∂Bh(a,Rh)

h(x) dσh(x),

where

ψ(Rh) = sinh Rh

ˆ Rh

0

sinhn−2(t) dt
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whenever B(a,Rh) ⊂ Ω.
(iii)

h(a) =
n− 1

ωn+1φ(Rh)

ˆ

Bh(a,Rh)

h(x) dxh,

where ωn+1 is the surface area of the (n + 1)-unit sphere and

φ(Rh) = (n− 1) cosh Rh

ˆ Rh

0

sinhn−2(t) dt− sinhn−1 Rh

whenever B(a,Rh) ⊂ Ω.

The corresponding result in the case n = 2 is already known. Leutwiler proved
the theorem in his paper [8] using Green’s functions which are simple in the case
n = 2. Authors wishes to emphasize that the methods of Leutwiler are available only
in the special case n = 2 since the Green’s functions have much more complicated
form in higher dimensions.

The first consequence is the following remark.

Corollary 2.2. The preceding theorem is true also for functions h : Ω → R.

The proof of the theorem is based on a sequence of lemmata. First we recall
the Cauchy’s formula for the Q-part of a hypermonogenic function and other useful
results.

Proposition 2.3. [1] If f is a hypermonogenic function on Ω and K ⊂ Ω is an
oriented (n + 1)-dimensional manifold-with-boundary, then for each a ∈ K we have

Qf(a) =
2nan−1

n

ωn+1

ˆ

∂K

Q(q(x, a)ν(x)f(x)) dS(x),

where dS is the scalar surface element, ν is the outer unit normal vector field, and

q(x, a) = − 1

2(n− 1)
D

1

|x− a|n−1|x− â|n−1
=

1

2

(x− a)−1 + (x− â)−1

|x− a|n−1|x− â|n−1
.

The kernel in the above integral admits the following expression.

Theorem 2.4. [6]

q(x, a) =
(x− τ(a, x)) cosh dh(x, a)− an sinh2 dh(x, a)en

(2anxn)n sinhn+1 dh(x, a)
,

where
τ(a, x) = a0 + a1e1 + · · ·+ an−1en−1 + an cosh dh(x, a)en

and dh is the distance function with respect to the hyperbolic metric.

Also we need the following integration result. We define a generalized version of
the modified Dirac operator by

Mnf = Df − n

xn

Q′f.

Theorem 2.5. [3] Let Ω be an open subset of Rn+1
+ . If K ⊂ Ω is an oriented

(n+1)-dimensional manifold-with-boundary and g is a smooth Clifford algebra-valued
function on Ω, thenˆ

∂K

P (ν(x)g(x))
dS(x)

xn
n

=

ˆ

K

P
(
Mng(x)

)dx

xn
n

.



106 Sirkka-Liisa Eriksson and Heikki Orelma

Using the preceding resukt we are able to prove the following lemma.

Lemma 2.6. Assume that f is hypermonogenic on Ω and Bh(a,Rh) ⊂ Ω. Then
ˆ

∂Bh(a,Rh)

Q
(enν(x)f(x)

xn
n

)
dS(x) =

ˆ

Bh(a,Rh)

Qf(x) dxh.

Proof. It is easy to see that Q(enν(x)f(x)) = P ′(ν(x)f(x)). Using Theorem 2.5
we have ˆ

∂Bh(a,Rh)

Q
(enν(x)f(x)

xn
n

)
dS(x) =

ˆ

Bh(a,Rh)

P ′(Mnf(x))
dx

xn
n

.

Since
Mf(x) = Df(x) +

n− 1

xn

Q′f(x) = 0,

we obtain

Mnf(x) = Mf(x) +
Q′f(x)

xn

=
Q′f(x)

xn

.

The proof is complete. ¤
Also we shall need the following result.

Lemma 2.7. [5] If f is a twice continuously differentiable function from Ω ⊂
Rn+1

+ into C `0,n, and Bh(en, Rh) ⊂ Ω, we obtain

d

dRh

( 1

sinhn Rh

ˆ

∂Bh(a,Rh)

f dσh

)
=

1

sinhn Rh

ˆ

Bh(a,Rh)

∆hf dxh.

Next we deduce that any eigenfunction of the Laplace–Beltrami operator is a
Q-part of some hypermonogenic function. The theorem is formulated only for a ball
but similar theorem holds also for more general star-shaped domains (cf. [2]).

Theorem 2.8. [2] Let h : Bh(a,R) → C `0,n−1 be a solution of the equation

∆lbh(x) = −(n− 1)h(x).

There exists a hypermonogenic function f : Bh(a,R) → C `0,n satisfying h = Qf on
Bh(a,R).

Now we may start to give the proof for the Theorem 2.1. First we show that the
statement (1) implies (2).

Lemma 2.9. Let h : Ω → C `0,n−1 be a solution of

∆lbh(x) = −(n− 1)h(x)

on Ω and let Bh(a, Rh) ⊂ Ω. Then

h(a) =
1

(n− 1)ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(a,Rh)

h(x) dσh(x)

Proof. Let f be a hypermonogenic function satisfying Qf = h on Bh(a,Rh).
Applying Proposition 2.3 and Theorem 2.4 we obtain

ωn+1Qf(a)

=

ˆ

∂Bh(a,Rh)

Q
((x− τ(a, x)) cosh dh(x, a)− an sinh2 dh(x, a)en

anxn
n sinhn+1 dh(x, a)

ν(x)f(x)
)
dS(x).
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Since on the ball Bh(a,Rh) the unit normal field is given by ν(x) = x−τ(a,x)
Re(a,Rh)

, we infer

ωn+1Qf(a)

=

ˆ

∂Bh(a,Rh)

Q
(Re(a,Rh)ν(x) cosh dh(x, a)− an sinh2 dh(x, a)en

anxn
n sinhn+1 dh(x, a)

ν(x)f(x)
)
dS(x)

Since ν(x)ν(x) = 1, we obtain

ωn+1Qf(a) =
Re(a,Rh) cosh Rh

an sinhn+1 Rh

ˆ

∂Bh(a,Rh)

Qf(x) dσh

− 1

sinhn−1 Rh

ˆ

∂Bh(a,Rh)

Q
(enν(x)f(x)

xn
n

)
dS(x).

Since Re(a,Rh) = an sinh Rh, by virtue of Lemma 2.6 we have

ωn+1Qf(a) =
cosh Rh

sinhn Rh

ˆ

∂Bh(a,Rh)

Qf(x)dσh − 1

sinhn−1 Rh

ˆ

Bh(a,Rh)

Qf(x) dxh.

Using Lemma 2.7 and the assumption we have

ωn+1Qf(a) =
cosh Rh

sinhn Rh

ˆ

∂Bh(a,Rh)

Qf(x) dσh

− sinh Rh

n− 1

d

dRh

( 1

sinhn Rh

ˆ

∂Bh(a,Rh)

Qf(x) dσh

)
.

The equation in above give us the differential equation

sinh(Rh)g
′(Rh) + (n− 1) cosh(Rh)g(Rh) = C,

where C = (n− 1)Qf(a) and

g(Rh) =
1

ωn+1 sinhn Rh

ˆ

∂Bh(a,Rh)

Qf(x) dσh.

The general solution of this equation is

g(Rh) =
C
´ Rh

0
sinhn−2 t dt + C0

sinhn−1(Rh)
.

Since g is a continuous function, we have

lim
Rh→0+

g(Rh) = Qf(a)

and then C0 = 0. The proof is complete. ¤
We show next that the statement (2) implies (3).

Lemma 2.10. Assume

h(a) =
1

ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(a,Rh)

h(x) dσh(x).

Then
h(a) =

n− 1

ωn+1φ(Rh)

ˆ

Bh(a,Rh)

Qf(x) dxh,

where

φ(Rh) = (n− 1) cosh Rh

ˆ Rh

0

sinhn−2(t) dt− sinhn−1 Rh.
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Proof. Using Lemma 2.7 we have

− n− 1

sinhn Rh

ˆ

Bh(a,Rh)

h(x) dxh =
d

dRh

( 1

sinhn Rh

ˆ

∂Bh(a,Rh)

h(x) dσh

)
.

By the assumptions

− n− 1

ωn+1 sinhn Rh

ˆ

Bh(a,Rh)

h(x) dxh

=
( 1

sinh Rh

− (n− 1)
cosh Rh

´ Rh

0
sinhn−2 t dt

sinhn Rh

)
h(a).

Then

h(a) =
n− 1

ωn+1(n− 1) cosh Rh

´ Rh

0
sinhn−2(t) dt− sinhn−1 Rh

ˆ

Bh(a,Rh)

h(x) dxh,

and the proof is complete. ¤
We show next that (3) implies (2). First we need the following lemma.

Lemma 2.11. Let T : Bh(en, Rh) → Bh(a,Rh) be the mapping

T (x) = anx + Pa,

where a ∈ Rn+1
+ . Then T is diffeomorphism, and the following transformation rules

hold:
(a)

´
∂Bh(a,Rh)

f(y) dσh(y) =
´

∂Bh(en,Rh)
f ◦ T−1(x) dσh(x),

(b)
´

∂Bh(a,Rh)
f ◦ T (x) dσh(x) =

´
∂Bh(en,Rh)

f(y) dσh(y),
(c)

´
Bh(a,Rh)

h(y) dyh =
´

Bh(en,Rh)
h ◦ T−1(x) dxh,

(d)
´

Bh(a,Rh)
h ◦ T (x) dxh =

´
Bh(en,Rh)

h(y) dyh.

That allows us to prove the following lemma.

Lemma 2.12. Assume

h(a) =
n− 1

ωn+1φ(Rh)

ˆ

Bh(a,Rh)

h(x) dxh.

Then

h(a) =
1

ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(a,Rh)

h(x) dσh(x).

Proof. Using the previous proposition we infer

h(a) =
n− 1

ωn+1φ(Rh)

ˆ

Bh(en,Rh)

h ◦ T−1h(x) dxh.

Using the polar coordinates we have

h(a) =
n− 1

ωn+1φ(Rh)

ˆ Rh

0

ˆ

∂Bh(en,t)

h ◦ T−1(x) dσh(x) dt.

Then

ωn+1φ(Rh)h(a) = (n− 1)

ˆ Rh

0

ˆ

∂Bh(en,t)

h ◦ T−1(x) dσh(x) dt.
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Since

φ′(Rh) = (n− 1) sinh Rh

ˆ Rh

0

sinhn−2(t) dt,

using Lemma 2.7 we have

h(a) =
1

ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(en,Rh)

h ◦ T−1(x) dσh(x).

Then using the (a)-part of the preceding proposition we have

h(a) =
1

ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(a,Rh)

h(y) dσh(y).

The proof is complete. ¤
Lastly we deduce that (2) implies (1).

Lemma 2.13. Assume

h(a) =
1

ωn+1 sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

∂Bh(a,Rh)

h(x) dσh(x).

Then
∆lbh(x) = −(n− 1)h(x)

for x ∈ Bh(a,Rh).

Proof. Since
d

dRh

sinhn−1 Rh´ Rh

0
sinhn−2(t) dt

=
sinhn−2 Rhφ(Rh)( ´ Rh

0
sinhn−2(t) dt

)2 ,

using Lemma 2.7 we obtain

0 =
sinhn−2 Rhφ(Rh)( ´ Rh

0
sinhn−2(t) dt

)2

1

sinhn Rh

ˆ

∂Bh(a,Rh)

h(x) dσh(x)

+
sinhn−1 Rh´ Rh

0
sinhn−2(t) dt

1

sinhn Rh

ˆ

Bh(a,Rh)

∆lbh(x) dxh.

Since (2) and (3) are equivalent, we obtain the formula
ˆ

∂Bh(a,Rh)

h(x) dσh(x) = (n− 1)
sinh Rh

´ Rh

0
sinhn−2(t) dt

φ(Rh)

ˆ

Bh(a,Rh)

h(x) dxh.

Then

0 =
(n− 1)φ(Rh)( ´ Rh

0
sinhn−2(t) dt

)2

1

sinh2 Rh

sinh Rh

´ Rh

0
sinhn−2(t) dt

φ(Rh)

ˆ

Bh(a,Rh)

h(x) dxh

+
1´ Rh

0
sinhn−2(t) dt

1

sinh Rh

ˆ

Bh(a,Rh)

∆lbh(x) dxh,

that is,
1

sinh Rh

´ Rh

0
sinhn−2(t) dt

ˆ

Bh(a,Rh)

(∆lbh(x) + (n− 1)h(x)) dxh = 0.
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Since Rh is arbitrary, we obtain that
∆lbh(a) + (n− 1)h(a) = 0.

The proof is complete. ¤
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