Annales Academiĉ Scientiarum Fennicĉ
Mathematica
Volumen 36, 2011, 101-110
Tampere University of Technology, Department of Mathematics
P.O. Box 553, 33101 Tampere, Finland; sirkka-liisa.eriksson 'at' tut.fi
Tampere University of Technology, Department of Mathematics
P.O. Box 553, 33101 Tampere, Finland; heikki.orelma 'at' tut.fi
Abstract. In this paper we study a mean-value property for solutions of the eigenvalue equation of the Laplace-Beltrami operator
\Deltalbh = -(n - 1)h
with respect to the volume and the surface integrals on the Poincaré upper-half space R+n+1 ={(x0,...,xn) \in Rn+1 : xn > 0} with the Riemannian metric ds2 = dx02 + dx12 + ... + dxn2 / xn2.
2000 Mathematics Subject Classification: Primary 30A05; Secondary 30A05, 30F45.
Key words: Laplace-Beltrami operator, mean-value theorem, hypermonogenic function, hyperbolic harmonic function.
Reference to this article: S.-L. Eriksson and H. Orelma: A mean-value theorem for some eigenfunctions of the Laplace-Beltrami operator on the upper-half space. Ann. Acad. Sci. Fenn. Math. 36 (2011), 101-110.
doi:10.5186/aasfm.2011.3606
Copyright © 2011 by Academia Scientiarum Fennica