Annales Academię Scientiarum Fennicę
Mathematica
Volumen 36, 2011, 139-151
Huazhong University of
Science and Technology, Department of Mathematics
Wuhan 430074, P.R. China; daiyuxia8173 'at' 163.com
Huazhong University of
Science and Technology, Department of Mathematics
Wuhan 430074, P.R. China; zhi-xiong.wen 'at' mail.hust.edu.cn
Zhejiang Wanli University, Institute of Mathematics
Ningbo, Zhejiang 315100, P.R. China; xilf 'at' zwu.edu.cn
South China University of
Technology, Department of Mathematics
Guangzhou 510641, P.R. China; xiongyng 'at' gmail.com
Abstract. In this paper, we prove that a large class of Moran sets on the line with Hausdorff dimension 1 are 1-dimensional quasisymmetrically minimal. We also obtain a general theorem on the Hausdorff dimension of Moran set on the line.
2000 Mathematics Subject Classification: Primary 30C65; Secondary 28A80.
Key words: Quasisymmetrically minimal set, Moran set, Hausdorff dimension, Gibbs-like measure.
Reference to this article: Y. Dai, Z. Wen, L. Xi and Y. Xiong: Quasisymmetrically minimal Moran sets and Hausdorff dimension. Ann. Acad. Sci. Fenn. Math. 36 (2011), 139-151.
doi:10.5186/aasfm.2011.3608
Copyright © 2011 by Academia Scientiarum Fennica