Annales Academi� Scientiarum Fennic�
Mathematica
Volumen 36, 2011, 301-319
Link�ping University, Department of Mathematics
SE-581 83 Link�ping, Sweden; anbjo 'at' mai.liu.se
Link�ping University, Department of Mathematics
SE-581 83 Link�ping, Sweden; jabjo 'at' mai.liu.se
Abstract. In this paper we examine the quasiminimizing properties of radial power-type functions u(x) = |x|\alpha in Rn. We find the optimal quasiminimizing constant whenever u is a quasiminimizer of the p-Dirichlet integral, p \neq n, and similar results when u is a quasisub- and quasisuperminimizer. We also obtain similar results for log-powers when p = n.
2000 Mathematics Subject Classification: Primary 49J20; Secondary 31C45, 35J20.
Key words: Doubling measure, nonlinear, p-harmonic, Poincar� inequality, potential theory, quasiminimizer, quasisubharmonic, quasisubminimizer, quasisuperharmonic, quasisuperminimizer.
Reference to this article: A. Bj�rn and J. Bj�rn: Power-type quasiminimizers. Ann. Acad. Sci. Fenn. Math. 36 (2011), 301-319.
doi:10.5186/aasfm.2011.3619
Copyright © 2011 by Academia Scientiarum Fennica