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Abstract. The equation −∆u + F (V (εx), u) = 0 is considered in Rn. For small ε > 0 it
is shown to possess, under appropriate conditions, a non-degenerate solution uε in H2(Rn). It is
shown that the linearised operator Tε at the solution satisfies ‖T−1

ε ‖ = O(ε−2) as ε → 0.

1. Introduction

In this paper we consider the question of non-degeneracy of certain solutions
of a partial differential equation. A solution is non-degenerate when the linearised
problem at the solution, in appropriate function spaces, defines an invertible linear
operator. Throughout this article, by an invertible operator, with specified Banach
spaces as domain and codomain, we shall mean a linear surjective homeomorphism.

The notion of non-degeneracy depends on the choice of spaces. In this paper
we shall be concerned with problems that can be posed using the Sobolev spaces
W 2,2(Rn) and L2(Rn) as domain and codomain respectively. For conciseness we
denote these spaces by H2 and L2 respectively. The same problems might be posable
in spaces of classically differentiable functions and the question of non-degeneracy in
this setting can also arise. There are connections between the two notions of non-
degeneracy which do not seem to have been fully explored. In this paper we shall
study non-degeneracy for Sobolev spaces only.

It seems safe to assume that the applications of non-degeneracy, once established,
are many. We could mention the stable behaviour of non-degenerate solutions under
perturbations guaranteed by the implicit function theorem. Moreover for equations of
the type we shall consider, non-degenerate solutions give rise to multibump solutions,
see for example [1] (using spaces of differentiable functions), or [3] (using Sobolev
spaces).

Let us first consider the problem

(1.1) −∆u + F (u) = 0

in Rn. Under conditions on F to be specified the non-linear operator Γ(u) = −∆u+
F (u) is well-defined from H2 to L2 and will have a well-defined Fréchet derivative,
the linear operator v 7→ DΓ(u)v = −∆v + dF

du
(u)v.

Let us assume that we have a solution φ of (1.1). It is highly implausible for φ
to be a non-degenerate solution as the partial derivatives Dkφ will be in the kernel of
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DΓ(φ) if they lie in H2. Similarly, since the problem (1.1) commutes with rotations,
we expect the functions∇φ(x)·Tx to be in the kernel whenever T is a skew-symmetric
matrix. However these functions will be 0 if φ is spherically symmetric.

We shall say that a spherically symmetric solution φ is quasi-non-degenerate if
the partial derivatives Djφ(x) belong to H2, they are linearly independent, span the
kernel of DΓ(φ), and the range of DΓ(φ) is the orthogonal complement in L2 to its
kernel.

Quasi-non-degenerate solutions are easy to construct in one dimension. We con-
sider −u′′ + F (u) = 0 where F is a smooth function such that F (0) = 0, F ′(0) > 0
and Φ(u) = − ∫

F (u) du satisfies supu>0 Φ(u) > Φ(0). Then the solution φ(x) is
quasi-non-degenerate where x 7→ (φ(x), φ′(x)) is the phase-plane trajectory in the
region u > 0 which tends to the saddle point (0, 0) as x → ±∞.

In higher dimensions a range of quasi-non-degenerate solutions is known for the
equation

(1.2) −∆u + u− up = 0

More precisely it is known that the ground state solution, defined to be the solu-
tion with minimum energy

∫
(1

2
|∇u|2 + 1

2
u2 − 1

p+1
up+1) dx, exists and is quasi-non-

degenerate for all integers p > 1 if n = 1, 2 and for 1 < p < (n + 2)/(n− 2) if n > 2.
See the papers [2], [5] and [7].

The possibility arises of obtaining non-degenerate solutions by perturbing (1.1),
when a quasi-non-degenerate solution is known, to a problem explicitly containing x.
Various perturbation schemes have been studied, for example that of [3, Sections 4,
5], which generates non-degenerate solutions to a more general equation of the type
−∆u + F (x, u,∇u) = 0. Another paper [4] considered perturbations of a different
nature. Suppose we have a one-parameter continuum of problems

(1.3) −∆u + F (a, u) = 0

where a belongs to the real interval I, and suppose for each value a ∈ I we have
a quasi-non-degenerate solution φa(x). An example showing how such a continuum
can be constructed is given in Section 4. Now we perturb (1.3) to

(1.4) −∆u + F (V (εx), u) = 0

where V (x) is a function with range in I and ε > 0. The difficulty of this scheme
arises from the weak nature of the convergence to a problem of the form (1.3) as
ε → 0.

In the previous paper [4, Section 3] it was shown how to obtain a solution uε in
H2 of (1.4) for all sufficiently small ε, say, for 0 < ε < ε0, and its asymptotic form was
described. This is a so-called single-bump solution and it is asymptotic to φa(x− b

ε
)

(for a certain b and a = V (b)) as ε → 0. These results are summarised in Section 2,
Theorem 2.6. The question of non-degeneracy of the solution uε was not studied in
[4]. The main object of this paper is provide a clear proof of non-degeneracy for the
single-bump solutions of (1.4) together with an estimate of the blow-up of the inverse
of the derivative as ε → 0. In fact we shall show that the linearised operator

Tε := −∆ +
∂F

∂u
(V (εx), uε) : H2 → L2
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is invertible for sufficiently small ε > 0. Moreover, its inverse satisfies an estimate

‖T−1
ε ‖ = O

(
1

ε2

)

as ε tends to 0.
The precise version of this result, Theorem 3.1, is stated and proved in Section 3.

The proof consists of two distinct and independent steps:

1. It is shown that Tε is a Fredholm operator of index 0.
2. It is shown that for every sequence εν with limit 0 and for every bounded

sequence vν ∈ H2 such that ε−2
ν Tενvν → 0 in L2, a subsequence of vν tends to

0 in H2.

The first step shows that Tε, if injective, is also surjective. The second, and by far
lengthier step, shows that Tε is injective and its inverse, considered as an operator
defined on its range, satisfies the claimed estimate.

The proof of the second step considers a decomposition vν(·− tν) = σν ·∇φa +wν

where σν ∈ Rn, φa is the ground state solution occurring in the asymptotic form of
uε, the function wν is orthogonal to the partial derivatives of φa, and tν a certain
translation vector. It is then shown that a subsequence can be found for which
σν → 0 and wν → 0 in H2. Hilbert space methods, for example weak compactness
of the unit ball, and self-adjointness of the operator Tε and related operators, weigh
heavily in the proof.

2. Principal assumptions

In this section we state clearly the conditions to be imposed on F , V and φa.
We summarise material from [4] that will be needed. We also define precisely the
solution uε referred to in the introduction.

Properties of F . We assume that F is a C2 map satisfying the following growth
conditions:

|F (a, u)|,
∣∣∣∣
∂F

∂a
(a, u)

∣∣∣∣ ,

∣∣∣∣
∂2F

∂a2
(a, u)

∣∣∣∣ ≤ C (|u|+ |u|α1) ,

∣∣∣∣
∂F

∂u
(a, u)

∣∣∣∣ ,

∣∣∣∣
∂2F

∂u∂a
(a, u)

∣∣∣∣ ≤ C (1 + |u|α2) ,

∣∣∣∣
∂2F

∂u2
(a, u)

∣∣∣∣ ≤ C (1 + |u|α3) ,

where C is chosen uniformly for a in a bounded interval and the exponents αi are
non-negative (in addition α1 ≥ 1). No upper limits are placed on αi if n ≤ 4 whereas
for n ≥ 5 we assume that

α1 ≤ n

n− 4
, α2 ≤ 4

n− 4
, α3 <

8− n

n− 4
.
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Under these growth conditions F,
∂F

∂a
,

∂2F

∂a2
,

∂F

∂u
,

∂2F

∂u∂a
and

∂2F

∂u2
define Nemitskii

operators

F , F a, F aa : L∞ ×H2 → L2,

F u, F ua : L∞ ×H2 → L (H2, L2),

F uu : L∞ ×H2 → L2(H
2 ×H2, L2)

by means of

F (m,u) = F (m,u) , F u(m,u)v =
∂F

∂u
(m,u)v

and so on. In these formulas we use Lk to denote the appropriate space of symmetric
k-linear mappings.

Under these conditions, the Nemitskii operators induced by F and its derivatives
have the following boundedness property (see [4]):

Lemma 2.1. The maps F , F a, F aa, F u, F ua and F uu map bounded subsets of
L∞ ×H2 to bounded subsets of the appropriate function or operator space.

We shall often consider sequences of functions indexed by ν (“n” is reserved for
the dimension of Rn). It is understood that ν is an integer and limits, where they
occur, are for ν →∞.

The following convergence properties were proved in [4] and will be used repeat-
edly later on.

Lemma 2.2. Let mν ∈ L∞ be a bounded sequence that tends pointwise to
m ∈ L∞. Let uν in H2 converge to u ∈ H2 and let v, w ∈ H2. Then

F (mν , uν) → F (m, u), F a(mν , uν) → F a(m,u), F u(mν , uν)v → F u(m,u)v,

F uu(mν , uν)(v, w) → F uu(m,u)(v, w).

Lemma 2.3. Let mν ∈ L∞ be a bounded sequence that tends pointwise to
m ∈ L∞ and let uν ∈ H2 converge weakly to u ∈ H2. Then, for any bounded
sequence vν ∈ H2,

F u(mν , uν)vν − F u(m,u)vν −→ 0

in the weak topology on the dual of H2.

Lemma 2.4. Let mν be a bounded family in L∞, and uν , vν and wν be bounded
sequences in H2 such that either

1. uν − vν is convergent in H2 and wν converges weakly to 0, or
2. uν − vν converges weakly to 0 in H2 and wν is convergent.

Then (
F u(mν , uν)− F u(mν , vν)

)
wν → 0

in L2. Furthermore, F u(m,u) − F u(m, v) is a compact operator for each m ∈ L∞,
and u, v ∈ H2.

Properties of φa. The function φa(x) is a solution to −∆u + F (a, u) = 0 in H2

and has the following properties:
1. φa(x) = Φa(r) is spherically symmetric.

2.
∫

∂F

∂a
(a, Φa(r)) Φ′

a(r)r dx 6= 0.

3. φa and its first derivatives have exponential decay.



Non-degeneracy of perturbed solutions of semilinear partial differential equations 79

4. φa is a quasi-non-degenerate solution, that is, the operator

−∆ +
∂F

∂u
(a, φa(x)) : H2 → L2

has as its kernel the space spanned by the n partial derivatives Djφa(x), which
are assumed to be independent, and its range is the space in L2 orthogonal
to its kernel. This implicitly says that the partial derivatives belong to H2.

These properties hold in the model case of the non-linear Schrödinger equation (1.2)
described in the introduction, see [2], [5] and [7].

Properties of V . The function V is C2 with its range in the interval I. It
and its first partial derivatives are bounded, while its second partial derivatives have
polynomial growth.

Positivity assumption. There exists δ > 0 such that

∂F

∂u
(a, 0) > δ

for all a in the range of V .

For later reference we shall need a version of Wang’s Lemma (see [6, 3]):

Lemma 2.5. Let fν be a family of measurable functions such that

0 < δ < fν(x) < K

for all ν and constants δ and K. Let µν be a sequence of non-negative numbers and
let vν be a sequence in H2 such that

−∆vν + (fν(x) + µν)vν → 0

in L2. Then vν → 0 in H2.

Under these conditions the following theorem, proved in [4], holds.

Theorem 2.6. Let b be a non-degenerate critical point of V and let a = V (b).
Then, for sufficiently small ε > 0, the equation −∆u+F (V (εx), u) = 0 has a solution
of the form

uε(x) = φa

(
x− b

ε
+ sε

)
+ ε2wε

(
x− b

ε
+ sε

)

where sε ∈ Rn, wε ∈ H2 and wε is orthogonal in L2 to the partial derivatives Djφa.
Both sε and wε depend continuously on ε. As ε tends to 0, sε tends to 0 and wε tends
to a computable function η ∈ H2, which is the unique solution v = η(x) orthogonal
to the partial derivatives Djφa of the problem

(2.1) −∆v +
∂F

∂u
(a, φa(x))v = −1

2

∂F

∂a
(a, φa(x))(H(b)x · x)

where H(b) is the Hessian matrix of V at the point b. Finally the solution uε is the
unique one possessing these asymptotic properties.

3. Non-degeneracy of the solutions

Now that we have defined uε we can state precisely the main conclusion of this
paper.
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Theorem 3.1. There exists ε0 > 0 such that for 0 < ε < ε0 the solution uε

obtained under the conditions of Theorem 2.6 is non-degenerate, that is, the operator

Tε := −∆ +
∂F

∂u
(V (εx), uε)

from H2 to L2 is invertible. Moreover, we have the following bound on its inverse:

‖T−1
ε ‖ ≤ C

(
1

ε2

)

where C is independent of ε.

Proof. We refer the reader to the outline given in Section 1. The proof is in two
rather unequal steps. The first step is to show that Tε is a Fredholm operator of
index 0.

Let
Aε := −∆ +

∂F

∂u
(V (εx), 0) : H2 → L2

By the positivity assumption Aε is a self-adjoint operator with domain H2 satisfying
Aε > −∆ + δ, and hence an invertible operator from H2 to L2. Now Tε is a compact
perturbation of Aε, since Tε − Aε is given by multiplication by

f(x) :=
∂F

∂u
(V (εx), uε)− ∂F

∂u
(V (εx), 0)

and therefore defines a compact operator from H2 to L2 by Lemma 2.4. Hence Tε is
a Fredholm operator of index 0. It follows that if Tε is injective it is also surjective.

We turn to the second step as outlined in Section 1. We wish to show that for
every sequence εν with limit 0 and for every bounded sequence vν ∈ H2 such that
ε−2

ν Tενvν → 0 in L2 a subsequence of vν tends to 0 in H2. That this implies the
required estimate for the inverse T−1

ε is a consequence of a simple functional analytic
lemma.

Lemma 3.2. Let (Γε)0<ε<ε0 be a family of bounded linear operators from a
Banach space E to a Banach space F . Assume it satisfies the following condition:

(C) If εν is a sequence in the interval ]0, ε0[ with limit 0 and xν a bounded sequence
in E such that lim Γενxν = 0 then xν has a subsequence with limit 0.

There then exists ε1 > 0, such that for all 0 < ε < ε1 the operator Γε is injective and
its inverse as an operator from its range Rε to E satisfies ‖Γ−1

ε ‖L (Rε,E) ≤ K where
the constant K is independent of ε.

Proof of Lemma 3.2. Clearly there exists ε1 such that Γε is injective for 0 <
ε < ε1. If it did not exist there would exist a sequence εν → 0 and a sequence of unit
vectors xν such that Γενxν = 0, contradicting (C).

Suppose the bound on the inverse does not hold for any ε1 and K. Then we can
find a sequence εν → 0 and a sequence of unit vectors yν = Γενxν in the range Rεν

such that ‖xν‖ → ∞. Let vν = xν/‖xν‖. Then Γενvν = yν/‖xν‖ → 0, contradicting
(C). This ends the proof of Lemma 3.2. ¤

We continue with step 2 of the proof of Theorem 3.1. Let εν → 0, let vν be a
bounded sequence in H2 and assume that

ε−2
ν

(
−∆ +

∂F

∂u
(V (ενx), uεν )

)
vν → 0
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in L2. We recall the asymptotic form for uε (Theorem 2.6) and apply it to uεν . For
notational convenience, we abbreviate sεν to sν and wεν to wν . We now replace x by
x + b

εν
− sν and find

ε−2
ν

(
−∆ +

∂F

∂u

(
V (εν(x− sν) + b), φa + ε2

νwν

))
vν

(
x +

b

εν

− sν

)
→ 0

in L2.
We recall that our objective is to show that a subsequence of vν tends to 0 in

H2. In the sequel we shall repeatedly select a subsequence and always denote it by
vν (and similarly for εν etc.) using a phrase such as “going to a subsequence we may
assume”.

Let W be the subspace of H2 orthogonal in the L2 sense to the n partial deriva-
tives Djφa. We write

vν

(
·+ b

εν

− sν

)
= σν · ∇φa + γνhν

where σν ∈ Rn, hν ∈ W , ‖hν‖H2 = 1 and γν ≥ 0. Step 2 of the proof will be
completed by showing that, after going to a subsequence, σν and γν both have the
limit 0.

We begin by observing that since vν is bounded in H2 the sequences γν and σν are
bounded. We may therefore assume (going to a subsequence) that γν → γ0, σν → σ0

and, exploiting weak compactness of the unit ball in Hilbert space, that hν → h0

weakly in H2.
In view of the equation (−∆ + ∂F

∂u
(a, φa))∇φa = 0 we now have

ε−2
ν γν

(
−∆ +

∂F

∂u

(
V (ε(x− sν) + b), φa + ε2

νwν

))
hν

+ ε−2
ν

(
∂F

∂u

(
V (εν(x− sν) + b), φa + ε2

νwν

)
− ∂F

∂u

(
a, φa

))
(∇φa · σν) → 0

(3.1)

in L2. It is our objective to show that the left-hand side of (3.1) has a computable
limit which gives rise to a limit equation. The computation will occupy the bulk of
step 2 of the proof of Theorem 3.1 and concludes with the limit equation (3.6).

We first claim that the second term in (3.1) tends in L2 to

∂2F

∂u2
(a, φa)η∇φa · σ0 +

1

2

∂2F

∂u∂a
(a, φa)(H(b)x · x)∇φa · σ0

where H(b) is the Hessian matrix of V and η is the solution to (2.1) (see Theorem 2.6).
To see this we expand it into

ε−2
ν

(
∂F

∂u

(
V (εν(x−sν)+b), φa+ε2

νwν

)
− ∂F

∂u

(
V (εν(x−sν)+b), φa

))
(∇φa · σν)

+ ε−2
ν

(
∂F

∂u

(
V (εν(x− sν) + b), φa

)
− ∂F

∂u

(
a, φa

))
(∇φa · σν)

(3.2)

The first summand of (3.2) can be written as the integral

(3.3)
∫ 1

0

∂2F

∂u2

(
V (εν(x− sν) + b), φa + τε2

νwν

)
wν∇φa · σν dτ
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For fixed τ ∈ [0, 1]

∂2F

∂u2

(
V (εν(x− sν) + b), φa + τε2

νwν

)
η∇φa · σ0 −→ ∂2F

∂u2
(a, φa)η∇φa · σ0

according to Lemma 2.2. Moreover,
∂2F

∂u2

(
V (εν(x− sν) + b), φa + τε2

νwν

)
wν(∇φa · σν)

− ∂2F

∂u2

(
V (εν(x− sν) + b), φa + τε2

νwν

)
η(∇φa · σ0)

tends to 0 owing to Lemma 2.1, the boundedness of V , and the limits wν → η in H2

and ∇φa · σν → ∇φa · σ0 in H2. Therefore, the integrand in (3.3) tends to

∂2F

∂u2
(a, φa)η∇φa · σ0

in L2 at fixed τ . Also, the L2-norm of the integrand stays bounded independently of
τ and ν (again by Lemma 2.1), so the dominated convergence theorem for L2-valued
integrals shows that the integral tends in L2 to

∂2F

∂u2
(a, φa)η∇φa · σ0.

The second summand of (3.2) can be written as the integral

ε−1
ν

∫ 1

0

∂2F

∂u∂a

(
V (τεν(x− sν) + b, φa

)(∇φa · σν

)∇V (τεν(x− sν) + b) · (x− sν) dτ

Since, by assumption, ∇V (b) = 0, this is equal to
∫ 1

0

∫ 1

0

∂2F

∂u∂a

(
V (τεν(x−sν)+b, φa

)(∇φa·σν

)
H(ρτεν(x−sν)+b)(x−sν)·(x−sν)τ dρ dτ

Now, H(x) has polynomial growth, ∂2F
∂u∂a

(V (τεν(x− sν)+ b, φa) is bounded uniformly
with respect to τ and ν as x goes to infinity, because of our growth conditions, and
(∇φa · σν) has uniform exponential decay as x goes to infinity (since σν is a bounded
sequence). Hence, for fixed τ , the integrand converges to

∂2F

∂u∂a
(a, φa)

(∇φa · σ0

)
(H(b)x · x)τ

in L2, and is also bounded uniformly with respect to τ and ν by a fixed function
in L2. We can therefore apply the dominated convergence theorem for L2-valued
integrals and the double integral tends to

1

2

∂2F

∂u∂a
(a, φa)

(∇φa · σ0

)
(H(b)x · x).

This proves our claim that the second term of (3.1) has a limit in L2.
Next we consider the first term of (3.1). We claim that the multiplier ε−2

ν γν is
bounded. Suppose, for the sake of contradiction, that ε−2

ν γν is unbounded. Going
to a subsequence we may assume that ε2

νγ
−1
ν → 0 and multiplying (3.1) by it and

knowing that the second term of (3.1) converges in L2, we obtain

(3.4)
(
−∆ +

∂F

∂u
(V (εν(x− sν) + b), φa + ε2

νwν)

)
hν → 0
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in L2. Now we have
∂F

∂u
(a, φa)hν → ∂F

∂u
(a, φa)h0

weakly in L2 since multiplication by ∂F
∂u

(a, φa) is a norm-continuous linear operator
from H2 to L2. Moreover(

∂F

∂u

(
V (εν(x− sν) + b), φa + ε2

νwν

)
− ∂F

∂u
(a, φa)

)
hν → 0

in the weak topology of the dual of H2 by Lemma 2.3. Finally ∆hν → ∆h0 in the
sense of distributions. We conclude from (3.4) that

−∆h0 +
∂F

∂u
(a, φa)h0 = 0.

But h0 ∈ W so that h0 = 0 by property 4 of φa. We deduce by Lemma 2.4 that
(

∂F

∂u

(
V (εν(x− sν) + b), φa + ε2

νwν

)
− ∂F

∂u

(
V (εν(x− sν) + b), 0

))
hν → 0

in L2, so that now (3.4) yields
(
−∆ +

∂F

∂u

(
V (εν(x− sν) + b), 0

))
hν → 0

in L2. Now the positivity assumption and Wang’s Lemma give hν → 0 in H2 thus
contradicting the assumption that ‖hν‖H2 = 1. This contradiction implies that
ε−2

ν γν is bounded as claimed. One consequence of this is that γν → 0; thus one of
the objectives of step 2 is attained.

We may now assume, going once more to a subsequence, that ε−2
ν γν → c ≥ 0.

Armed with this knowledge we return to (3.1) reminding ourselves at this point that
now we do not necessarily have h0 = 0. We do, however, still have that

(
−∆ +

∂F

∂u

(
V (εν(x− sν) + b), φa + ε2

νwν

))
hν →

(
−∆ +

∂F

∂u
(a, φa)

)
h0

in the sense of distributions. Passing to the limit in (3.1) we find that
(
−∆ +

∂F

∂u
(a, φa)

)
ch0 +

∂2F

∂u2
(a, φa)η(∇φa · σ0)

+
1

2

∂2F

∂u∂a
(a, φa)(H(b)x · x)∇φa · σ0 = 0.

(3.5)

Now recall that η satisfies the equation

−∆η +
∂F

∂u
(a, φa)η = −1

2

∂F

∂a
(a, φa)(H(b)x · x).

Differentiating this with respect to x gives the vector-valued equation

−∆(∇η) +
∂F

∂u
(a, φa)∇η +

∂2F

∂u2
(a, φa)η∇φa

= −1

2

∂2F

∂a∂u
(a, φa)(H(b)x · x)∇φa − ∂F

∂a
(a, φa)H(b)x.
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Taking the inner product with σ0 and using (3.5) gives the final form of the limit
equation that arises from (3.1):

(3.6)
(
−∆ +

∂F

∂u
(a, φa)

)
(ch0 +∇η · σ0) = −∂F

∂a
(a, φa)H(b)x · σ0.

The next objective is to show that σ0 = 0. By (3.6) the function ∂F
∂a

(a, φa)H(b)x · σ0

is in the range of −∆ + ∂F
∂u

(a, φa), which is the space W . It follows that σ0 satisfies
the linear equation system

∫ (
∂F

∂a
(a, φa)H(b)x · σ0

)
Djφa(x) dx = 0, j = 1, . . . , n.

We claim that this implies σ0 = 0. Write σ0 = (σ1, . . . , σn). The inner product
H(b)x · σ0 is given by

H(b)x · σ0 =
∑

i,k

σi (xkHk,i)

where the Hk,i are the coefficients of the matrix H(b). Moreover, φa is spherically
symmetric, φa(x) = Φa(r), so our system can be written as

∫ ( ∑

i,k

σi (xkHk,i)

)
∂F

∂a
(a, Φa(r))

Φ′
a(r)xj

r
dx = 0, j = 1, . . . , n.

Spherical symmetry causes terms involving mixed products xjxk, j 6= k, to vanish,
leading to the simpler equation

(∑
i

σiHj,i

)∫
∂F

∂a
(a, Φa(r))Φ

′
a(r)

x2
j

r
dx = 0

for all j. It is easily seen that the integral is independent of j, and so its value is

C :=
1

n

∫
∂F

∂a
(a, Φa(r))Φ

′
a(r)r dx

which is non-zero by assumption. Therefore, our system reduces to

C
∑

i

σiHj,i = 0

for all j, and since H(b) is an invertible matrix, this implies σ0 = 0, hence our claim.
We have now arrived at a subsequence vν for which σν → 0 and ε−2

ν γν is bounded.
The latter implies γν → 0. Since vν

( · + b
εν
− sν

)
= ∇φa · σν + γνhν and ‖hν‖H2 = 1

we conclude that vν → 0 in H2. This concludes step 2 of the proof and therefore the
whole proof is complete. ¤

We remark that for c < 2 it is not the case that ‖T−1
ε ‖ = O(ε−c). Indeed if c < 2

then limε→0 ε−cTεvε = 0 in L2, where vε(x) = Djφa(x− b
ε
+ sε).

4. Remark on the assumptions

The non-vanishing of the integral

(4.1) I :=

∫
∂F

∂a
(a, Φa(r))Φ

′
a(r) r dx
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was used in the proof of Theorem 3.1 (as well as in the proof of the very existence
of uε). This condition may seem rather technical and meaningless. We can however
derive it from a rather natural assumption in which the continuum of ground states
φa plays an interesting role. We shall assume that the φa form a smooth continuum
with respect to a, an assumption that we did not need before, since we were always
working at fixed a. This is often the case since, in practice, the functions φa are
usually obtained by scaling from the case a = 1.

Proposition 4.1. In addition to all previous hypotheses on φa, assume that it
is a C1 function of a. Then the integral I is non-zero if and only if

d

da

(∫
|∇φa|2 dx

)
6= 0.

Proof. We shall in fact establish the identity

(4.2) I :=

∫
∂F

∂a
(a, Φa(r))Φ

′
a(r) r dx = − d

da

(∫
|∇φa|2 dx

)
.

By spherical symmetry we have∫
∂F

∂a
(a, Φa(r))Φ

′
a(r) r dx = n

∫
∂F

∂a
(a, φa(x))xjDjφa(x) dx

for each j. Differentiating the equation −∆φa + F (a, φa) = 0 with respect to a gives

−∆

(
∂φa

∂a

)
+

∂F

∂u
(a, φa)

∂φa

∂a
+

∂F

∂a
(a, φa) = 0

and therefore

I = n

∫ (
∆− ∂F

∂u
(a, φa)

)(
∂φa

∂a

)
xjDjφa(x) dx

= n

∫
∂φa

∂a

(
∆− ∂F

∂u
(a, φa)

)
(xjDjφa) dx

using self-adjointness. We expand

∆(xjDjφa) = xj∆Djφa + 2D2
jφa

and since the partial derivatives Djφa belong to the kernel of −∆ +
∂F

∂u
(a, φa), we

are left with
I = 2n

∫
∂φa

∂a
D2

jφa dx.

This is true for each j, so

I = 2

∫
∂φa

∂a
∆φa dx = −2

∫
∇φa · ∇

(
∂φa

∂a

)
dx = − d

da

(∫
|∇φa|2 dx

)
,

and the proof is complete. ¤
We now give more details about how a continuum can be obtained from a single

solution for a fixed value of a, and how the result of the previous proposition applies
then.

Assume we are given a non-trivial, spherically symmetric solution ψ(x) in H2 of
an equation

−∆u + G(u) = 0
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where G satisfies our regularity and growth conditions. For a in a bounded interval
I, we put

φa(x) = aµψ(aνx)

for positive exponents µ and ν. This is obviously smooth with respect to a. Moreover,
∆φa = aµ+2ν∆ψ(aνx) = aµ+2νG(a−µφa).

Therefore φa solves −∆u + F (a, u) = 0 where

F (a, u) = aµ+2νG(a−µu).

We see that F (1, u) = G(u). The function F satisfies our growth conditions. Ac-
cording to Proposition 4.1, the non-vanishing of the integral 4.1 reduces to

0 6= d

da

(
a2µ+2ν

∫
|∇ψ(aνx)|2 dx

)
= (2µ + 2ν − nν)a2µ+2ν−nν−1

∫
|∇ψ|2 dx.

So a necessary and sufficient condition for the non-vanishing of this integral is simply
2µ + 2ν − nν 6= 0.

Under this simple assumption, we can apply Theorems 2.6 and 3.1, using a potential
V with range in I.
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