Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 35, 2010, 633–640

A POTENTIAL THEORY APPROACH TO THE EQUATION $-\Delta u = |\nabla u|^2$

Anna Tuhola-Kujanpää

University of Jyväskylä, Department of Mathematics and Statistics P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland; anna.tuhola-kujanpaa@jyu.fi

Abstract. In this paper we show that if

(1)
$$\begin{cases} -\Delta u = |\nabla u|^2 \text{ in } \Omega, \\ u \in W_0^{1,2}(\Omega), \end{cases}$$

then

(2)
$$-\Delta(e^u - 1) = \mu \text{ in } \Omega,$$

when $\mu \perp \text{cap}_2$, and conversely.

1. Introduction

In this paper we show that by a change of variable we can transform a Laplace equation with quadratic growth in the gradient to one with a singular measure on the right hand side. More precisely we have:

1.1. Theorem. Let $\Omega \subset \mathbf{R}^n$ be a bounded domain. Then u is a solution of

(3)
$$\begin{cases} -\Delta u = |\nabla u|^2 \text{ in } \Omega \\ u \in W_0^{1,2}(\Omega), \end{cases}$$

if and only if $e^{\alpha u/2} - 1 \in W_0^{1,2}(\Omega)$ for all $0 < \alpha < 1$ and there exists a positive Radon measure μ such that $e^u - 1$ is a weak solution of

(4)
$$-\Delta(e^u - 1) = \mu \quad \text{in } \Omega$$

and $\mu \perp cap_2$.

The equation (3) is an analytic equation that does not allow any other bounded solutions but the constant 0. Here we characterize all possible solutions.

A similar result can be found in [1] and its corrigendum [2]. However, our proof extends to a case where μ is an arbitrary Radon measure, not necessarily bounded. Our approach is based on a very different technique, namely potential theory and it relies in partial on the Riesz decomposition theorem. We also employ renormalized solutions discussed in [10].

In the proof of Theorem 1.1 we also need the uniqueness of harmonic functions in $W_0^{1,p}(\Omega)$. This is an interesting result of its own and Section 2 is devoted to its proof and comments. To show that our assumptions on the domain Ω are relevant, we include a counterexample by Hajłasz [13] and construct another counterexample in a domain with a very irregular boundary. Recently Brezis [4] and Jin et al. [15] have studied similar problems locally without considering the regularity of the domain.

doi:10.5186/aasfm.2010.3540

²⁰⁰⁰ Mathematics Subject Classification: Primary 35J05, 35J25, 31B20, 31B05.

Key words: Elliptic equations, singular solutions, uniqueness.

Problems with equations similar to (3) have been widely studied. See for instance [6],[8], [7], [9], [11] and [16].

2. Uniqueness of harmonic functions in $W^{1,p}(\Omega)$

In $W^{1,2}(\Omega)$ the uniqueness of harmonic functions is a familiar fact: for fixed $v \in W^{1,2}(\Omega)$ there is a unique harmonic function u such that $u - v \in W^{1,2}_0(\Omega)$. In $W^{1,p}(\Omega)$, when 1 , it is difficult to locate the corresponding fact from the literature.

In Theorem 2.1 we find a sufficient condition for the uniqueness to hold in a domain Ω : the smoothness of the domain is expressed in terms of the integrability of the gradient of the Green function. (For more information of the Green function, see for instance [5].) This Theorem 2.1 will be later applied in the proof of Theorem 1.1 in a smooth domain. However, a bounded domain with $C^{1,\alpha}$ boundary for some $\alpha > 0$ is regular enough to satisfy the assumptions.

By the space $W_0^{1,p}(\Omega)$ we mean the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$.

2.1. Theorem. Let $\Omega \subset \mathbf{R}^n$ be a bounded domain and G the Green function associated with Ω . Suppose $v \geq 0$ is superharmonic $W_0^{1,p}(\Omega)$ -function for some $p \geq 1$. If for some $x_0 \in \Omega$ there exists $K \subset \subset \Omega$ such that $\nabla_y G(x_0, y) \in L^{p/(p-1)}(\Omega \setminus K)$, when p > 1, or $\nabla_y G(x_0, y) \in L^{\infty}(\Omega \setminus K)$, when p = 1, then the greatest harmonic minorant h of v is 0.

Proof. Notice first that by the minimum principle either h < v in Ω or v itself is harmonic: if h(x) = v(x) for some $x \in \Omega$, then for the non-negative superharmonic function v - h we have (v - h)(x) = 0 and so v - h attains its minimum in Ω . Hence v - h is a constant function and it follows that v is harmonic.

Assume first that h < v. Take a sequence $\varphi_j \in C_0^{\infty}(\Omega)$ such that $\varphi_j \to v$ in $W^{1,p}(\Omega)$ and that for every compact $S \subset \Omega$ there exists $J \in \mathbf{N}$ such that $\varphi_j \geq h$ in S when j > J.

Fix $x_0 \in \Omega$ and denote $g(y) = G(x_0, y)$. Define $\Omega_t = \{y \in \Omega : g(y) > t\}$ for each t > 0. Denote the Green function of Ω_t by G_t and $g_t(y) = G_t(x_0, y)$. Observe that $g_t(y) = g(y) - t$, and hence $|\nabla g_t(y)| = |\nabla g(y)|$.

Denote the greatest harmonic minorant of φ_j in Ω_t by $h_{t,j}$. We have $h(x_0) \leq h_{t,j}(x_0)$ for all large j. Functions φ_j have compact supports and so it is justified to use the Green formula in $\Omega \setminus \Omega_t$ for φ_j and g. By the harmonicity of g near the boundary we have

(5)
$$h_{t,j}(x_0) = \int_{\partial\Omega_t} \varphi_j \frac{\partial g_t}{\partial\nu} dS = \int_{\partial\Omega_t} \varphi_j \frac{\partial g}{\partial\nu} dS$$
$$= \int_{\Omega\setminus\Omega_t} \nabla\varphi_j \cdot \nabla g \, dy + \int_{\Omega\setminus\Omega_t} \varphi_j \Delta g \, dy - \int_{\partial\Omega} \varphi_j \frac{\partial g}{\partial\nu} dS$$
$$= \int_{\Omega\setminus\Omega_t} \nabla\varphi_j \cdot \nabla g \, dy \to \int_{\Omega\setminus\Omega_t} \nabla v \cdot \nabla g \, dy,$$

for when t is small enough, $\Omega \setminus \Omega_t \subset \Omega \setminus K$ and hence by Hölder's inequality

$$\int_{\Omega \setminus \Omega_t} (\nabla \varphi_j - \nabla v) \cdot \nabla g \, dy \le \left(\int_{\Omega \setminus \Omega_t} |\nabla \varphi_j - \nabla v|^p dy \right)^{\frac{1}{p}} \left(\int_{\Omega \setminus \Omega_t} |\nabla g|^{\frac{p}{p-1}} dy \right)^{\frac{p-1}{p}} \to 0,$$

when $j \to \infty$. This implies

$$\lim_{t \to 0} \left(\lim_{j \to \infty} h_{t,j}(x_0) \right) = \lim_{t \to 0} \left(\lim_{j \to \infty} \int_{\Omega \setminus \Omega_t} \nabla \varphi_j \cdot \nabla g \, dy \right) = \lim_{t \to 0} \int_{\Omega \setminus \Omega_t} \nabla v \cdot \nabla g \, dy = 0,$$

since $\nabla v \cdot \nabla g$ is integrable in $\Omega \setminus \Omega_t$ when t is small. Since $h(x) \leq h_{t,j}(x)$, it follows that h(x) = 0.

In the case v is harmonic, we can find a sequence $\varphi_j \in C_0^{\infty}(\Omega)$ such that $\varphi_j \to v$ in $W^{1,p}(\Omega)$ and φ_j converge to v locally uniformly. If we denote the greatest harmonic minorants of φ_j and v in Ω_t by $h_{t,j}$ and h_t respectively, we have by the uniform convergence on $\overline{\Omega}_t$ that $h_{t,j}(y) \to h_t(y)$ for all $y \in \Omega_t$. On the other hand, we know by the previous calculation (5) which is also valid in this case, that

$$h_{t,j}(x_0) \to \int_{\Omega \setminus \Omega_t} \nabla v \cdot \nabla g \, dy,$$

when $j \to \infty$. Hence

$$h_t(x_0) = \int_{\Omega \setminus \Omega_t} \nabla v \cdot \nabla g \, dy$$

and by the integrability of $\nabla v \cdot \nabla g$ in $\Omega \setminus \Omega_t$ when t is small, we obtain $h_t(x_0) \to 0$, when $t \to 0$, since $|\Omega \setminus \Omega_t| \to 0$. The result follows from the fact that $h_t(x_0) \ge h(x_0)$.

In the proof above it is explicitly shown the following.

2.2. Corollary. If Ω is as in Theorem 2.1 and $p \ge 1$, then the only harmonic function in $W_0^{1,p}(\Omega)$ is the zero function.

As an immediate consequence we get the next corollary.

2.3. Corollary. Suppose that $p \ge 1$. If Ω is as in Theorem 2.1 and $v \in W^{1,p}(\Omega)$, then there exists at most one harmonic function u such that $u - v \in W_0^{1,p}(\Omega)$.

2.4. Remark. When $p \geq 2$ the previous Theorem is trivial, but also the assumptions of the Theorem are apparent: Let $x \in \Omega$ and denote $G_x(y) = G(x, y)$. Then the zero extension of G_x is subharmonic in $\mathbf{R}^n \setminus B(x, r)$ for all r > 0, for G_x is harmonic in $\Omega \setminus B(x, r)$. Subharmonic functions belong to $W_{loc}^{1,2}(\mathbf{R}^n \setminus B(x, r))$. Since $2 \geq p/(p-1)$, when $p \geq 2$, we have $\nabla G \in L^{p/(p-1)}(\Omega \setminus B(x, r))$ for all r > 0.

2.5. Remark. Theorem 2.1 is not completely trivial. In [13] Hajłasz gives a counterexample in the case $1 : There exists a domain <math>\Omega \subset \mathbb{R}^2$ and a non-zero harmonic function $u \in W_0^{1,p}(\Omega)$. Here Ω is the image of set $D = \{z \in \mathbb{C} : |z-i| < 1\}$ under mapping $z \mapsto z^2$. The domain Ω has one inward cusp and it satisfies the cone property. In the following we construct a counterexample in \mathbb{R}^n for all 1 with a domain far from simply connected.

2.6. Example. Let $1 . We can find a Cantor set <math>E \subset \mathbf{R}^n$ such that $\operatorname{cap}_2(E) > 0$ and $\dim_{\mathscr{H}}(E) < n - p$ [3, Section 5.3]. Then $\operatorname{cap}_p(E) = 0$. Take a ball $B \subset \mathbf{R}^n$ containing E and denote $\Omega = 2B \setminus E$. Now the 2-potential \hat{R}_E^1 of E in 2B is harmonic in Ω , but not the zero function, since $\operatorname{cap}_2(E) > 0$ [5, Theorem 5.3.4.(iii) and Lemma 5.3.3]. Clearly $\hat{R}_E^1 \in W_0^{1,p}(\Omega)$ because $\operatorname{cap}_p(E) = 0$ [14, Theorem 8.6].

3. Proof of Theorem 1.1 with some preparatory results

For the proof of the main theorem we need few auxiliary results. For them, denote

$$v_{\mu,\Omega}(x) = \int_{\Omega} G(x,y) d\mu(y),$$

where G is the Green function of Ω .

The *p*-capacity $\operatorname{cap}_p(A)$ for 1 is defined in the following classical way:The*p* $-capacity of a compact set <math>K \subset \Omega$ is first defined as

$$\operatorname{cap}_p(K) = \inf\{\int_{\Omega} |\nabla \varphi|^p dx \colon \varphi \in C_0^{\infty}(\Omega), \varphi(x) \ge 1 \text{ for all } x \in K\}.$$

The *p*-capacity of any open subset $U \subset \Omega$ is then defined by

$$\operatorname{cap}_{p}(U) = \sup\{\operatorname{cap}_{p}(K) \colon K \text{ compact}, K \subset U\}$$

Finally, the *p*-capacity of an arbitrary subset $A \subset \Omega$ is defined by

 $\operatorname{cap}_p(A) = \inf\{\operatorname{cap}_p(U) \colon U \text{ open}, A \subset U\}.$

For the properties of the p-capacity, see [3].

3.1. Lemma. For every Radon measure μ in Ω there exist unique Radon measures μ_0 and μ_s in Ω such that $\mu = \mu_0 + \mu_s$, $\mu_0 \ll \operatorname{cap}_2$ and $\mu_s \perp \operatorname{cap}_2$.

Proof. See [12], Lemma 2.1.

3.2. Lemma. Suppose μ is a positive Radon measure in Ω and $\mu = \mu_0 + \mu_s$ as above in Lemma 3.1. Then $\mu_s\{v_{\mu,\Omega}(x) < \infty\} = 0$.

Proof. Let $A \subset \Omega$ such that $\operatorname{cap}_2(A) = 0$ and $\mu_s(\Omega \setminus A) = 0$. If $\mu_s\{v_{\mu,\Omega}(x) < \infty\} > 0$, then $\mu_s\{v_{\mu,\Omega}(x) < k\} > 0$ for some k > 0. Let $K \subset \{v_{\mu,\Omega}(x) < k\} \cap A$ be compact. By an alternative definition of capacity [5, Theorem 5.5.5] we have

$$0 = \operatorname{cap}_{2}(K)$$

= sup{ $\nu(K)$: ν positive measure, spt(ν) $\subset K, v_{\mu,\Omega}(x) < 1$ for all $x \in K$ }
 $\geq \frac{1}{k} \mu \lfloor_{K}(K) \geq \frac{1}{k} \mu_{s}(K).$

It follows that $\mu_s \{ v_{\mu,\Omega}(x) < k \} = 0$. This is a contradiction.

Denote $T_k(f) = \min\{k, \max\{f, -k\}\}$ for all $k \ge 0$.

3.3. Lemma. If $u \in W_0^{1,2}(\Omega)$ such that $-\Delta u = |\nabla u|^2$, then $e^{\frac{\alpha}{2}u} - 1 \in W_0^{1,2}(\Omega)$ for all $\alpha < 1$.

Proof. In the view of the Sobolev inequality is enough to show the integrability of $|\nabla e^{\alpha u/2}|^2$, since the zero boundary values follow immediately from the zero boundary values of u.

Fix k > 0 and $0 < \alpha < 1$. Function $e^{T_k(u)} - 1 \in W_0^{1,2}(\Omega)$ and therefore it can be chosen as a test function in equation (3). So

$$\begin{split} \int_{\{u \le k\}} |\nabla u|^2 e^u dx &= \int_{\Omega} \nabla u \cdot \nabla e^{T_k(u)} dx = \int_{\Omega} |\nabla u|^2 (e^{T_k(u)} - 1) dx \\ &= \int_{\{u \le k\}} |\nabla u|^2 e^u dx + \int_{\{u > k\}} |\nabla u|^2 e^k dx - \int_{\Omega} |\nabla u|^2 dx, \end{split}$$

which gives

(6)
$$e^{-k} \int_{\Omega} |\nabla u|^2 dx = \int_{\{u>k\}} |\nabla u|^2 dx.$$

Also $e^{\alpha T_k(u)} - 1 \in W_0^{1,2}(\Omega)$, so it is a valid test function in equation (3). Hence we have

$$\int_{\Omega} |\nabla u|^2 (e^{\alpha T_k(u)} - 1) dx = \int_{\Omega} \nabla u \cdot \nabla (e^{\alpha T_k(u)} - 1) dx$$
$$= \alpha \int_{\Omega} e^{\alpha T_k(u)} \nabla u \cdot \nabla T_k(u) dx,$$

which together with equation (6) yields

$$(\alpha - 1) \int_{\{u \le k\}} e^{\alpha u} |\nabla u|^2 dx = e^{\alpha k} \int_{\{u > k\}} |\nabla u|^2 dx - \int_{\Omega} |\nabla u|^2 dx$$
$$= e^{\alpha k} e^{-k} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} |\nabla u|^2 dx.$$

By letting $k \to \infty$ we have

(7)
$$(1-\alpha)\int_{\Omega} |\nabla(e^{\alpha u/2}-1)|^2 dx = \left(\frac{\alpha}{2}\right)^2 \int_{\Omega} |\nabla u|^2 dx < \infty$$

Hence by the Sobolev inequality we have $e^{\frac{\alpha}{2}u} - 1 \in W_0^{1,2}(\Omega)$.

3.4. Remark. Lemma 3.3 is sharp: Function $e^{\frac{u}{2}} - 1 \notin W_0^{1,2}(\Omega)$ unless $u \equiv 0$. This can be seen by letting $\alpha \to 1$ in equation (7). If $e^{\frac{u}{2}} - 1 \in W_0^{1,2}(\Omega)$, then the left hand side of the equation tends to zero making ∇u the zero function.

3.5. Lemma. If $u \in W_0^{1,2}(\Omega)$ such that $-\Delta u = |\nabla u|^2$, then $e^{\alpha u} - 1 \in W^{1,1}(\Omega)$ and $e^{\alpha u} - 1$ is superharmonic for all $\alpha < 1$.

Proof. To see that $e^{\alpha u} - 1 \in W^{1,1}(\Omega)$ we need to notice only, that by denoting $\nu = e^{\alpha u} dx$, a bounded Radon measure, we have

$$\begin{split} \int_{\Omega} |\nabla(e^{\alpha u} - 1)| dx &= \alpha \int_{\Omega} |\nabla u| d\nu \le c \left(\int_{\Omega} |\nabla u|^2 d\nu \right)^{1/2} \\ &= c \left(\int_{\Omega} |\nabla(e^{\alpha u/2} - 1)|^2 dx \right)^{1/2} \end{split}$$

which is finite by Lemma 3.3.

Function $e^{\alpha u} - 1 \in W^{1,1}(\Omega)$ is a supersolution for the equation $-\Delta v = 0$ in Ω for every $0 < \alpha < 1$: Let $\varphi \in C_0^{\infty}(\Omega), \varphi \ge 0$. Now $e^{\alpha T_k(u)}\varphi \in W_0^{1,2}(\Omega)$ and $e^{\alpha T_k(u)}\varphi \ge 0$ for every k > 0. By the dominated convergence theorem, valid here because of Lemma 3.3, we have

$$\int_{\Omega} |\nabla u|^2 e^{\alpha u} \varphi \, dx = \lim_{k \to \infty} \int_{\Omega} |\nabla u|^2 e^{\alpha T_k(u)} \varphi \, dx = \lim_{k \to \infty} \int_{\Omega} \nabla u \cdot \nabla (e^{\alpha T_k(u)} \varphi) \, dx$$
$$= \lim_{k \to \infty} \left(\int_{\Omega} e^{\alpha T_k(u)} \nabla u \cdot \nabla \varphi \, dx + \alpha \int_{\Omega} e^{\alpha T_k(u)} \varphi |\nabla T_k(u)|^2 \, dx \right)$$

637

$$= \int_{\Omega} e^{\alpha u} \nabla u \cdot \nabla \varphi \, dx + \alpha \int_{\Omega} e^{\alpha u} \varphi |\nabla u|^2 \, dx$$
$$= \frac{1}{\alpha} \int_{\Omega} \nabla e^{\alpha u} \cdot \nabla \varphi \, dx + \alpha \int_{\Omega} e^{\alpha u} \varphi |\nabla u|^2 \, dx$$

which implies

$$\int_{\Omega} \nabla (e^{\alpha u} - 1) \cdot \nabla \varphi \, dx = \alpha (1 - \alpha) \int_{\Omega} e^{\alpha u} \varphi |\nabla u|^2 dx \ge 0.$$

So $e^{\alpha u} - 1$ is superharmonic.

Now we have all the ingredients for the proof of the main result.

Proof of Theorem 1.1. Assume first that u is a solution of equation (3). Since $e^{\alpha u} - 1$ is superharmonic for all $0 < \alpha < 1$ (Lemma 3.5), we have by letting $\alpha \to 1$ that $e^u - 1$ is superharmonic [14, Lemma 7.3]. Consequently [14, Theorem 7.45] $\nabla(e^u - 1) \in L^q(\Omega)$ for all q < n/(n-1) and hence $e^u - 1 \in W_0^{1,q}(\Omega)$.

Denote by μ the Riesz measure of function $e^u - 1$. Let $\varphi \in C_0^{\infty}(\Omega)$. Choose a C^{∞} -set $D \subset \subset \Omega$ such that $\operatorname{spt}(\varphi) \subset \subset D$. Then $\mu(D) < \infty$ and there is a positive function w, that solves the equation

$$\begin{cases} -\Delta w = \mu \text{ in } D, \\ w = 0 \text{ on } \partial D \end{cases}$$

in the renormalized sense [10, Theorem 3.1]. By the Riesz decomposition theorem there exist harmonic minorants of $e^u - 1$ and w in D, h and h_w respectively, such that $e^u - 1 = v_{\mu,D} + h$ and $\omega = v_{\mu,D} + h_w$. However, by Theorem 2.1 we know that $h_w = 0$. Hence $w = v_{\mu,D}$ and in D we have $e^u - 1 = w + h$, where h is a non-negative harmonic function.

Let k > 0. We have $e^{-T_k(u)}\varphi \in W_0^{1,2}(D) \cap L^{\infty}(D)$, $\operatorname{spt}(e^{-T_k(u)}\varphi) \subset D$ and $e^{-k}\varphi = e^{-T_k(u)}\varphi$ in $\{e^u > k+1\}, e^{-k}\varphi \in C_0^{\infty}(D)$. Since w is a solution in the renormalized sense and $\{w > k\} \subset \{e^u - 1 > k\}$, we have

$$\int_{\Omega} \nabla w \cdot \nabla \left(\frac{\varphi}{e^{T_k(u)}} \right) dx = \int_{\Omega} e^{-T_k(u)} \varphi \, d\mu.$$

By harmonicity $h \in W_{loc}^{1,2}(\Omega)$, and hence we have

$$\int_{\Omega} \nabla h \cdot \nabla \left(\frac{\varphi}{e^{T_k(u)}}\right) dx = 0.$$

Thus

$$\int_{\Omega} \nabla(e^u - 1) \cdot \nabla\left(\frac{\varphi}{e^{T_k(u)}}\right) dx = \int_{\Omega} \nabla(w + h) \cdot \nabla\left(\frac{\varphi}{e^{T_k(u)}}\right) dx = \int_{\Omega} e^{-T_k(u)} \varphi \, d\mu.$$

This implies

$$\begin{split} &\int_{\Omega} |\nabla u|^2 \varphi \, dx = \int_{\Omega} \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} \nabla (e^u - 1) \cdot \frac{\nabla \varphi}{e^u} \, dx \\ &= \lim_{k \to \infty} \int_{\Omega} \nabla (e^u - 1) \cdot \frac{\nabla \varphi}{e^{T_k(u)}} \, dx \\ &= \lim_{k \to \infty} \left(\int_{\Omega} \nabla (e^u - 1) \cdot \nabla \left(\frac{\varphi}{e^{T_k(u)}} \right) \, dx + \int_{\Omega} \nabla (e^u - 1) \cdot \nabla T_k(u) \frac{\varphi}{e^{T_k(u)}} \, dx \right) \end{split}$$

$$(8) = \lim_{k \to \infty} \left(\int_{\Omega} \nabla(e^{u} - 1) \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) dx + \int_{\Omega} \nabla e^{T_{k}(u)} \cdot \nabla T_{k}(u) \frac{\varphi}{e^{T_{k}(u)}} dx \right)$$
$$= \lim_{k \to \infty} \left(\int_{\Omega} e^{-T_{k}(u)} \varphi \, d\mu + \int_{\Omega} \varphi \, \nabla T_{k}(u) \cdot \nabla T_{k}(u) \, dx \right)$$
$$= \lim_{k \to \infty} \left(\int_{\Omega} e^{-T_{k}(u)} \varphi \, d\mu + \int_{\Omega} |\nabla T_{k}(u)|^{2} \varphi \, dx \right)$$
$$= \int_{\Omega} e^{-u} \varphi \, d\mu + \int_{\Omega} |\nabla u|^{2} \varphi \, dx,$$

and hence

$$\int_{\Omega} e^{-u} \varphi \, d\mu = 0$$

for all $\varphi \in C_0^{\infty}(\Omega)$. We obtain that $\mu(\{u < \infty\}) = 0$. Since u is superharmonic, we have $\operatorname{cap}_2(\{u = \infty\}) = 0$. Thus $\mu \perp \operatorname{cap}_2$.

Next prove the converse. Clearly $u \in W_0^{1,2}(\Omega)$. Function $e^u - 1$ is superharmonic and by the Riesz decomposition theorem

$$e^{u(x)} - 1 = \int_{\Omega} G(x, y) d\mu(y) + h(x),$$

where h is harmonic. Since h cannot take values $\pm \infty$ in Ω , we have $e^{u(x)} = \infty$ if and only if $v_{\mu,\Omega}(x) = \int_{\Omega} G(x,y) d\mu(y) = \infty$. By lemma 3.2 we have $\mu(\{v_{\mu,\Omega}(x) < \infty\}) = 0$. This implies

(9)
$$\mu(\{e^{u(x)} < \infty\}) = 0.$$

Let $k > 0, \varphi \in C^{\infty}(\Omega)$ and $D \subset \Omega$ smooth such that $\operatorname{spt}(\varphi) \subset D$. As in the proof of the first part, we find a renormalized solution w in D and by lemma 2.1 $w = v_{\mu,D}$. So we have $e^u - 1 = w + h$ in D. Now, $e^{-T_k(u)}\varphi$ is a valid test function for w + h and we find, calculating as earlier in (8), that

$$\int_{0} \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} \nabla e^{u} \cdot \frac{\nabla \varphi}{e^{u}} \, dx = \int_{\Omega} e^{-u} \varphi \, d\mu + \int_{\Omega} |\nabla u|^{2} \varphi \, dx = \int_{\Omega} |\nabla u|^{2} \varphi \, dx,$$

ce by equation (9) we have $\int_{\Omega} e^{-u} \varphi \, d\mu = 0$

since by equation (9) we have $\int_{\Omega} e^{-u} \varphi \, d\mu =$

References

- [1] ABDELLAOUI, B., A. DALL'AGLIO, and I. PERAL: Some remarks on elliptic problems with critical growth in the gradient. - J. Differential Equations 222:1, 2006, 21-62.
- [2] ABDELLAOUI, B., A. DALL'AGLIO, and I. PERAL: Corrigendum to "Some remarks on elliptic problems with critical growth in the gradient" - J. Differential Equations 246:7, 2009, 2988-2990.
- [3] ADAMS, D. R., and L. I. HEDBERG: Function spaces and potential theory. Springer-Verlag, Berlin–Heidelberg, 1996.
- [4] ANCONA, A.: Elliptic operators, conormal derivatives and positive parts of functions. With an appendix by Haïm Brezis. - J. Funct. Anal. 257, 2009, 2124–2158.
- [5] ARMITAGE, D. H., and S. J. GARDINER: Classical potential theory. Springer-Verlag, London, 2001.

639

- [6] BARLES, G., A.-P. BLANC, C. GEORGELIN, and M. KOBYLANSKI: Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. - Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28:3, 1999, 381–404.
- [7] BOCCARDO, L., F. MURAT, and J.-P. PUEL: Existence de solutions non bornées pour certaines equations quasi-linéaires. - Portugal. Math. 41:1-4, 1982, 507–534.
- [8] BOCCARDO, L., S. SEGURA DE LEÓN, and C. TROMBETTI: Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. - J. Math. Pures Appl. (9) 80:9, 2001, 919–940.
- [9] BREZIS, H., and A. C. PONCE: Kato's inequality when Δu is a measure. C. R. Math. Acad. Sci. Paris 338:8, 2004, 599–604.
- [10] DAL MASO, G., F. MURAT, L. ORSINA, and A. PRIGNET: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 1999, 741–808.
- [11] FERONE, V., and F. MURAT: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42, 2000, 1309–1326.
- [12] FUKUSHIMA, M., K. SATO, and S. TANIGUCHI: On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures. - Osaka J. Math. 28:3, 1991, 517–535.
- [13] HAJŁASZ, P.: A counterexample to the L^p -Hodge decomposition. Banach Center Publ. 33, 1996, 79–83.
- [14] HEINONEN, J., T. KILPELÄINEN, and O. MARTIO: Nonlinear potential theory of degenerate elliptic equations. Dover Publications, 2006.
- [15] JIN, T., V. MAZ'YA, and J. VAN SCHAFTINGEN: Pathological solutions to elliptic problems in divergence form with continuous coefficients. - C. R. Math. Acad. Sci. Paris 347:13-14, 2009, 773–778.
- [16] KAZDAN, J. L., and R. J. KRAMER: Invariant criteria for existence of solutions to second-order quasi-linear elliptic equations. - Comm. Pure Math. 31:5, 1978, 619–645.

Received 29 January 2010