A POTENTIAL THEORY APPROACH TO THE EQUATION $-\Delta u=|\nabla u|^{2}$

Anna Tuhola-Kujanpää
University of Jyväskylä, Department of Mathematics and Statistics P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland; anna.tuhola-kujanpaa@jyu.fi

Abstract

In this paper we show that if $$
\left\{\begin{align*} -\Delta u & =|\nabla u|^{2} \text { in } \Omega \tag{1}\\ u & \in W_{0}^{1,2}(\Omega) \end{align*}\right.
$$ then $$
\begin{equation*} -\Delta\left(e^{u}-1\right)=\mu \text { in } \Omega, \tag{2} \end{equation*}
$$

when $\mu \perp$ cap $_{2}$, and conversely.

1. Introduction

In this paper we show that by a change of variable we can transform a Laplace equation with quadratic growth in the gradient to one with a singular measure on the right hand side. More precisely we have:
1.1. Theorem. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain. Then u is a solution of

$$
\left\{\begin{align*}
-\Delta u & =|\nabla u|^{2} \text { in } \Omega, \tag{3}\\
u & \in W_{0}^{1,2}(\Omega),
\end{align*}\right.
$$

if and only if $e^{\alpha u / 2}-1 \in W_{0}^{1,2}(\Omega)$ for all $0<\alpha<1$ and there exists a positive Radon measure μ such that $e^{u}-1$ is a weak solution of

$$
\begin{equation*}
-\Delta\left(e^{u}-1\right)=\mu \text { in } \Omega \tag{4}
\end{equation*}
$$

and $\mu \perp$ cap $_{2}$.
The equation (3) is an analytic equation that does not allow any other bounded solutions but the constant 0 . Here we characterize all possible solutions.

A similar result can be found in [1] and its corrigendum [2]. However, our proof extends to a case where μ is an arbitrary Radon measure, not necessarily bounded. Our approach is based on a very different technique, namely potential theory and it relies in partial on the Riesz decomposition theorem. We also employ renormalized solutions discussed in [10].

In the proof of Theorem 1.1 we also need the uniqueness of harmonic functions in $W_{0}^{1, p}(\Omega)$. This is an interesting result of its own and Section 2 is devoted to its proof and comments. To show that our assumptions on the domain Ω are relevant, we include a counterexample by Hajłasz [13] and construct another counterexample in a domain with a very irregular boundary. Recently Brezis [4] and Jin et al. [15] have studied similar problems locally without considering the regularity of the domain.

[^0]Problems with equations similar to (3) have been widely studied. See for instance [6],[8], [7], [9], [11] and [16].

2. Uniqueness of harmonic functions in $W^{1, p}(\Omega)$

In $W^{1,2}(\Omega)$ the uniqueness of harmonic functions is a familiar fact: for fixed $v \in W^{1,2}(\Omega)$ there is a unique harmonic function u such that $u-v \in W_{0}^{1,2}(\Omega)$. In $W^{1, p}(\Omega)$, when $1<p<2$, it is difficult to locate the corresponding fact from the literature.

In Theorem 2.1 we find a sufficient condition for the uniqueness to hold in a domain Ω : the smoothness of the domain is expressed in terms of the integrability of the gradient of the Green function. (For more information of the Green function, see for instance [5].) This Theorem 2.1 will be later applied in the proof of Theorem 1.1 in a smooth domain. However, a bounded domain with $C^{1, \alpha}$ boundary for some $\alpha>0$ is regular enough to satisfy the assumptions.

By the space $W_{0}^{1, p}(\Omega)$ we mean the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$.
2.1. Theorem. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain and G the $G r e e n$ function associated with Ω. Suppose $v \geq 0$ is superharmonic $W_{0}^{1, p}(\Omega)$-function for some $p \geq 1$. If for some $x_{0} \in \Omega$ there exists $K \subset \subset \Omega$ such that $\nabla_{y} G\left(x_{0}, y\right) \in L^{p /(p-1)}(\Omega \backslash K)$, when $p>1$, or $\nabla_{y} G\left(x_{0}, y\right) \in L^{\infty}(\Omega \backslash K)$, when $p=1$, then the greatest harmonic minorant h of v is 0 .

Proof. Notice first that by the minimum principle either $h<v$ in Ω or v itself is harmonic: if $h(x)=v(x)$ for some $x \in \Omega$, then for the non-negative superharmonic function $v-h$ we have $(v-h)(x)=0$ and so $v-h$ attains its minimum in Ω. Hence $v-h$ is a constant function and it follows that v is harmonic.

Assume first that $h<v$. Take a sequence $\varphi_{j} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{j} \rightarrow v$ in $W^{1, p}(\Omega)$ and that for every compact $S \subset \Omega$ there exists $J \in \mathbf{N}$ such that $\varphi_{j} \geq h$ in S when $j>J$.

Fix $x_{0} \in \Omega$ and denote $g(y)=G\left(x_{0}, y\right)$. Define $\Omega_{t}=\{y \in \Omega: g(y)>t\}$ for each $t>0$. Denote the Green function of Ω_{t} by G_{t} and $g_{t}(y)=G_{t}\left(x_{0}, y\right)$. Observe that $g_{t}(y)=g(y)-t$, and hence $\left|\nabla g_{t}(y)\right|=|\nabla g(y)|$.

Denote the greatest harmonic minorant of φ_{j} in Ω_{t} by $h_{t, j}$. We have $h\left(x_{0}\right) \leq$ $h_{t, j}\left(x_{0}\right)$ for all large j. Functions φ_{j} have compact supports and so it is justified to use the Green formula in $\Omega \backslash \Omega_{t}$ for φ_{j} and g. By the harmonicity of g near the boundary we have

$$
\begin{align*}
h_{t, j}\left(x_{0}\right) & =\int_{\partial \Omega_{t}} \varphi_{j} \frac{\partial g_{t}}{\partial \nu} d S=\int_{\partial \Omega_{t}} \varphi_{j} \frac{\partial g}{\partial \nu} d S \\
& =\int_{\Omega \backslash \Omega_{t}} \nabla \varphi_{j} \cdot \nabla g d y+\int_{\Omega \backslash \Omega_{t}} \varphi_{j} \Delta g d y-\int_{\partial \Omega} \varphi_{j} \frac{\partial g}{\partial \nu} d S \tag{5}\\
& =\int_{\Omega \backslash \Omega_{t}} \nabla \varphi_{j} \cdot \nabla g d y \rightarrow \int_{\Omega \backslash \Omega_{t}} \nabla v \cdot \nabla g d y,
\end{align*}
$$

for when t is small enough, $\Omega \backslash \Omega_{t} \subset \Omega \backslash K$ and hence by Hölder's inequality

$$
\int_{\Omega \backslash \Omega_{t}}\left(\nabla \varphi_{j}-\nabla v\right) \cdot \nabla g d y \leq\left(\int_{\Omega \backslash \Omega_{t}}\left|\nabla \varphi_{j}-\nabla v\right|^{p} d y\right)^{\frac{1}{p}}\left(\int_{\Omega \backslash \Omega_{t}}|\nabla g|^{\frac{p}{p-1}} d y\right)^{\frac{p-1}{p}} \rightarrow 0
$$

when $j \rightarrow \infty$. This implies

$$
\lim _{t \rightarrow 0}\left(\lim _{j \rightarrow \infty} h_{t, j}\left(x_{0}\right)\right)=\lim _{t \rightarrow 0}\left(\lim _{j \rightarrow \infty} \int_{\Omega \backslash \Omega_{t}} \nabla \varphi_{j} \cdot \nabla g d y\right)=\lim _{t \rightarrow 0} \int_{\Omega \backslash \Omega_{t}} \nabla v \cdot \nabla g d y=0
$$

since $\nabla v \cdot \nabla g$ is integrable in $\Omega \backslash \Omega_{t}$ when t is small. Since $h(x) \leq h_{t, j}(x)$, it follows that $h(x)=0$.

In the case v is harmonic, we can find a sequence $\varphi_{j} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{j} \rightarrow v$ in $W^{1, p}(\Omega)$ and φ_{j} converge to v locally uniformly. If we denote the greatest harmonic minorants of φ_{j} and v in Ω_{t} by $h_{t, j}$ and h_{t} respectively, we have by the uniform convergence on $\bar{\Omega}_{t}$ that $h_{t, j}(y) \rightarrow h_{t}(y)$ for all $y \in \Omega_{t}$. On the other hand, we know by the previous calculation (5) which is also valid in this case, that

$$
h_{t, j}\left(x_{0}\right) \rightarrow \int_{\Omega \backslash \Omega_{t}} \nabla v \cdot \nabla g d y
$$

when $j \rightarrow \infty$. Hence

$$
h_{t}\left(x_{0}\right)=\int_{\Omega \backslash \Omega_{t}} \nabla v \cdot \nabla g d y
$$

and by the integrability of $\nabla v \cdot \nabla g$ in $\Omega \backslash \Omega_{t}$ when t is small, we obtain $h_{t}\left(x_{0}\right) \rightarrow 0$, when $t \rightarrow 0$, since $\left|\Omega \backslash \Omega_{t}\right| \rightarrow 0$. The result follows from the fact that $h_{t}\left(x_{0}\right) \geq$ $h\left(x_{0}\right)$.

In the proof above it is explicitely shown the following.
2.2. Corollary. If Ω is as in Theorem 2.1 and $p \geq 1$, then the only harmonic function in $W_{0}^{1, p}(\Omega)$ is the zero function.

As an immediate consequence we get the next corollary.
2.3. Corollary. Suppose that $p \geq 1$. If Ω is as in Theorem 2.1 and $v \in W^{1, p}(\Omega)$, then there exists at most one harmonic function u such that $u-v \in W_{0}^{1, p}(\Omega)$.
2.4. Remark. When $p \geq 2$ the previous Theorem is trivial, but also the assumptions of the Theorem are apparent: Let $x \in \Omega$ and denote $G_{x}(y)=G(x, y)$. Then the zero extension of G_{x} is subharmonic in $\mathbf{R}^{n} \backslash B(x, r)$ for all $r>0$, for G_{x} is harmonic in $\Omega \backslash B(x, r)$. Subharmonic functions belong to $W_{l o c}^{1,2}\left(\mathbf{R}^{n} \backslash B(x, r)\right)$. Since $2 \geq p /(p-1)$, when $p \geq 2$, we have $\nabla G \in L^{p /(p-1)}(\Omega \backslash B(x, r))$ for all $r>0$.
2.5. Remark. Theorem 2.1 is not completely trivial. In [13] Hajłasz gives a counterexample in the case $1<p<\frac{4}{3}$: There exists a domain $\Omega \subset \mathbf{R}^{2}$ and a non-zero harmonic function $u \in W_{0}^{1, p}(\Omega)$. Here Ω is the image of set $D=\{z \in \mathbf{C}:|z-i|<1\}$ under mapping $z \mapsto z^{2}$. The domain Ω has one inward cusp and it satisfies the cone property. In the following we construct a counterexample in \mathbf{R}^{n} for all $1<p<2$ with a domain far from simply connected.
2.6. Example. Let $1<p<2$. We can find a Cantor set $E \subset \mathbf{R}^{n}$ such that $\operatorname{cap}_{2}(E)>0$ and $\operatorname{dim}_{\mathscr{H}}(E)<n-p\left[3\right.$, Section 5.3]. Then $\operatorname{cap}_{p}(E)=0$. Take a ball $B \subset \mathbf{R}^{n}$ containing E and denote $\Omega=2 B \backslash E$. Now the 2-potential \hat{R}_{E}^{1} of E in $2 B$ is harmonic in Ω, but not the zero function, $\operatorname{since}^{\operatorname{cap}_{2}}(E)>0[5$, Theorem 5.3.4.(iii) and Lemma 5.3.3]. Clearly $\hat{R}_{E}^{1} \in W_{0}^{1, p}(\Omega)$ because $\operatorname{cap}_{p}(E)=0$ [14, Theorem 8.6].

3. Proof of Theorem 1.1 with some preparatory results

For the proof of the main theorem we need few auxiliary results. For them, denote

$$
v_{\mu, \Omega}(x)=\int_{\Omega} G(x, y) d \mu(y)
$$

where G is the Green function of Ω.
The p-capacity $\operatorname{cap}_{p}(A)$ for $1<p \leq N$ is defined in the following classical way: The p-capacity of a compact set $K \subset \Omega$ is first defined as

$$
\operatorname{cap}_{p}(K)=\inf \left\{\int_{\Omega}|\nabla \varphi|^{p} d x: \varphi \in C_{0}^{\infty}(\Omega), \varphi(x) \geq 1 \text { for all } x \in K\right\}
$$

The p-capacity of any open subset $U \subset \Omega$ is then defined by

$$
\operatorname{cap}_{p}(U)=\sup \left\{\operatorname{cap}_{p}(K): K \text { compact, } K \subset U\right\}
$$

Finally, the p-capacity of an arbitrary subset $A \subset \Omega$ is defined by

$$
\operatorname{cap}_{p}(A)=\inf \left\{\operatorname{cap}_{p}(U): U \text { open, } A \subset U\right\} .
$$

For the properties of the p-capacity, see [3].
3.1. Lemma. For every Radon measure μ in Ω there exist unique Radon measures μ_{0} and μ_{s} in Ω such that $\mu=\mu_{0}+\mu_{s}, \mu_{0} \ll \operatorname{cap}_{2}$ and $\mu_{s} \perp$ cap $_{2}$.

Proof. See [12], Lemma 2.1.
3.2. Lemma. Suppose μ is a positive Radon measure in Ω and $\mu=\mu_{0}+\mu_{s}$ as above in Lemma 3.1. Then $\mu_{s}\left\{v_{\mu, \Omega}(x)<\infty\right\}=0$.

Proof. Let $A \subset \Omega$ such that $\operatorname{cap}_{2}(A)=0$ and $\mu_{s}(\Omega \backslash A)=0$. If $\mu_{s}\left\{v_{\mu, \Omega}(x)<\right.$ $\infty\}>0$, then $\mu_{s}\left\{v_{\mu, \Omega}(x)<k\right\}>0$ for some $k>0$. Let $K \subset\left\{v_{\mu, \Omega}(x)<k\right\} \cap A$ be compact. By an alternative definition of capacity [5, Theorem 5.5.5] we have

$$
\begin{aligned}
0 & =\operatorname{cap}_{2}(K) \\
& =\sup \left\{\nu(K): \nu \text { positive measure, } \operatorname{spt}(\nu) \subset K, v_{\mu, \Omega}(x)<1 \text { for all } x \in K\right\} \\
& \geq \frac{1}{k} \mu\left\lfloor_{K}(K) \geq \frac{1}{k} \mu_{s}(K) .\right.
\end{aligned}
$$

It follows that $\mu_{s}\left\{v_{\mu, \Omega}(x)<k\right\}=0$. This is a contradiction.
Denote $T_{k}(f)=\min \{k, \max \{f,-k\}\}$ for all $k \geq 0$.
3.3. Lemma. If $u \in W_{0}^{1,2}(\Omega)$ such that $-\Delta u=|\nabla u|^{2}$, then $e^{\frac{\alpha}{2} u}-1 \in W_{0}^{1,2}(\Omega)$ for all $\alpha<1$.

Proof. In the view of the Sobolev inequality is enough to show the integrability of $\left|\nabla e^{\alpha u / 2}\right|^{2}$, since the zero boundary values follow immediately from the zero boundary values of u.

Fix $k>0$ and $0<\alpha<1$. Function $e^{T_{k}(u)}-1 \in W_{0}^{1,2}(\Omega)$ and therefore it can be chosen as a test function in equation (3). So

$$
\begin{aligned}
\int_{\{u \leq k\}}|\nabla u|^{2} e^{u} d x & =\int_{\Omega} \nabla u \cdot \nabla e^{T_{k}(u)} d x=\int_{\Omega}|\nabla u|^{2}\left(e^{T_{k}(u)}-1\right) d x \\
& =\int_{\{u \leq k\}}|\nabla u|^{2} e^{u} d x+\int_{\{u>k\}}|\nabla u|^{2} e^{k} d x-\int_{\Omega}|\nabla u|^{2} d x,
\end{aligned}
$$

which gives

$$
\begin{equation*}
e^{-k} \int_{\Omega}|\nabla u|^{2} d x=\int_{\{u>k\}}|\nabla u|^{2} d x . \tag{6}
\end{equation*}
$$

Also $e^{\alpha T_{k}(u)}-1 \in W_{0}^{1,2}(\Omega)$, so it is a valid test function in equation (3). Hence we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2}\left(e^{\alpha T_{k}(u)}-1\right) d x & =\int_{\Omega} \nabla u \cdot \nabla\left(e^{\alpha T_{k}(u)}-1\right) d x \\
& =\alpha \int_{\Omega} e^{\alpha T_{k}(u)} \nabla u \cdot \nabla T_{k}(u) d x
\end{aligned}
$$

which together with equation (6) yields

$$
\begin{aligned}
(\alpha-1) \int_{\{u \leq k\}} e^{\alpha u}|\nabla u|^{2} d x & =e^{\alpha k} \int_{\{u>k\}}|\nabla u|^{2} d x-\int_{\Omega}|\nabla u|^{2} d x \\
& =e^{\alpha k} e^{-k} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega}|\nabla u|^{2} d x .
\end{aligned}
$$

By letting $k \rightarrow \infty$ we have

$$
\begin{equation*}
(1-\alpha) \int_{\Omega}\left|\nabla\left(e^{\alpha u / 2}-1\right)\right|^{2} d x=\left(\frac{\alpha}{2}\right)^{2} \int_{\Omega}|\nabla u|^{2} d x<\infty . \tag{7}
\end{equation*}
$$

Hence by the Sobolev inequality we have $e^{\frac{\alpha}{2} u}-1 \in W_{0}^{1,2}(\Omega)$.
3.4. Remark. Lemma 3.3 is sharp: Function $e^{\frac{u}{2}}-1 \notin W_{0}^{1,2}(\Omega)$ unless $u \equiv 0$. This can be seen by letting $\alpha \rightarrow 1$ in equation (7). If $e^{\frac{u}{2}}-1 \in W_{0}^{1,2}(\Omega)$, then the left hand side of the equation tends to zero making ∇u the zero function.
3.5. Lemma. If $u \in W_{0}^{1,2}(\Omega)$ such that $-\Delta u=|\nabla u|^{2}$, then $e^{\alpha u}-1 \in W^{1,1}(\Omega)$ and $e^{\alpha u}-1$ is superharmonic for all $\alpha<1$.

Proof. To see that $e^{\alpha u}-1 \in W^{1,1}(\Omega)$ we need to notice only, that by denoting $\nu=e^{\alpha u} d x$, a bounded Radon measure, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(e^{\alpha u}-1\right)\right| d x & =\alpha \int_{\Omega}|\nabla u| d \nu \leq c\left(\int_{\Omega}|\nabla u|^{2} d \nu\right)^{1 / 2} \\
& =c\left(\int_{\Omega}\left|\nabla\left(e^{\alpha u / 2}-1\right)\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

which is finite by Lemma 3.3.
Function $e^{\alpha u}-1 \in W^{1,1}(\Omega)$ is a supersolution for the equation $-\Delta v=0$ in Ω for every $0<\alpha<1$: Let $\varphi \in C_{0}^{\infty}(\Omega), \varphi \geq 0$. Now $e^{\alpha T_{k}(u)} \varphi \in W_{0}^{1,2}(\Omega)$ and $e^{\alpha T_{k}(u)} \varphi \geq 0$ for every $k>0$. By the dominated convergence theorem, valid here because of Lemma 3.3, we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} e^{\alpha u} \varphi d x & =\lim _{k \rightarrow \infty} \int_{\Omega}|\nabla u|^{2} e^{\alpha T_{k}(u)} \varphi d x=\lim _{k \rightarrow \infty} \int_{\Omega} \nabla u \cdot \nabla\left(e^{\alpha T_{k}(u)} \varphi\right) d x \\
& =\lim _{k \rightarrow \infty}\left(\int_{\Omega} e^{\alpha T_{k}(u)} \nabla u \cdot \nabla \varphi d x+\alpha \int_{\Omega} e^{\alpha T_{k}(u)} \varphi\left|\nabla T_{k}(u)\right|^{2} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega} e^{\alpha u} \nabla u \cdot \nabla \varphi d x+\alpha \int_{\Omega} e^{\alpha u} \varphi|\nabla u|^{2} d x \\
& =\frac{1}{\alpha} \int_{\Omega} \nabla e^{\alpha u} \cdot \nabla \varphi d x+\alpha \int_{\Omega} e^{\alpha u} \varphi|\nabla u|^{2} d x
\end{aligned}
$$

which implies

$$
\int_{\Omega} \nabla\left(e^{\alpha u}-1\right) \cdot \nabla \varphi d x=\alpha(1-\alpha) \int_{\Omega} e^{\alpha u} \varphi|\nabla u|^{2} d x \geq 0
$$

So $e^{\alpha u}-1$ is superharmonic.
Now we have all the ingredients for the proof of the main result.
Proof of Theorem 1.1. Assume first that u is a solution of equation (3). Since $e^{\alpha u}-1$ is superharmonic for all $0<\alpha<1$ (Lemma 3.5), we have by letting $\alpha \rightarrow 1$ that $e^{u}-1$ is superharmonic [14, Lemma 7.3]. Consequently [14, Theorem 7.45] $\nabla\left(e^{u}-1\right) \in L^{q}(\Omega)$ for all $q<n /(n-1)$ and hence $e^{u}-1 \in W_{0}^{1, q}(\Omega)$.

Denote by μ the Riesz measure of function $e^{u}-1$. Let $\varphi \in C_{0}^{\infty}(\Omega)$. Choose a C^{∞}-set $D \subset \subset \Omega$ such that $\operatorname{spt}(\varphi) \subset \subset D$. Then $\mu(D)<\infty$ and there is a positive function w, that solves the equation

$$
\left\{\begin{aligned}
-\Delta w & =\mu \text { in } D, \\
w & =0 \text { on } \partial D
\end{aligned}\right.
$$

in the renormalized sense [10, Theorem 3.1]. By the Riesz decomposition theorem there exist harmonic minorants of $e^{u}-1$ and w in D, h and h_{w} respectively, such that $e^{u}-1=v_{\mu, D}+h$ and $\omega=v_{\mu, D}+h_{w}$. However, by Theorem 2.1 we know that $h_{w}=0$. Hence $w=v_{\mu, D}$ and in D we have $e^{u}-1=w+h$, where h is a non-negative harmonic function.

Let $k>0$. We have $e^{-T_{k}(u)} \varphi \in W_{0}^{1,2}(D) \cap L^{\infty}(D), \operatorname{spt}\left(e^{-T_{k}(u)} \varphi\right) \subset \subset D$ and $e^{-k} \varphi=e^{-T_{k}(u)} \varphi$ in $\left\{e^{u}>k+1\right\}, e^{-k} \varphi \in C_{0}^{\infty}(D)$. Since w is a solution in the renormalized sense and $\{w>k\} \subset\left\{e^{u}-1>k\right\}$, we have

$$
\int_{\Omega} \nabla w \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x=\int_{\Omega} e^{-T_{k}(u)} \varphi d \mu
$$

By harmonicity $h \in W_{l o c}^{1,2}(\Omega)$, and hence we have

$$
\int_{\Omega} \nabla h \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x=0 .
$$

Thus

$$
\int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x=\int_{\Omega} \nabla(w+h) \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x=\int_{\Omega} e^{-T_{k}(u)} \varphi d \mu
$$

This implies

$$
\begin{aligned}
& \int_{\Omega}|\nabla u|^{2} \varphi d x=\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \frac{\nabla \varphi}{e^{u}} d x \\
& =\lim _{k \rightarrow \infty} \int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \frac{\nabla \varphi}{e^{T_{k}(u)}} d x \\
& =\lim _{k \rightarrow \infty}\left(\int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x+\int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \nabla T_{k}(u) \frac{\varphi}{e^{T_{k}(u)}} d x\right)
\end{aligned}
$$

$$
\begin{align*}
& =\lim _{k \rightarrow \infty}\left(\int_{\Omega} \nabla\left(e^{u}-1\right) \cdot \nabla\left(\frac{\varphi}{e^{T_{k}(u)}}\right) d x+\int_{\Omega} \nabla e^{T_{k}(u)} \cdot \nabla T_{k}(u) \frac{\varphi}{e^{T_{k}(u)}} d x\right) \tag{8}\\
& =\lim _{k \rightarrow \infty}\left(\int_{\Omega} e^{-T_{k}(u)} \varphi d \mu+\int_{\Omega} \varphi \nabla T_{k}(u) \cdot \nabla T_{k}(u) d x\right) \\
& =\lim _{k \rightarrow \infty}\left(\int_{\Omega} e^{-T_{k}(u)} \varphi d \mu+\int_{\Omega}\left|\nabla T_{k}(u)\right|^{2} \varphi d x\right) \\
& =\int_{\Omega} e^{-u} \varphi d \mu+\int_{\Omega}|\nabla u|^{2} \varphi d x,
\end{align*}
$$

and hence

$$
\int_{\Omega} e^{-u} \varphi d \mu=0
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$. We obtain that $\mu(\{u<\infty\})=0$. Since u is superharmonic, we have $\operatorname{cap}_{2}(\{u=\infty\})=0$. Thus $\mu \perp \operatorname{cap}_{2}$.

Next prove the converse. Clearly $u \in W_{0}^{1,2}(\Omega)$. Function $e^{u}-1$ is superharmonic and by the Riesz decomposition theorem

$$
e^{u(x)}-1=\int_{\Omega} G(x, y) d \mu(y)+h(x),
$$

where h is harmonic. Since h cannot take values $\pm \infty$ in Ω, we have $e^{u(x)}=\infty$ if and only if $v_{\mu, \Omega}(x)=\int_{\Omega} G(x, y) d \mu(y)=\infty$. By lemma 3.2 we have $\mu\left(\left\{v_{\mu, \Omega}(x)<\infty\right\}\right)=0$. This implies

$$
\begin{equation*}
\mu\left(\left\{e^{u(x)}<\infty\right\}\right)=0 . \tag{9}
\end{equation*}
$$

Let $k>0, \varphi \in C^{\infty}(\Omega)$ and $D \subset \subset \Omega$ smooth such that $\operatorname{spt}(\varphi) \subset \subset D$. As in the proof of the first part, we find a renormalized solution w in D and by lemma 2.1 $w=v_{\mu, D}$. So we have $e^{u}-1=w+h$ in D. Now, $e^{-T_{k}(u)} \varphi$ is a valid test function for $w+h$ and we find, calculating as earlier in (8), that

$$
\int_{0} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} \nabla e^{u} \cdot \frac{\nabla \varphi}{e^{u}} d x=\int_{\Omega} e^{-u} \varphi d \mu+\int_{\Omega}|\nabla u|^{2} \varphi d x=\int_{\Omega}|\nabla u|^{2} \varphi d x
$$

since by equation (9) we have $\int_{\Omega} e^{-u} \varphi d \mu=0$.

References

[1] Abdellaoui, B., A. Dall'Aglio, and I. Peral: Some remarks on elliptic problems with critical growth in the gradient. - J. Differential Equations 222:1, 2006, 21-62.
[2] Abdellaoui, B., A. Dall'Aglio, and I. Peral: Corrigendum to "Some remarks on elliptic problems with critical growth in the gradient" - J. Differential Equations 246:7, 2009, 29882990.
[3] Adams, D. R., and L. I. Hedberg: Function spaces and potential theory. Springer-Verlag, Berlin-Heidelberg, 1996.
[4] Ancona, A.: Elliptic operators, conormal derivatives and positive parts of functions. With an appendix by Haïm Brezis. - J. Funct. Anal. 257, 2009, 2124-2158.
[5] Armitage, D. H., and S. J. Gardiner: Classical potential theory. - Springer-Verlag, London, 2001.
[6] Barles, G., A.-P. Blanc, C. Georgelin, and M. Kobylanski: Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. - Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28:3, 1999, 381-404.
[7] Boccardo, L., F. Murat, and J.-P. Puel: Existence de solutions non bornées pour certaines equations quasi-linéaires. - Portugal. Math. 41:1-4, 1982, 507-534.
[8] Boccardo, L., S. Segura de León, and C. Trombetti: Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. - J. Math. Pures Appl. (9) 80:9, 2001, 919-940.
[9] Brezis, H., and A. C. Ponce: Kato's inequality when Δu is a measure. - C. R. Math. Acad. Sci. Paris 338:8, 2004, 599-604.
[10] Dal Maso, G., F. Murat, L. Orsina, and A. Prignet: Renormalized solutions of elliptic equations with general measure data. - Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 1999, 741-808.
[11] Ferone, V., and F. Murat: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. - Nonlinear Anal. 42, 2000, 1309-1326.
[12] Fukushima, M., K. Sato, and S. Taniguchi: On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures. - Osaka J. Math. 28:3, 1991, 517-535.
[13] HajŁasz, P.: A counterexample to the L^{p}-Hodge decomposition. - Banach Center Publ. 33, 1996, 79-83.
[14] Heinonen, J., T. Kilpeläinen, and O. Martio: Nonlinear potential theory of degenerate elliptic equations. - Dover Publications, 2006.
[15] Jin, T., V. Maz'ya, and J. Van Schaftingen: Pathological solutions to elliptic problems in divergence form with continuous coefficients. - C. R. Math. Acad. Sci. Paris 347:13-14, 2009, 773-778.
[16] Kazdan, J. L., and R. J. Kramer: Invariant criteria for existence of solutions to second-order quasi-linear elliptic equations. - Comm. Pure Math. 31:5, 1978, 619-645.

Received 29 January 2010

[^0]: doi:10.5186/aasfm. 2010.3540
 2000 Mathematics Subject Classification: Primary 35J05, 35J25, 31B20, 31B05.
 Key words: Elliptic equations, singular solutions, uniqueness.

