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Abstract. In this paper we show that if

(1)

{
−∆u = |∇u|2 in Ω,

u ∈ W 1,2
0 (Ω),

then

(2) −∆(eu − 1) = µ in Ω,

when µ ⊥ cap2, and conversely.

1. Introduction

In this paper we show that by a change of variable we can transform a Laplace
equation with quadratic growth in the gradient to one with a singular measure on
the right hand side. More precisely we have:

1.1. Theorem. Let Ω ⊂ Rn be a bounded domain. Then u is a solution of

(3)

{
−∆u = |∇u|2 in Ω,

u ∈ W 1,2
0 (Ω),

if and only if eαu/2− 1 ∈ W 1,2
0 (Ω) for all 0 < α < 1 and there exists a positive Radon

measure µ such that eu − 1 is a weak solution of

(4) −∆(eu − 1) = µ in Ω

and µ ⊥ cap2.

The equation (3) is an analytic equation that does not allow any other bounded
solutions but the constant 0. Here we characterize all possible solutions.

A similar result can be found in [1] and its corrigendum [2]. However, our proof
extends to a case where µ is an arbitrary Radon measure, not necessarily bounded.
Our approach is based on a very different technique, namely potential theory and it
relies in partial on the Riesz decomposition theorem. We also employ renormalized
solutions discussed in [10].

In the proof of Theorem 1.1 we also need the uniqueness of harmonic functions in
W 1,p

0 (Ω). This is an interesting result of its own and Section 2 is devoted to its proof
and comments. To show that our assumptions on the domain Ω are relevant, we
include a counterexample by Hajłasz [13] and construct another counterexample in
a domain with a very irregular boundary. Recently Brezis [4] and Jin et al. [15] have
studied similar problems locally without considering the regularity of the domain.
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Problems with equations similar to (3) have been widely studied. See for instance
[6],[8], [7], [9], [11] and [16].

2. Uniqueness of harmonic functions in W 1,p(Ω)

In W 1,2(Ω) the uniqueness of harmonic functions is a familiar fact: for fixed
v ∈ W 1,2(Ω) there is a unique harmonic function u such that u − v ∈ W 1,2

0 (Ω). In
W 1,p(Ω), when 1 < p < 2, it is difficult to locate the corresponding fact from the
literature.

In Theorem 2.1 we find a sufficient condition for the uniqueness to hold in a
domain Ω: the smoothness of the domain is expressed in terms of the integrability of
the gradient of the Green function. (For more information of the Green function, see
for instance [5].) This Theorem 2.1 will be later applied in the proof of Theorem 1.1
in a smooth domain. However, a bounded domain with C1,α boundary for some
α > 0 is regular enough to satisfy the assumptions.

By the space W 1,p
0 (Ω) we mean the closure of C∞

0 (Ω) in W 1,p(Ω).

2.1. Theorem. Let Ω ⊂ Rn be a bounded domain and G the Green function
associated with Ω. Suppose v ≥ 0 is superharmonic W 1,p

0 (Ω)-function for some p ≥ 1.
If for some x0 ∈ Ω there exists K ⊂⊂ Ω such that ∇yG(x0, y) ∈ Lp/(p−1)(Ω \ K),
when p > 1, or ∇yG(x0, y) ∈ L∞(Ω \ K), when p = 1, then the greatest harmonic
minorant h of v is 0.

Proof. Notice first that by the minimum principle either h < v in Ω or v itself is
harmonic: if h(x) = v(x) for some x ∈ Ω, then for the non-negative superharmonic
function v− h we have (v− h)(x) = 0 and so v− h attains its minimum in Ω. Hence
v − h is a constant function and it follows that v is harmonic.

Assume first that h < v. Take a sequence ϕj ∈ C∞
0 (Ω) such that ϕj → v in

W 1,p(Ω) and that for every compact S ⊂ Ω there exists J ∈ N such that ϕj ≥ h in
S when j > J .

Fix x0 ∈ Ω and denote g(y) = G(x0, y). Define Ωt = {y ∈ Ω: g(y) > t} for each
t > 0. Denote the Green function of Ωt by Gt and gt(y) = Gt(x0, y). Observe that
gt(y) = g(y)− t, and hence |∇gt(y)| = |∇g(y)|.

Denote the greatest harmonic minorant of ϕj in Ωt by ht,j. We have h(x0) ≤
ht,j(x0) for all large j. Functions ϕj have compact supports and so it is justified to
use the Green formula in Ω \ Ωt for ϕj and g. By the harmonicity of g near the
boundary we have

ht,j(x0) =

∫

∂Ωt

ϕj
∂gt

∂ν
dS =

∫

∂Ωt

ϕj
∂g

∂ν
dS

=

∫

Ω\Ωt

∇ϕj · ∇g dy +

∫

Ω\Ωt

ϕj ∆g dy −
∫

∂Ω

ϕj
∂g

∂ν
dS

=

∫

Ω\Ωt

∇ϕj · ∇g dy →
∫

Ω\Ωt

∇v · ∇g dy,

(5)

for when t is small enough, Ω \ Ωt ⊂ Ω \K and hence by Hölder’s inequality
∫

Ω\Ωt

(∇ϕj −∇v) · ∇g dy ≤
(∫

Ω\Ωt

|∇ϕj −∇v|pdy

) 1
p
(∫

Ω\Ωt

|∇g| p
p−1 dy

) p−1
p

→ 0,
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when j →∞. This implies

lim
t→0

(
lim
j→∞

ht,j(x0)
)

= lim
t→0

(
lim
j→∞

∫

Ω\Ωt

∇ϕj · ∇g dy
)

= lim
t→0

∫

Ω\Ωt

∇v · ∇g dy = 0,

since ∇v · ∇g is integrable in Ω \ Ωt when t is small. Since h(x) ≤ ht,j(x), it follows
that h(x) = 0.

In the case v is harmonic, we can find a sequence ϕj ∈ C∞
0 (Ω) such that ϕj → v in

W 1,p(Ω) and ϕj converge to v locally uniformly. If we denote the greatest harmonic
minorants of ϕj and v in Ωt by ht,j and ht respectively, we have by the uniform
convergence on Ω̄t that ht,j(y) → ht(y) for all y ∈ Ωt.On the other hand, we know
by the previous calculation (5) which is also valid in this case, that

ht,j(x0) →
∫

Ω\Ωt

∇v · ∇g dy,

when j →∞. Hence

ht(x0) =

∫

Ω\Ωt

∇v · ∇g dy

and by the integrability of ∇v · ∇g in Ω \ Ωt when t is small, we obtain ht(x0) → 0,
when t → 0, since |Ω \ Ωt| → 0. The result follows from the fact that ht(x0) ≥
h(x0). ¤

In the proof above it is explicitely shown the following.

2.2. Corollary. If Ω is as in Theorem 2.1 and p ≥ 1, then the only harmonic
function in W 1,p

0 (Ω) is the zero function.

As an immediate consequence we get the next corollary.

2.3. Corollary. Suppose that p ≥ 1. If Ω is as in Theorem 2.1 and v ∈ W 1,p(Ω),
then there exists at most one harmonic function u such that u− v ∈ W 1,p

0 (Ω).

2.4. Remark. When p ≥ 2 the previous Theorem is trivial, but also the as-
sumptions of the Theorem are apparent: Let x ∈ Ω and denote Gx(y) = G(x, y).
Then the zero extension of Gx is subharmonic in Rn \B(x, r) for all r > 0, for Gx is
harmonic in Ω \B(x, r). Subharmonic functions belong to W 1,2

loc (Rn \B(x, r)). Since
2 ≥ p/(p− 1), when p ≥ 2, we have ∇G ∈ Lp/(p−1)(Ω \B(x, r)) for all r > 0.

2.5. Remark. Theorem 2.1 is not completely trivial. In [13] Hajłasz gives a
counterexample in the case 1 < p < 4

3
: There exists a domain Ω ⊂ R2 and a non-zero

harmonic function u ∈ W 1,p
0 (Ω). Here Ω is the image of set D = {z ∈ C : |z− i| < 1}

under mapping z 7→ z2. The domain Ω has one inward cusp and it satisfies the cone
property. In the following we construct a counterexample in Rn for all 1 < p < 2
with a domain far from simply connected.

2.6. Example. Let 1 < p < 2. We can find a Cantor set E ⊂ Rn such that
cap2(E) > 0 and dimH (E) < n− p [3, Section 5.3]. Then capp(E) = 0. Take a ball
B ⊂ Rn containing E and denote Ω = 2B \E. Now the 2-potential R̂1

E of E in 2B is
harmonic in Ω, but not the zero function, since cap2(E) > 0 [5, Theorem 5.3.4.(iii)
and Lemma 5.3.3]. Clearly R̂1

E ∈ W 1,p
0 (Ω) because capp(E) = 0 [14, Theorem 8.6].
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3. Proof of Theorem 1.1 with some preparatory results

For the proof of the main theorem we need few auxiliary results. For them,
denote

vµ,Ω(x) =

∫

Ω

G(x, y)dµ(y),

where G is the Green function of Ω.
The p-capacity capp(A) for 1 < p ≤ N is defined in the following classical way:

The p-capacity of a compact set K ⊂ Ω is first defined as

capp(K) = inf{
∫

Ω

|∇ϕ|pdx : ϕ ∈ C∞
0 (Ω), ϕ(x) ≥ 1 for all x ∈ K}.

The p-capacity of any open subset U ⊂ Ω is then defined by

capp(U) = sup{capp(K) : K compact, K ⊂ U}
Finally, the p-capacity of an arbitrary subset A ⊂ Ω is defined by

capp(A) = inf{capp(U) : U open, A ⊂ U}.
For the properties of the p-capacity, see [3].

3.1. Lemma. For every Radon measure µ in Ω there exist unique Radon mea-
sures µ0 and µs in Ω such that µ = µ0 + µs, µ0 << cap2 and µs ⊥ cap2.

Proof. See [12], Lemma 2.1. ¤

3.2. Lemma. Suppose µ is a positive Radon measure in Ω and µ = µ0 + µs as
above in Lemma 3.1. Then µs{vµ,Ω(x) < ∞} = 0.

Proof. Let A ⊂ Ω such that cap2(A) = 0 and µs(Ω \ A) = 0. If µs{vµ,Ω(x) <
∞} > 0, then µs{vµ,Ω(x) < k} > 0 for some k > 0. Let K ⊂ {vµ,Ω(x) < k} ∩ A be
compact. By an alternative definition of capacity [5, Theorem 5.5.5] we have

0 = cap2(K)

= sup{ν(K) : ν positive measure, spt(ν) ⊂ K, vµ,Ω(x) < 1 for all x ∈ K}
≥ 1

k
µbK(K) ≥ 1

k
µs(K).

It follows that µs{vµ,Ω(x) < k} = 0. This is a contradiction. ¤
Denote Tk(f) = min{k, max{f,−k}} for all k ≥ 0.

3.3. Lemma. If u ∈ W 1,2
0 (Ω) such that −∆u = |∇u|2, then e

α
2

u − 1 ∈ W 1,2
0 (Ω)

for all α < 1.

Proof. In the view of the Sobolev inequality is enough to show the integrability of
|∇eαu/2|2, since the zero boundary values follow immediately from the zero boundary
values of u.

Fix k > 0 and 0 < α < 1. Function eTk(u) − 1 ∈ W 1,2
0 (Ω) and therefore it can be

chosen as a test function in equation (3). So∫

{u≤k}
|∇u|2eudx =

∫

Ω

∇u · ∇eTk(u)dx =

∫

Ω

|∇u|2(eTk(u) − 1)dx

=

∫

{u≤k}
|∇u|2eudx +

∫

{u>k}
|∇u|2ekdx−

∫

Ω

|∇u|2dx,
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which gives

(6) e−k

∫

Ω

|∇u|2dx =

∫

{u>k}
|∇u|2dx.

Also eαTk(u) − 1 ∈ W 1,2
0 (Ω), so it is a valid test function in equation (3). Hence

we have ∫

Ω

|∇u|2(eαTk(u) − 1)dx =

∫

Ω

∇u · ∇(eαTk(u) − 1)dx

= α

∫

Ω

eαTk(u)∇u · ∇Tk(u)dx,

which together with equation (6) yields

(α− 1)

∫

{u≤k}
eαu|∇u|2dx = eαk

∫

{u>k}
|∇u|2dx−

∫

Ω

|∇u|2dx

= eαke−k

∫

Ω

|∇u|2dx−
∫

Ω

|∇u|2dx.

By letting k →∞ we have

(7) (1− α)

∫

Ω

|∇(eαu/2 − 1)|2dx =
(α

2

)2
∫

Ω

|∇u|2dx < ∞.

Hence by the Sobolev inequality we have e
α
2

u − 1 ∈ W 1,2
0 (Ω). ¤

3.4. Remark. Lemma 3.3 is sharp: Function e
u
2 − 1 6∈ W 1,2

0 (Ω) unless u ≡ 0.
This can be seen by letting α → 1 in equation (7). If e

u
2 − 1 ∈ W 1,2

0 (Ω), then the left
hand side of the equation tends to zero making ∇u the zero function.

3.5. Lemma. If u ∈ W 1,2
0 (Ω) such that −∆u = |∇u|2, then eαu − 1 ∈ W 1,1(Ω)

and eαu − 1 is superharmonic for all α < 1.

Proof. To see that eαu − 1 ∈ W 1,1(Ω) we need to notice only, that by denoting
ν = eαudx, a bounded Radon measure, we have

∫

Ω

|∇(eαu − 1)|dx = α

∫

Ω

|∇u|dν ≤ c

(∫

Ω

|∇u|2dν

)1/2

= c

(∫

Ω

|∇(eαu/2 − 1)|2dx

)1/2

which is finite by Lemma 3.3.
Function eαu − 1 ∈ W 1,1(Ω) is a supersolution for the equation −∆v = 0 in

Ω for every 0 < α < 1: Let ϕ ∈ C∞
0 (Ω), ϕ ≥ 0. Now eαTk(u)ϕ ∈ W 1,2

0 (Ω) and
eαTk(u)ϕ ≥ 0 for every k > 0. By the dominated convergence theorem, valid here
because of Lemma 3.3, we have

∫

Ω

|∇u|2eαuϕdx = lim
k→∞

∫

Ω

|∇u|2eαTk(u)ϕdx = lim
k→∞

∫

Ω

∇u · ∇(eαTk(u)ϕ) dx

= lim
k→∞

(∫

Ω

eαTk(u)∇u · ∇ϕdx + α

∫

Ω

eαTk(u)ϕ|∇Tk(u)|2 dx

)
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=

∫

Ω

eαu∇u · ∇ϕdx + α

∫

Ω

eαuϕ|∇u|2 dx

=
1

α

∫

Ω

∇eαu · ∇ϕdx + α

∫

Ω

eαuϕ|∇u|2 dx

which implies ∫

Ω

∇(eαu − 1) · ∇ϕdx = α(1− α)

∫

Ω

eαuϕ|∇u|2dx ≥ 0.

So eαu − 1 is superharmonic. ¤
Now we have all the ingredients for the proof of the main result.

Proof of Theorem 1.1. Assume first that u is a solution of equation (3). Since
eαu − 1 is superharmonic for all 0 < α < 1 (Lemma 3.5), we have by letting α → 1
that eu − 1 is superharmonic [14, Lemma 7.3]. Consequently [14, Theorem 7.45]
∇(eu − 1) ∈ Lq(Ω) for all q < n/(n− 1) and hence eu − 1 ∈ W 1,q

0 (Ω).
Denote by µ the Riesz measure of function eu − 1. Let ϕ ∈ C∞

0 (Ω). Choose a
C∞-set D ⊂⊂ Ω such that spt(ϕ) ⊂⊂ D. Then µ(D) < ∞ and there is a positive
function w, that solves the equation{

−∆w = µ in D,

w = 0 on ∂D

in the renormalized sense [10, Theorem 3.1]. By the Riesz decomposition theorem
there exist harmonic minorants of eu − 1 and w in D, h and hw respectively, such
that eu − 1 = vµ,D + h and ω = vµ,D + hw. However, by Theorem 2.1 we know that
hw = 0. Hence w = vµ,D and in D we have eu− 1 = w +h, where h is a non-negative
harmonic function.

Let k > 0. We have e−Tk(u)ϕ ∈ W 1,2
0 (D) ∩ L∞(D) , spt(e−Tk(u)ϕ) ⊂⊂ D and

e−kϕ = e−Tk(u)ϕ in {eu > k + 1}, e−kϕ ∈ C∞
0 (D). Since w is a solution in the

renormalized sense and {w > k} ⊂ {eu − 1 > k}, we have∫

Ω

∇w · ∇
( ϕ

eTk(u)

)
dx =

∫

Ω

e−Tk(u)ϕdµ.

By harmonicity h ∈ W 1,2
loc (Ω), and hence we have∫

Ω

∇h · ∇
( ϕ

eTk(u)

)
dx = 0.

Thus∫

Ω

∇(eu − 1) · ∇
( ϕ

eTk(u)

)
dx =

∫

Ω

∇(w + h) · ∇
( ϕ

eTk(u)

)
dx =

∫

Ω

e−Tk(u)ϕdµ.

This implies∫

Ω

|∇u|2ϕdx =

∫

Ω

∇u · ∇ϕdx =

∫

Ω

∇(eu − 1) · ∇ϕ

eu
dx

= lim
k→∞

∫

Ω

∇(eu − 1) · ∇ϕ

eTk(u)
dx

= lim
k→∞

(∫

Ω

∇(eu − 1) · ∇
( ϕ

eTk(u)

)
dx +

∫

Ω

∇(eu − 1) · ∇Tk(u)
ϕ

eTk(u)
dx

)
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= lim
k→∞

(∫

Ω

∇(eu − 1) · ∇
( ϕ

eTk(u)

)
dx +

∫

Ω

∇eTk(u) · ∇Tk(u)
ϕ

eTk(u)
dx

)
(8)

= lim
k→∞

(∫

Ω

e−Tk(u)ϕdµ +

∫

Ω

ϕ∇Tk(u) · ∇Tk(u) dx

)

= lim
k→∞

(∫

Ω

e−Tk(u)ϕdµ +

∫

Ω

|∇Tk(u)|2ϕdx

)

=

∫

Ω

e−uϕdµ +

∫

Ω

|∇u|2ϕdx,

and hence ∫

Ω

e−uϕ dµ = 0

for all ϕ ∈ C∞
0 (Ω). We obtain that µ({u < ∞}) = 0. Since u is superharmonic, we

have cap2({u = ∞}) = 0. Thus µ ⊥ cap2.
Next prove the converse. Clearly u ∈ W 1,2

0 (Ω). Function eu− 1 is superharmonic
and by the Riesz decomposition theorem

eu(x) − 1 =

∫

Ω

G(x, y)dµ(y) + h(x),

where h is harmonic. Since h cannot take values ±∞ in Ω, we have eu(x) = ∞ if and
only if vµ,Ω(x) =

∫
Ω

G(x, y)dµ(y) = ∞. By lemma 3.2 we have µ({vµ,Ω(x) < ∞}) = 0.
This implies

(9) µ({eu(x) < ∞}) = 0.

Let k > 0, ϕ ∈ C∞(Ω) and D ⊂⊂ Ω smooth such that spt(ϕ) ⊂⊂ D. As in
the proof of the first part, we find a renormalized solution w in D and by lemma 2.1
w = vµ,D. So we have eu− 1 = w + h in D. Now, e−Tk(u)ϕ is a valid test function for
w + h and we find, calculating as earlier in (8), that

∫

0

∇u · ∇ϕdx =

∫

Ω

∇eu · ∇ϕ

eu
dx =

∫

Ω

e−uϕdµ +

∫

Ω

|∇u|2ϕdx =

∫

Ω

|∇u|2ϕdx,

since by equation (9) we have
∫

Ω
e−uϕdµ = 0. ¤
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