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Abstract. In this paper we show that if
—Au = |Vul? in Q,
(1) 1.2
u e W),

then
(2) —A(e"—=1)=p in Q,

when p L caps, and conversely.

1. Introduction

In this paper we show that by a change of variable we can transform a Laplace
equation with quadratic growth in the gradient to one with a singular measure on
the right hand side. More precisely we have:

1.1. Theorem. Let 2 C R™ be a bounded domain. Then u is a solution of
{—Au = |Vul? in Q,

@ we W),

if and only if e®"/? —1 € WOLQ(Q) for all 0 < o < 1 and there exists a positive Radon
measure j such that e* — 1 is a weak solution of

(4) —A(e"—1)=p in Q
and p L cap,.

The equation (3) is an analytic equation that does not allow any other bounded
solutions but the constant 0. Here we characterize all possible solutions.

A similar result can be found in [1| and its corrigendum [2|. However, our proof
extends to a case where p is an arbitrary Radon measure, not necessarily bounded.
Our approach is based on a very different technique, namely potential theory and it
relies in partial on the Riesz decomposition theorem. We also employ renormalized
solutions discussed in [10].

In the proof of Theorem 1.1 we also need the uniqueness of harmonic functions in
VVO1 P(€1). This is an interesting result of its own and Section 2 is devoted to its proof
and comments. To show that our assumptions on the domain €2 are relevant, we
include a counterexample by Hajtasz [13] and construct another counterexample in
a domain with a very irregular boundary. Recently Brezis [4] and Jin et al. [15] have
studied similar problems locally without considering the regularity of the domain.
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Problems with equations similar to (3) have been widely studied. See for instance
[61,18], [7], [9], [11] and [16].

2. Uniqueness of harmonic functions in W'?(Q)

In W'%(Q) the uniqueness of harmonic functions is a familiar fact: for fixed
v € W2(Q) there is a unique harmonic function u such that u — v € Wy*(Q). In
WP(Q), when 1 < p < 2, it is difficult to locate the corresponding fact from the
literature.

In Theorem 2.1 we find a sufficient condition for the uniqueness to hold in a
domain €2: the smoothness of the domain is expressed in terms of the integrability of
the gradient of the Green function. (For more information of the Green function, see
for instance [5].) This Theorem 2.1 will be later applied in the proof of Theorem 1.1
in a smooth domain. However, a bounded domain with C** boundary for some

a > 0 is regular enough to satisfy the assumptions.
By the space W, () we mean the closure of C$°(Q) in W'?(Q).

2.1. Theorem. Let 2 C R" be a bounded domain and G the Green function
associated with Q. Suppose v > 0 is superharmonic W, (Q)-function for some p > 1.
If for some xy € () there exists K CC Q such that V,G(zg,y) € LP/P~Y(Q\ K),
when p > 1, or V,G(x,y) € L>®(Q2\ K), when p = 1, then the greatest harmonic
minorant h of v is 0.

Proof. Notice first that by the minimum principle either h < v in €2 or v itself is
harmonic: if h(z) = v(z) for some x € €2, then for the non-negative superharmonic
function v — h we have (v — h)(z) = 0 and so v — h attains its minimum in 2. Hence
v — h is a constant function and it follows that v is harmonic.

Assume first that h < v. Take a sequence p; € C§°(Q2) such that p; — v in
WhP(Q2) and that for every compact S C Q there exists J € N such that ¢; > h in
S when 5 > J.

Fix zp € Q and denote g(y) = G(xg,y). Define Q; = {y € Q: g(y) > t} for each
t > 0. Denote the Green function of €; by G; and ¢;(y) = G¢(zo,y). Observe that
9:(y) = g(y) — t, and hence |Vg;(y)| = [Vg(y)|.

Denote the greatest harmonic minorant of ¢; in € by h;;. We have h(zg) <
hy j(xo) for all large j. Functions ¢; have compact supports and so it is justified to
use the Green formula in Q \ € for ¢; and ¢g. By the harmonicity of g near the
boundary we have

g, / dg
h - (z _/ 2248 = —=dS
tJ( 0) 00, P v 00, P o

]
(5) = V@j'ngy+/ %’Agdy—/ %‘a—ds
Q\Q O\ o0 v

= Vi -Vgdy — Vo - Vgdy,
O\ Q\Q

for when ¢ is small enough, 2\ €, C Q\ K and hence by Hélder’s inequality

p—1

/ (Vyp; —Vv) - Vgdy < (/ IV, —Vvl"dy>p (/ !Vg\fildy) -}
Q\Q: O\ O\
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when j — oo. This implies

lim ( lim Ay (o)) = lim ( lim Vo, - Vg dy) =lim [ Vu-Vgdy=0,

t—0 " j—oo t—0 \ j—oo O\ —0 Q\Q

since Vv - Vg is integrable in Q \ €2, when ¢ is small. Since h(z) < hy ;(z), it follows
that h(x) = 0.

In the case v is harmonic, we can find a sequence p; € C§°(€2) such that ¢; — v in
WP(Q) and ¢; converge to v locally uniformly. If we denote the greatest harmonic
minorants of ¢; and v in Q; by h;; and h; respectively, we have by the uniform
convergence on (), that hy ;(y) — hi(y) for all y € Q;.On the other hand, we know
by the previous calculation (5) which is also valid in this case, that

he j(xo) — Vv -Vgdy,
O\

when j — oo. Hence

hi(zo) = Vv -Vgdy
O\
and by the integrability of Vv - Vg in Q\ €; when ¢ is small, we obtain h;(zq) — 0,
when ¢ — 0, since |\ €| — 0. The result follows from the fact that hi(xy) >
In the proof above it is explicitely shown the following.

2.2. Corollary. If ) is as in Theorem 2.1 and p > 1, then the only harmonic
function in W, ?(Q) is the zero function.

As an immediate consequence we get the next corollary.

2.3. Corollary. Suppose that p > 1. If 2 is as in Theorem 2.1 and v € WP(Q),
then there exists at most one harmonic function u such that v —v € Wol’p(Q).

2.4. Remark. When p > 2 the previous Theorem is trivial, but also the as-
sumptions of the Theorem are apparent: Let x € {2 and denote G.(y) = G(x,y).
Then the zero extension of G, is subharmonic in R™\ B(z,r) for all r > 0, for G, is
harmonic in Q\ B(x, ). Subharmonic functions belong to W,>*(R™\ B(x,r)). Since
2 >p/(p—1), when p > 2, we have VG € LP/®P=D(Q\ B(x,r)) for all r > 0.

2.5. Remark. Theorem 2.1 is not completely trivial. In [13] Hajlasz gives a
counterexample in the case 1 < p < %: There exists a domain Q C R? and a non-zero
harmonic function u € W, (Q). Here Q is the image of set D = {z € C: [z —i| < 1}
under mapping z — z2. The domain  has one inward cusp and it satisfies the cone
property. In the following we construct a counterexample in R" for all 1 < p < 2
with a domain far from simply connected.

2.6. Example. Let 1 < p < 2. We can find a Cantor set £ C R" such that
capy(F) > 0 and dim(E) < n — p [3, Section 5.3]. Then cap,(F) = 0. Take a ball

B C R” containing E and denote 2 = 2B\ E. Now the 2-potential }?}E of F'in 2B is
harmonic in €2, but not the zero function, since cap,(F) > 0 [5, Theorem 5.3.4.(iii)

and Lemma 5.3.3]. Clearly RL € W,"(Q) because cap,(E) = 0 [14, Theorem 8.6].
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3. Proof of Theorem 1.1 with some preparatory results

For the proof of the main theorem we need few auxiliary results. For them,
denote

wmw—AG@wm@,

where G is the Green function of €.
The p-capacity capp(A) for 1 < p < N is defined in the following classical way:
The p-capacity of a compact set K C € is first defined as

cap,(K) = inf{/ |VolPde: ¢ € C5°(Q2),¢(x) > 1 for all x € K}.
0

The p-capacity of any open subset U C €2 is then defined by
cap,(U) = sup{cap,(K): K compact, K C U}
Finally, the p-capacity of an arbitrary subset A C € is defined by
cap,(A) = inf{cap,(U): U open, A C U}.
For the properties of the p-capacity, see [3].

3.1. Lemma. For every Radon measure p in §) there exist unique Radon mea-
sures pg and ps in Q such that p = po + s, po << capy and ps L cap,.

Proof. See [12]|, Lemma 2.1. O

3.2. Lemma. Suppose p is a positive Radon measure in () and p = pg + pis as
above in Lemma 3.1. Then pis{v, o(x) < oo} = 0.

Proof. Let A C € such that cap,(A) = 0 and ps(Q2\ A) = 0. If p{v,a(r) <
oo} > 0, then ps{v,a(xz) < k} > 0 for some k£ > 0. Let K C {v,q(x) <k} N A be
compact. By an alternative definition of capacity [5, Theorem 5.5.5] we have

0 = capy(K)
= sup{v(K): v positive measure, spt(v) C K,v,q(x) <1 for all z € K}

1 1
> — K) > —pu(K).
> 2l 2 LK)
It follows that ps{v, o(x) < k} = 0. This is a contradiction. O
Denote Ty (f) = min{k, max{f, —k}} for all k > 0.

3.3. Lemma. If u € Wy*(Q) such that —Au = |Vul?, then ez — 1 € W,*(Q)
for all o < 1.

Proof. In the view of the Sobolev inequality is enough to show the integrability of
\Veo‘“/ 2|2, since the zero boundary values follow immediately from the zero boundary
values of u.

Fix k > 0 and 0 < o < 1. Function ™+ — 1 € W;,"*(2) and therefore it can be
chosen as a test function in equation (3). So

/ |Vul?e"dr = / Vu - VelkWdy = / |Vau|? (e — 1)dz
{u<k} Q Q

—/ \Vu|26“dx+/ ]Vu]Qekdyc—/ |Vuldz,
{u<k} {u>k} Q
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which gives

(6) = / Vul2de — / Vul2da.
Q {u>k}

Also e?Ts) — 1 € Wy ?(Q), so it is a valid test function in equation (3). Hence
we have

/ V)2 (2T — 1)dx = / Vu - V(e — 1)dz
Q Q
= a/ T W7y, - VT (u)d,
0

which together with equation (6) yields

(o — 1)/ e |Vul*dr = eo‘k/ |Vul*dz — / |Vul*dz
{u<k} {u>k} Q

= e“kek/ |Vul*dz — / |Vul*dz.
Q Q
By letting £ — oo we have

2
(7) (1-« / V(% — 1)’dz = g) /|Vu|2dx < 00.
27 Ja

Hence by the Sobolev inequality we have e2* — 1 € W,*(1). O

3.4. Remark. Lemma 3.3 is sharp: Function e> — 1 ¢ Wol’z(Q) unless u = 0.
This can be seen by letting o — 1 in equation (7). If ez — 1 € W,*(Q), then the left
hand side of the equation tends to zero making Vu the zero function.

3.5. Lemma. If u € W,*(Q) such that —Au = |Vul?, then e®* — 1 € W (Q)
and e — 1 is superharmonic for all o < 1.

Proof. To see that e®* — 1 € WH(Q) we need to notice only, that by denoting
v = e*dx, a bounded Radon measure, we have

1/2
/ V(e®™ —1)|dx = a/ |Vuldv < ¢ (/ |Vu\2dy)
Q

1/2
—c</|V (exw/2 — ]d:c)
which is finite by Lemma 3.3.

Function e** — 1 € Wh(Q) is a supersolution for the equation —Av = 0 in
Q for every 0 < o < 1: Let ¢ € C°(Q), ¢ > 0. Now e*Tx®p ¢ W, *(Q) and
e“TsWyp > 0 for every k > 0. By the dominated convergence theorem, valid here
because of Lemma 3.3, we have

|Vul?e®pdr = lim \Vu\QeaTk(“)gp dr = lim | Vu- V<€aTk(U)SO> dr
Q k—oo Jq k—oo Jq

= lim (/ Ty - Vo da + 04/ T |V T (u)|? dﬂf)
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= / e™"Vu - Vgodx—i—a/ e p|Vul? dx
Q 0

1
:—/Veo‘“-Vgodx—l—a/ea“go|Vu|2da:
@ Jo Q

which implies

/ V(e —1)-Vedr =a(l —a) / ™| Vul|?dr > 0.
Q Q
So e** — 1 is superharmonic. O

Now we have all the ingredients for the proof of the main result.

Proof of Theorem 1.1. Assume first that u is a solution of equation (3). Since
e* — 1 is superharmonic for all 0 < o < 1 (Lemma 3.5), we have by letting o — 1
that e* — 1 is superharmonic [14, Lemma 7.3]. Consequently [14, Theorem 7.45]
V(e —1) € LY(Q) for all ¢ < n/(n — 1) and hence e* — 1 € W, ().

Denote by p the Riesz measure of function e* — 1. Let ¢ € C°(€2). Choose a
C*>-set D CC 2 such that spt(¢) CC D. Then pu(D) < oo and there is a positive
function w, that solves the equation

—Aw =y in D,
w=0 on dD

in the renormalized sense [10, Theorem 3.1]. By the Riesz decomposition theorem
there exist harmonic minorants of e* — 1 and w in D, h and h,, respectively, such
that e —1=wv,p + h and w = v, p + hy,. However, by Theorem 2.1 we know that
h., = 0. Hence w = v, p and in D we have e —1 = w + h, where h is a non-negative
harmonic function.

Let k > 0. We have e *®y € W, *(D) N L=(D) , spt(e"T*®y) cc D and
eFp = e TkWp in {e* > k+ 1}, e *p € C°(D). Since w is a solution in the
renormalized sense and {w > k} C {e“ — 1 > k}, we have

: L4 _ [ T
/va V(eTk(u)>dx—/Qe Yo dp.

By harmonicity i € W,2%(Q), and hence we have

¥ _
Thus

u 4 (2 “To(u
/Qv(e —1)-V(eTk(u)>de/QV(w+h).v<6Tk(u)>dx:/Qe £

This implies
/ |Vul?odr = / Vu-Vedr = / Vet =1)- Edx
0 Q0 Q et

=l VY T

— (/QV(e b V(ﬂk(u))der Vier = 1) VI 7 dx)

k—o0
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'
& = lim (/QV DV (i d“/veTk Vil )mdx)

e godu+/<pVTk(u)~VTk(u)dm)
Q
= lim

(/"
[ [ wnwpd)
k—oo \ Jg 0
—/e godu—i—/ \Vul?p de,
Q Q

and hence
/ e “odu=20
Q

for all p € C§°(2). We obtain that pu({u < co}) = 0. Since u is superharmonic, we
have cap,({u = oc0}) = 0. Thus p L cap,.

Next prove the converse. Clearly u € Wy*(Q). Function e — 1 is superharmonic
and by the Riesz decomposition theorem

W@—1=LG@wﬂmw+M@,

where h is harmonic Since h cannot take values 00 in €, we have e*®) = oo if and
only if v, o(x fQ z,y)du(y) = co. By lemma 3.2 we have p({v, o(z) < co}) = 0.
This 1mphes

(9) p({e"® < 0o}) = 0.

Let £ > 0, p € C®(Q) and D CC € smooth such that spt(¢) CC D. As in
the proof of the first part, we find a renormalized solution w in D and by lemma 2.1
w = v, p. So we have e* — 1 = w+ h in D. Now, e T*®¢ is a valid test function for
w + h and we find, calculating as earlier in (8), that

/Vu-Vgpdx:/Ve“-v—fda::/e_“god,u+/|Vu|290d:v:/|Vu|2g0dx,
0 Q e 0 Q Q

since by equation (9) we have [, e "¢ du = 0. O
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