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Abstract. Let E be real normed vector spaces with the dimension at least 2. In this paper
we study the following questions: When is the union of two John domains in E a John domain and
when is the union of two uniform domains in E a uniform domain?

1. Introduction and main results

Throughout the paper, we always assume that E denotes a real normed vector
space with dim E ≥ 2 and that D is a proper subdomain in E. The norm of a vector
z in E is written as |z|, and for any two points z1, z2 in E, the distance between
them is denoted by |z1 − z2|, and the closed line segment with endpoints z1 and z2

by [z1, z2]. For x ∈ E and r > 0, we let B(x, r) denote the open ball in E with center
x and radius r. For real numbers r and s, we use the notation: r ∧ s = min{r, s}.

John domains in Euclidean spaces Rn were introduced by John [1] in connection
with his work on elasticity. The term is due to Martio and Sarvas [3]. Roughly
speaking, a domain is a John domain if it is possible to travel from one point of the
domain to another without going too close to the boundary. The precise definition
is as follows.

Definition 1.1. D is called a c-John domain if for every pair of points x1, x2 ∈ D
there is a rectifiable arc γ joining them with

`(γ[x1, x]) ∧ `(γ[x2, x]) ≤ c d(x)

for all x ∈ γ, where c is a positive constant, γ[xj, x] denotes the closed subarc of γ
with endpoints xj and x (j = 1, 2), `(γ[xj, x]) the arclength of γ[xj, x]. γ is called a
c-John arc joining x1 and x2.

See [4] for several characterizations of John domains. In the study of John do-
mains, the following question is natural:

Question 1.1. Is the union of two John domains in E still a John domain when
their intersection is not empty?

Väisälä considered this question when E = Rn. In [7], Väisälä constructed an
example to show that, in general, the answer to this question is negative. Note
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that the definition of John domains used in [7] is based on diameter cigar, which is
quantitatively equivalent to Definition 1.1 when E = Rn. In the same paper, Väisälä
proved that if the intersection of two John domains is not too thin then their union
is a John domain as the following result shows.

Theorem A. [7, Theorem 3.1] Suppose that D1 and D2 are c-John domains
in Rn. If there exist z0 ∈ D1 ∩ D2 and r > 0 such that B(z0, r) ⊂ D1 ∩ D2 and
d(D1)∧d(D2) ≤ c0r, where d(Di) denotes the diameter of Di (i = 1, 2), then D1∪D2

is a c′-John domain with c′ = 2c(c0 + 1).

As the first aim of this paper, we study Question 1.1 further. Our result is as
follows.

Theorem 1.1. Suppose that both D1 and D2 are c-John domains in E, and
that there are z0 ∈ D1 ∩D2 and r > 0 such that B(z0, r) ⊂ D1 ∩D2. If there exists
some r1 > 0 such that r1 ≤ c0r and D1 ⊂ B(z0, r1), where c0 > 1 is a constant, then
D1 ∪D2 is a c′-John domain with c′ = c(4cc0 + 1).

The proof of Theorem 1.1 will be presented in Section 2. Our proof method is
different from that in [7]. Hence when E = Rn, we also give a different proof for
Theorem A.

We remark that the assumption “d(D1)∧d(D2) ≤ c0r” in Theorem A is equivalent
to the statement “at least one of D1 and D2 is bounded”, and the assumption “there
exists some r1 > 0 such that r1 ≤ c0r and D1 ⊂ B(z0, r1)” in Theorem 1.1 is
equivalent to the statement “D1 is bounded”. The following example shows that the
requirement that “at least one of D1 and D2 must be bounded” in Theorem 1.1 is
necessary.

Example 1.1. Let D1 = {(x, y) ∈ R2 : x < 0} and D2 = {(x, y) ∈ R2 : |y| <
x + 1}. Then both D1 and D2 are John domains, but D = D1 ∪ D2 is not a John
domain.

The proof of Example 1.1 will be given in Section 3.

Definition 1.2. D is called c-uniform in the norm metric in E provided there
exists a positive constant c with the property that each pair of points z1, z2 in D can
be joined by a rectifiable arc γ in D satisfying (cf. [5, Section 6.3])

(1) `(γ[z1, z]) ∧ `(γ[z2, z]) ≤ c d(z) for all z ∈ γ, and
(2) `(γ) ≤ c |z1 − z2|.
D is called uniform if it is c-uniform for some c > 0, and γ is called a c-uniform

arc if it satisfies (1) and (2) (cf. [6, Section 2.16]). See [2, 9] for the generalization of
this definition.

As the second aim of this paper, we consider the following question:

Question 1.2. Does Theorem 1.1 hold for uniform domains in E?

The following example shows that even when both D1 and D2 are bounded uni-
form domains their union may not be uniform.

Example 1.2. Let D1 = {(x, y) ∈ R2 : − 2 < x < 1, 0 < y < 2} and D2 =
D3 ∪ D4, where D3 = {(x, y) ∈ R2 : 0 < x < 1, −1 < y < 1} and D4 = {(x, y) ∈
R2 : − 2 < x < 1, −1 < y < 0}. Then both D1 and D2 are uniform domains, but
D = D1 ∪D2 is not a uniform domain.
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The proof of Example 1.2 will be given in Section 3. For convex and bounded
domains in E, the following result due to Väisälä, which is from [6].

Theorem B. [6, Theorem 2.19] Suppose that G is a convex domain and that
B(x0, r

′) ⊂ G ⊂ B(x0, R
′). Then G is c1-uniform with c1 = 2R′

r′ .

In the following we consider Question 1.2 for convex domains and we get

Theorem 1.2. Suppose that D1 and D2 are convex domains in E, where D1 is
bounded and D2 is c-uniform for some c > 1, and that there exist z0 ∈ D1 ∩D2 and
r > 0 such that B(z0, r) ⊂ D1 ∩ D2. If there exist constants R1 > 0 and c0 > 1
such that R1 ≤ c0r and D1 ⊂ B(z0, R1), then D1 ∪D2 is a c′-uniform domain with
c′ = (c + 1)(2c0 + 1) + c.

The proof of Theorem 1.2 will be presented in Section 4.

Remark 1.1. Example 1.2 shows that the hypothesis “D2 being convex” in
Theorem 1.2 is necessary.

2. The proof of Theorem 1.1

We show that the theorem holds with c′ = c(4cc0 + 1). Set D = D1 ∪ D2. Let
x ∈ D \ D2, y ∈ D \ D1, dj(x) = d(x, ∂Dj) for j = 1, 2. Then there are John arcs
α ⊂ D1 from x to z0 and β ⊂ D2 from z0 to y and an arc γ1 ⊂ α ∪ β from x and y.
To prove that γ1 is a c′-John arc in D it suffices to show that

(1) `(α[x,w]) ≤ c′d(w) for all w ∈ α,
(2) ζ(z) :=

(
`(α) + `(β[z0, z])

) ∧ `(β[z, y]) ≤ c′d(z) for all z ∈ β.
We let x0 ∈ α be the point bisecting the length of α and choose x1 such that

`(α[x1, z0]) = r
2
. For any w ∈ α, if w ∈ α[x, x0], then we have

`(α[x,w]) = `(α[x,w]) ∧ `(α[w, z0]) ≤ cd1(w) ≤ cd(w),

and (1) is proved.
If w ∈ α[x1, z0], then

d(w) ≥ r

2
≥ r1

2c0

and

(2.1) `(α) = 2`(α[x, x0]) ≤ 2cd1(x0) ≤ 2cr1,

which show that
`(α[x,w]) ≤ `(α) ≤ 2cr1 ≤ 4cc0d(w),

and we obtain (1).
Let w ∈ α[x0, x1]. Obviously, `(α[x,w]) ∧ `(α[z0, w]) = `(α[z0, w]) ≥ r

2
, which

together with (2.1) show that

`(α[x,w]) ≤ 2cr1 ≤ 4c
r1

r
`(α[z0, w]) ≤ 4c2c0d(w),

which is (1).
The proof of (1) is complete. In the following, we come to prove (2). We let

y0 ∈ β be the point bisecting the length of β and choose y1 such that `(α[z0, y1]) = r
2
.

For any z ∈ β, if z ∈ β[y, y0], then (2) easily follows because β is c-John in D2.
If z ∈ β[y1, z0], then (2.1) implies that

ζ(z) ≤ `(α) + `(β[z0, z]) ≤ 2cr1 + cd2(z) ≤ 4cc0d(z) + cd(z) = c(4c0 + 1)d(z),
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since r1 ≤ c0r ≤ 2c0d(z). If z ∈ β[y0, y1], then we have

`(β[y, z]) ∧ `(β[z, z0]) = `(β[z, z0]) ≥ r

2
≥ r1

2c0

and
`(β[y, z]) ∧ `(β[z, z0]) ≤ cd2(z) ≤ cd(z),

which together with (2.1) imply

ζ(z) ≤ `(α) + `(β[z0, z]) ≤ 2cr1 + cd(z) ≤ 4c2c0d(z) + cd(z) = c(4cc0 + 1)d(z).

The arbitrariness of x and y shows that D = D1 ∪ D2 is a c′-John domain with
c′ = c(4cc0 + 1).

3. The proof of Examples 1.1 and 1.2

3.1. Proof of Example 1.1. The proof of both D1 and D2 being John domains
easily follows from the fact that an L-bilipschitz image of a c-John domain is c′-John
with c′ = L2c. Obviously, z0 = (−1

2
, 0) ∈ D1 ∩ D2 and B(z0,

1
3
) ⊂ D1 ∩ D2. Let

D = D1 ∪ D2. Then for any positive integer n, wn = (−n, 0) and zn = (n, 0) ∈ D.
For any γn joining wn and zn, there must exist a point un ∈ γn ∩ (D1 ∩ D2) such
that d(un) < 2 and `(γn[wn, un]) ∧ `(γn[zn, un]) → ∞ as n → ∞. This implies that
D1 ∪D2 is not a John domain.

In order to prove Example 1.2, we introduce the following definition.

Definition 3.1. A domain D ⊂ E is c-quasiconvex if each pair of points a, b ∈ D
can be joined with an arc γ ⊂ D with

`(γ) ≤ c |a− b|,
where c > 1 is a constant.

Proposition 3.1. If D ⊂ E is uniform, then it must be quasiconvex.

3.2. Proof of Example 1.2. Theorem B implies that all domains D1, D3

and D4 are uniform, and Theorem 1.2 shows that D2 is also uniform. Obviously,
D = D1 ∪D2 is not quasiconvex, hence by Proposition 3.1, D is not uniform.

4. The proof of Theorem 1.2

Before the proof of Theorem 1.2, we introduce two lemmas.

Lemma C. [8, Lemma 3.4] Suppose that D ⊂ E is a convex domain. The
function d : D → R is concave, that is,

d
(
ta + (1− t)b

) ≥ td(a) + (1− t)d(b)

whenever a, b ∈ D and t ∈ [0, 1].

Lemma 4.1. Suppose that X is a vector space with dim X ≥ 2, the vectors xi,
yi, zi ∈ X are linearly independent for each i ∈ {1, 2}, and that

x1 − y1 = λ(x2 − y2), y1 − z1 = µ(y2 − z2) and z1 − x1 = τ(z2 − x2)

for constants λ, µ, τ . Then λ = µ = τ .
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Proof. Since

z1 − x1 = (z1 − y1) + (y1 − x1) = µ(z2 − y2) + λ(y2 − x2),

we know
(τ − λ)x2 + (λ− µ)y2 + (µ− τ)z2 = 0.

By the linear independence of {x2, y2, z2} we get λ = µ = τ . ¤
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We show that the theorem holds with c′ = (c + 1)(2c0 +
1) + c. Set D = D1 ∪D2 and D0 = D1 ∩D2. Let a ∈ D \D2, b ∈ D \D1, z1 = a+b

2

and s = |a−b|
2

.

Case 4.1. |z1 − z0| ≤ 2c0s. There is a c-uniform arc β ⊂ D2 from z0 to b and an
arc γ ⊂ |a− z0| ∪β from a to b. To prove that γ is c′-uniform in D it suffices to show
that

(1) |a− z0|+ `(β) ≤ c′|a− b|,
(2) |a− x| ≤ c0d(x) for all x ∈ [a, z0],
(3) ζ(y) :=

(|a− z0|+ `(β[z0, y])
) ∧ `(β[b, y]) ≤ c′d(y) for all y ∈ β.

Since |a − z0| ≤ |a − z1| + |z1 − z0| ≤ s + 2c0s and similarly |b − z0| ≤ s + 2c0s, we
have

|a− z0|+ `(β) ≤ (2c0 + 1)s + c|b− z0| ≤ (c + 1)(2c0 + 1)s ≤ c′|a− b|,
and (1) is proved.

If x ∈ [a, z0], then x = (1 − t)a + tz0 for some t ∈ [0, 1], and we have |a − x| =
t|a− z0| ≤ tc0r. Lemma C implies that

d(x) ≥ d1(x) ≥ (1− t)d1(a) + td1(z0) ≥ td1(z0) ≥ tr.

As |a− x| = t|a− z0| ≤ tc0r, this yields (2).
Let y ∈ β and let y0 ∈ β be the point bisecting the length of β. If y ∈ β[y0, b],

then the c-uniformity of β gives ζ(y) = `(β[y, b]) ≤ cd2(y). If y ∈ β[z0, y0], then

ζ(y) ≤ |a− z0|+ `(β[z0, y]) ≤ c0r + cd2(y) ≤ c0d(z0) + cd(y).

Here d(z0) ≤ d(y) + |z0 − y| ≤ d(y) + `(β[z0, y]) ≤ (1 + c)d(y), and we obtain (3).

Case 4.2. |z1−z0| > 2c0s. Set e = (b−a)/|b−a| and a0 = z0 +re. As a /∈ D2 and
b /∈ D1, these points do not lie on the line through z0 and z1. Hence there is a unique
point w ∈ [z0, z1]∩ [a0, a]. Applying Lemma 4.1 to the triples (w, z0, a0) and (w, z1, a)
we get |w− z1| = s|w− z0|/r. Replacing a and a0 by b and b0 = z0− re, respectively,
we see that w ∈ [z0, z1] ∩ [b0, b]. Hence w ∈ D0, which implies that [z0, w] ⊂ D0.
Since w ∈ D1 ⊂ B(z0, c0r), we have |w − z0| ≤ c0r, whence |w − z1| ≤ c0s.

Set u = (z1−z0)/|z1−z0| and y1 = w−c0su. Then |y1−z1| = |y1−w|+ |w−z1| ≤
2c0s, whence y1 ∈ [z0, w]. There is a c-uniform arc β1 ⊂ D2 from y1 to b and an arc
γ ⊂ [a, y1] ∪ β1 from a to b. To prove that γ is c′-uniform in D it suffices to show
that

(1) |a− y|+ `(β1) ≤ c′|a− b|,
(2) |a− x| ≤ (2c0 + 1)d(x) for all x ∈ [a, y1],
(3) ζ1(y) := (|a− y1|+ `(β1[y1, y])) ∧ `(β1[b, y]) ≤ c′d(y) for all y ∈ β1.
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We have
|a− y1| ≤ |a− z1|+ |z1 − y1| ≤ s + 2c0s, `(β1) ≤ c|b− y1| ≤ c(2c0 + 1)s,

and (1) follows.
If x ∈ [a, y1], then x = (1− t)a+ ty1 for some t ∈ [0, 1]. It follows from Lemma C

that
d(x) ≥ d1(x) ≥ (1− t)d1(a) + td1(y1) ≥ td1(y1).

As |w − z0| ≤ c0r, we similarly obtain

d1(y1) ≥ c0s

|w − z0|d1(z0) ≥ c0sr

|w − z0| ≥ s.

Hence
|a− x| = t|a− y1| ≤ t(2c0 + 1)s ≤ (2c0 + 1)d(x),

which is (2).
Let y ∈ β1 and y0 ∈ β1 be the point bisecting the length of β1. If y ∈ β1[y0, b],

then (3) follows from the c-uniformity of β1 in D2. Let y ∈ β1[y1, y0]. Now (2) and
the c-uniformity of β1 imply that

ζ1(y) ≤ |a− y1|+ `(β1[y1, y]) ≤ (2c0 + 1)d(y1) + cd2(y).

Here d(y1) ≤ d(y) + |y − y1| ≤ d(y) + `(β1[y1, y]) ≤ (c + 1)d(y), and we obtain (3).
The proof of Theorem 1.2 is complete. ¤
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