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BRODY CURVES OMITTING HYPERPLANES
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Abstract. A Brody curve, a.k.a. normal curve, is a holomorphic map f from the complex line
C to the complex projective space Pn such that the family of its translations {z 7→ f(z+a) : a ∈ C}
is normal. We prove that Brody curves omitting n hyperplanes in general position have growth order
at most one, normal type. This generalizes a result of Clunie and Hayman who proved it for n = 1.

Introduction

We consider holomorphic curves f : C → Pn. The spherical derivative ‖f ′‖
measures the length distortion from the Euclidean metric in C to the Fubini–Study
metric in Pn. The explicit expression is

‖f ′‖2 = ‖f‖−4
∑
i<j

|f ′ifj − fif
′
j|2,

where (f0, . . . , fn) is a homogeneous representation of f (that is the fj are entire
functions which never simultaneously vanish), and

‖f‖2 =
n∑

j=0

|fj|2.

A holomorphic curve is called a Brody curve if its spherical derivative is bounded.
This is equivalent to normality of the family of translations {z 7→ f(z + a) : a ∈ C}.

Brody curves are important for at least two reasons. First one is the rescaling
trick known as Zalcman’s lemma or Brody’s lemma: for every non-constant holomor-
phic curve f one can find a sequence of affine maps ak : C → C such that the limit
f ◦ ak exists and is a non-constant Brody curve. Second reason is Gromov’s theory
of mean dimension [4] in which a space of Brody curves is one of the main examples.

For the recent work on Brody curves we refer to [3, 9, 10, 12, 13]. A general
reference for holomorphic curves is [6].

We recall that the Nevanlinna characteristic is defined by

T (r, f) =

ˆ r

0

dt

t

(
1

π

ˆ

|z|≤t

‖f ′‖2(z) dmz

)
,

where dm is the area element in C. So Brody curves have order at most two normal
type, that is

(1) T (r, f) = O(r2).
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Clunie and Hayman [2] found that Brody curves C → P1 omitting one point in
P1 must have smaller order of growth:

(2) T (r, f) = O(r).

A different proof of this fact is due to Pommerenke [8]. In this paper we prove that
this phenomenon persists in all dimensions.

Theorem. Brody curves f : C → Pn omitting n hyperplanes in general position
satisfy (2).

Under the stronger assumption that a Brody curve omits n + 1 hyperplanes in
general position, the same conclusion was obtained by Berteloot and Duval [1] and
Tsukamoto [9], with different proofs.

Combined with a result of Tsukamoto [10] our theorem implies

Corollary. Mean dimension in the sense of Gromov of the space of Brody curves
in

Pn\{n hyperplanes in general position}
is zero.

The condition that n hyperplanes are omitted is exact: it is easy to show by direct
computation that the curve (f0, f1, 1, . . . , 1), where fi are appropriately chosen entire
functions such that f1/f0 is an elliptic function, is a Brody curve, it omits n − 1
hyperplanes, and T (r, f) ∼ cr2, r →∞ where c > 0. This example will be discussed
in the end of the paper.

The author thanks Alexandr Rashkovskii and Masaki Tsukamoto for inspiring
conversations on the subject.

Preliminaries

Without loss of generality we assume that the omitted hyperplanes are given
in the homogeneous coordinates by the equations {wj = 0}, 1 ≤ j ≤ n. We fix a
homogeneous representation (f0, . . . , fn) of our curve, where fj are entire functions
without common zeros, and fn = 1. We assume without loss of generality that
f0(0) 6= 0.

Then

(3) u = log
√
|f0|2 + . . . + |fn|2

is a positive subharmonic function, and Jensen’s formula gives

T (r, f) =
1

2π

ˆ π

−π

u(reiθ) dθ − u(0) =

ˆ r

0

n(t)

t
dt,

where n(t) = µ({z : |z| ≤ t}), and µ is the Riesz measure of u, that is the measure
with the density

(4)
1

2π
∆u =

1

π
‖f ′‖2.

Now positivity of u and (1) imply that all fj are of order at most 2, normal type.
In particular,

fj = ePj , 1 ≤ j ≤ n,

where Pj are polynomials of degree at most two.
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First we state a lemma which is the core of our arguments. It is a refined version
of Lemma 1 in [2]. We denote by B(a, r) the open disc of radius r centered at the
point a.

Lemma 1. Let u be a non-negative harmonic function in the closure of the disc
B(a,R), and assume that u(z1) = 0 for some point z1 ∈ ∂B(a,R). Then

|∇u(z1)| ≥ u(a)

2R
.

Proof. The function
b(r) = min

|z−a|=r
u(z)

is decreasing and b(R) = 0. Harnack’s inequality gives

b(t) ≥ R− t

R + t
u(a), 0 ≤ t ≤ R.

As
b(t) = |b(R)− b(t)| ≤ (R− t) max

[t,R]
|b′|,

we conclude that for every t ∈ (0, R) there exists r ∈ [t, R] such that

|b′(r)| ≥ 1

R− t

R− t

R + t
u(a) =

u(a)

R + t
.

According to Hadamard’s three circle theorem, rb′(r) is a negative decreasing func-
tion, so

|Rb′(R)| ≥ |rb′(r)| ≥ r
u(a)

R + t
≥ t

u(a)

R + t
,

and the last expression tends to u(a)/2 as t → R. So we have |b′(R)| ≥ u(a)/(2R). On

the other hand, |∇u(z1)| ≥
∣∣∣∣
du

dn
(z1)

∣∣∣∣ ≥ |b′(R)|, where d/dn is the normal derivative.

This completes the proof. ¤

Proof of the theorem

Wemay assume without loss of generality that f0 has at least one zero. Indeed, we
can compose f with an automorphism of Pn, for example replace f0 by f0+cf1, c ∈ C
and leave all other fj unchanged. This transformation changes neither the n omitted
hyperplanes nor the rate of growth of T (r, f) and multiplies the spherical derivative
by a bounded factor.

Put uj = log |fj|, and
u∗ = max

1≤j≤n
uj.

Here and in what follows max denotes the pointwise maximum of subharmonic func-
tions. We are going to prove first that

(5) u0(z) ≤ u∗(z) + 4(n + 1)|z| sup
C
‖f ′‖.

for |z| sufficiently large.
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Let a be a point such that u0(a) > u∗(a). Consider the maximal disc B(a,R)
centered at a where the inequality u0(z) > u∗(z) still holds. If z0 is a zero of f0, then
u0(z0) = −∞, and we have

(6) R ≤ |a|+ |z0| ≤ 2|a|
for |a| > |z0|. There is a point z1 ∈ ∂B(a,R) and an integer k ∈ {1, . . . , n} such that

(7) u0(z1) = u∗(z1) = uk(z1) ≥ uj(z1),

for all j ∈ {1, . . . , n}. Applying Lemma 1 to the positive harmonic function u0 − uk

in B(a,R) we obtain

|∇(u0 − uk)(z1)| ≥ u0(a)− uk(a)

2R
,

or

(8) u0(a) ≤ uk(a) + 2R |∇u0(z1)−∇uk(z1)| .
On the other hand, |f0(z1)| = |fk(z1)| ≥ |fj(z1)| for all j ∈ {1, . . . , n}, so

(9) ‖f ′(z1)‖ ≥ |f ′0(z1)fk(z1)− f0(z1)f
′
k(z1)|

|f0(z1)|2 + . . . + |fn(z1)|2 ≥ (n + 1)−1

∣∣∣∣
f ′0(z1)

f0(z1)
− f ′k(z1)

fk(z1)

∣∣∣∣ .

Combining (8), (9) and (6), and taking into account that |∇ log |f || = |f ′/f |, we
obtain (5).

If all polynomials Pj are linear then inequality (5) completes the proof. Suppose
now that some Pj is of degree 2.

Consider again the subharmonic functions uj = log |fj|, 0 ≤ j ≤ n. For each
j ∈ {0, . . . , n}, the family

{r−2uj(rz) : r > 1}
in uniformly bounded from above on compact subsets of the plane, and bounded from
below at 0. By [5, Theorem 4.1.9] these families are normal (from every sequence
one can choose a subsequence that converges in L1

loc). Take a sequence rk such that

(10) lim
k→∞

1

r2
k

ˆ π

−π

u(rke
iθ) dθ > 0,

where u is defined in (3). Such sequence exists because we assume that at least one
of the Pj is of degree two.

Then we choose a subsequence (still denoted by rk) such that

r−2
k uj(rkz) → vj, 0 ≤ j ≤ n,

and r−2
k u(rkz) → v, where vj, v are some subharmonic functions in C. Then

v = max{v0, . . . , vn} 6= 0

is a non-negative subharmonic function. Let ν be the Riesz measure of v. Notice
that ν 6= 0 because v is non-negative and v 6= 0. We have weak convergence

ν = lim
k→∞

µrk
,

where
µrk

(E) = r−2
k µ(rkE)

for every Borel set E. Now (4) and the condition that ‖f ′‖ is bounded imply
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Lemma 2. ν is absolutely continuous with respect to Lebesque’s measure in the
plane, with bounded density.

Proof. For every disc B(a, δ) we have

ν(B(a, δ)) ≤ lim inf
k→∞

r−2
k µ(B(rka, rkδ)) ≤ δ2 sup

C
‖f ′‖2.

Now we invoke our inequality (5). It implies that

v0 ≤ v∗ = max(v1, . . . , vn),

so v = v∗. Thus the measure ν is supported by finitely many rays. This contradiction
with Lemma 2 shows that all polynomials Pj are in fact linear. This completes the
proof. ¤

Example

Let Γ0 = {n + im : n,m ∈ Z} be the integer lattice in the plane, and Γ1 =
Γ + (1 + i)/2. For j ∈ {0, 1}, let fj be the Weierstrass canonical products of genus
2 with simple zeros on Γj. Then the fj are entire functions of completely regular
growth in the sense of Levin–Pfluger and their zeros satisfy the R-condition in [7,
Theorem 5, Ch. 2]. This theorem of Levin implies that

(11) log |fj(re
iθ)| = (c + o(1))r2,

as r →∞, reiθ /∈ C0 where C0 is a union of discs of radius 1/4 centered at the zeros
of fj. It follows that

(12) |f0(z)|2 + |f1(z)|2 →∞, z →∞.

Cauchy’s estimate for the derivative and (11) give

log |f ′j(z)| ≤ (c + o(1))|z|2, z →∞.

So for the curve f = (f0, f1, 1, . . . , 1) we obtain

‖f ′‖2 =

∑
i6=j |f ′ifj − fif

′
j|2

‖f‖4
≤ (|f ′0f1 − f0f

′
1|2 + n(|f ′0|2 + |f ′1|2))

(|f0|2 + |f1|2)2

=
|g′|2

(1 + |g|2)2
+ o(1).

The spherical derivative of g is bounded because g is an elliptic function. Thus
f is a Brody curve that omits n − 1 hyperplanes in general position. Evidently
T (r, f) ∼ c1r

2.
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