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Abstract. The various dimensions of the intersections of the graph-directed sets {Ki}
l

i=1
⊂ R

n

with (n − m)-planes V + ai (ai ∈ V ⊥) were investigated for H m almost all parameters ai ∈ V ⊥

satisfying (V + ai) ∩ Ki 6= ∅, where V ⊂ R
n is a fixed (n − m)-dimensional subspace and V ⊥ its

orthogonal complement. We obtain the typical value of dimensions of sections for typical directions

V and also provide a weaker result for exceptional directions.

1. Introduction

1.1. Graph-directed construction. Let m and n be integers with 0 < m < n.
Denote by O(n) the orthogonal transformation group of Rn. Given ρ ∈ (0, 1), b ∈ Rn

and R ∈ O(n), we obtain a contracting similitude S of Rn defined by S(x) = ρRx+b.
We recall the graph-directed construction [MW] as follows: Suppose G is a di-

rected graph, which contains l vertexes {1, · · · , l} and some directed edges {e : e ∈ G}
among the vertexes. Let Γi,j be the set of all the edges from i to j. Assume
{K1, · · · , Kl} is a family of compact sets in Rn, and there are similitudes {Se : e ∈ G}
such that

(1.1) Ki =
⋃

j

⋃

e∈Γi,j

Se(Kj),

where Se(x) = ρeRe(x) + be with ρe ∈ (0, 1), Re ∈ O(n) and be ∈ Rn. We say that
G is irreducible, if for any vertex pair (i, j) there exists an admissible directed path
starting at i and ending at j.

For any admissible directed path e∗ = e1 · · · ek in G, write Se∗ = Se1···ek
=

Se1 ◦ · · · ◦ Sek
, ρe∗ = ρe1 · · · ρek

and Re∗ = Re1 ◦ · · · ◦ Rek
. Let

Ai,j = {Re∗ : e∗ = e1e2 · · · ek is a path from i to j} ⊂ O(n).

To ensure certain finiteness, we pose the following assumption:

(1.2) G is irreducible and #Ai,j < ∞ for some 1 ≤ i, j ≤ l.

Under this assumption of irreducibility, the Hausdorff dimensions of K1, · · · , Kl have
the same value, denoted by s.

The structure of the sets Ai,j is described in the following lemma.
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Lemma 1. Suppose G is irreducible and #Ai0,j0 < ∞. Then for any 1 ≤ i, j, k ≤
l,

(1) #Ai,j = #Ai0,j0;
(2) Ai,j = Ai,kAk,j;
(3) Ai,i is a finite subgroup of O(n) for any i.

Proof. (1) By using irreducibility, take any h ∈ Ai0,i, t ∈ Aj,j0. Then hAi,jt ⊂
Ai0,j0, which implies that #Ai,j = #(hAi,jt) ≤ #Ai0,j0 < ∞ since t, h ∈ O(n) are
invertible. On the other hand, by using irreducibility again, take u ∈ Ai,i0 and
v ∈ Aj0,j, and we have uAi0,j0v ⊂ Ai,j, which implies #Ai0,j0 ≤ #Ai,j . Therefore,
#Aij = #Ai0,j0.

(2) Take any g ∈ Ak,j; then Ai,kg ⊂ Ai,j. Since #(Ai,kg) = #Ai,k = #Ai,j , then
Ai,kg = Ai,j . On the other hand, it follows from the definition that Ai,kAk,j ⊂ Ai,j.
Therefore, Ai,kAk,j = Ai,j.

(3) Since Ai,iAi,i ⊂ Ai,i and #Ai,i < ∞, Aii is a finite subgroup of O(n). �

The following examples illustrate condition (1.2).

Example 1. Let Si(x) = ρiRi(x) + bi for 1 ≤ i ≤ k. If

(1.3) {Ri}i is contained in a finite subgroup of O(n),

then assumption (1.2) holds.
Scaling self-similar set: If Ri is the identical mapping for each i, then the invari-

ant set of the similitudes

(1.4) Fi(x) = ρix + bi,

is said to be a scaling self-similar set, e.g., the Sierpinski carpet.

Figure 1. Steps of generating the Sierpinski carpet.

For the Koch curve, the orthogonal transformations of its corresponding simili-
tudes are contained in a finite rotation group {eikπ/3 : k ∈ Z}, and thus assumption
(1.3) holds.
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Figure 2. Steps of generating the Koch curve.
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Figure 3. Penrose tiling: a graph-directed construction.

Example 2. In Figure 3, solid triangles I and II include several copies with

ratio λ2 (λ =
√

5−1
2

) of themselves, respectively. Keep some selected copies as the
initial pattern and replace them by smaller contained copies of elements in the pat-
tern, continue this procedure over and over again, and we always get two limit sets,
named Penrose fractals, with graph-directed construction. Here we suppose that the
graph-directed construction is irreducible. Notice that any rotation appearing in the
corresponding similitudes belongs to {eikπ/5 : k ∈ Z}, and thus (1.2) holds.

1.2. Dimensions of sections. For any (n−m)-dimensional subspace V ⊂ Rn,
let V ⊥ = {x ∈ Rn : x⊥V } be its orthogonal complement. Given z ∈ Rn, let V + z
denote the (n−m)-plane {y + z : y ∈ V }. For a ∈ V ⊥, we consider Ki ∩ (V + a), the
intersections of graph-directed sets K1, · · · , Kl with the (n−m)-plane V +a. Denote
by JV,i the set of all the parameters a ∈ V ⊥ such that Ki ∩ (V + a) is non-empty,
that is to say

JV,i = {a ∈ V ⊥ : Ki ∩ (V + a) 6= ∅} = PV ⊥(Ki),

where PV ⊥ : Rn → V ⊥ is the corresponding orthogonal projection. Notice that if
s > m, then H m[PV ⊥(Ki)] > 0 for γn,m almost all V ⊥ ∈ G(n, m), where H m is
the m-dimensional Hausdorff measure on V ⊥. Here G(n, m) is the Grassmannian
manifold consisting of all m-dimensional linear subspaces of Rn, and γn,m is the
natural measure on it such that γn,m(A) = α−m(n)(L n × · · · × L n)({(v1, · · · vm) ∈
(Rn)m, |vi| ≤ 1 for all i and L(v1, · · · , vm) ∈ A}), where L(v1, · · · , vm) is the subspace
spanned by the vector v1, · · · , vm ∈ Rn [Mat5].

In the paper, we will investigate the various dimensions of the plane section
(V + a) ∩ Ki for H m almost all a ∈ PV ⊥(Ki).

Recall that there are plenty of achievements on the dimensions of plane sections
or the measures supported on sections. Among these, the following Marstrand’s
theorem [M,Mat2] is well-known: Suppose m < s < n, and A ⊂ Rn is a Borel set
with 0 < H s(A) < ∞. Then

(1) for γn,n−m-almost all V ∈ G(n, n − m),

H m{a ∈ V ⊥ : dimH [A ∩ (V + a)] = s − m} > 0;

(2) for H s × γn,n−m-almost all (x, V ) ∈ A × G(n, n − m),

dimH [A ∩ (V + x)] = s − m, H s−m[A ∩ (V + x)] < ∞.

In fact, for n = 2, m = 1, (1) and (2) were first proved by Marstrand [M] and later
generalized by Mattila [Mat1] to higher dimensions. Furthermore, the intersections
A ∩ fB were researched for given compact sets A, B ⊂ Rn, where f runs through
the isometry group or other geometric transformation groups of Rn [Mat4,K].
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The packing dimension of plane sections with corresponding measures was dis-
cussed in [C, FJM,FJ, FM, JM], and so on. They showed that Marstrand’s theorem
is not valid for the packing dimension. For example, in [FJM] Falconer, Järvenpää
and Mattila gave some examples illustrating the instability of packing dimensions of
sections. Moreover, in [C] Csörnyei obtained a planar construction which allows one
to prescribe the packing dimensions of line sections, that is, given a Borel measurable
function f from the space of planar lines into [0, 1], there is a Borel set A ⊂ R2 such
that for a.e. line l,

dimP (A ∩ l) = f(l).

In [M] and [Mat1], the direction V is random. Notice that in [BP] and [KP],
Benjamini, Kenyon and Peres studied the intersections of some special planar sets
with lines in a fixed direction. For example, in [BP] the dimensions of fibres Fx =
{y ∈ [0, 1] : (x, y) ∈ F} for almost all x ∈ [0, 1] were discussed for some certain
geometric construction in the unit square [0, 1] × [0, 1].

1.3. Typical cases: Theorem 1. Under the above notations, we will state our
first result on typical parameters as follows (see Theorem 2 for the exceptional case):

Theorem 1. Suppose {K1, · · · , Kl} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimH K1 = · · · = dimH Ki = s ≥ m. Then for each 1 ≤ i ≤ l,
γn,n−m-almost all V ∈ G(n, n − m), and H m-almost all a ∈ PV ⊥(Ki),

dimH [(V + a) ∩ Ki] = dimB[(V + a) ∩ Ki] = dimB[(V + a) ∩ Ki]

= dimP [(V + a) ∩ Ki] = s − m.

As the self-similar structure is a special irreducible graph-directed construction,
we have the following corollary:

Corollary 1. Given similitudes Si(x) = ρiRi(x) + bi (1 ≤ i ≤ k), let E denote
the self-similar set generated by {Si}i. Suppose that the set

{Ri}i is contained in a finite subgroup of O(n).

Then assumption (1.2) holds. If dimH E > m, then for γn,n−m-almost all V ∈
G(n, n − m), and H m-almost all a ∈ PV ⊥(E),

dimH EV,a = dimBEV,a = dimBEV,a = dimP EV,a = dimH E − m,

where EV,a = (V + a) ∩ E.

Remark 1. In this remark, for notational convenience, we only discuss Theo-
rem 1 for self-similar sets. By Marstrand’s theorem, for the general compact set E,
we only have

H m(CV ) > 0,

where CV = {a ∈ V ⊥ : dimH [E ∩ (V + a)] = dimH E − m} ⊂ JV = PV ⊥E, and we
cannot obtain the conclusion that

(1.5) CV has full measure H m(JV ) for a.e. direction V,

as shown in Theorem 1 for the self-similar sets.
In the following Example 3, E is not a self-similar set and there is Λ ⊂ G(n, n−m)

with γn,n−m(Λ) > 0 such that

H m(CV ) < H m(JV ) whenever V ∈ Λ.

That means for the general compact sets not self-similar,
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(1) Marstrand’s theorem is sharp, that is, (1.5) is false,
(2) and Theorem 1 is invalid.

Example 3. Suppose that A and B are two self-similar sets, generated by con-
tractions in the form of (1.4), satisfying

m < dimH A < dimH B.

Assume that the least distance between A and B is so large that there exists a set
Λ ⊂ G(n, n − m) with γn,n−m(Λ) > 0 such that for any V ∈ Λ, the sets PV ⊥(A),
PV ⊥(B) are disjoint and H m(PV ⊥A) > 0.

Let E = A ∪ B; then dimH E = dimH B. For any V ∈ Λ and a ∈ PV ⊥(A),
(V +a)∩E ⊂ A, which means (V +a)∩E = (V +a)∩A. By Theorem 1, the section
(V + a) ∩ E has dimension

dimH A − m(< dimH E − m)

for H m almost all a ∈ PV ⊥(A). Here H m(PV ⊥A) > 0 and PV ⊥A ⊂ JV = PV ⊥(E).

Example 4. The Sierpinski carpet E has dimension log 8/ log 3. Let Lθ,b =
{(x, y) : y = (tan θ)x + b} and Jθ = {b : E ∩ Lθ,b 6= ∅}. Then

Jθ =

{

[− tan θ, 1] if θ ∈ (0, π/2),

[0, 1 − tan θ] if θ ∈ (π/2, π),

is an interval.
(1) Then by Theorem 1, there is a small direction set D ⊂ (0, 2π) with H 1(D) =

0 such that given any θ ∈ (0, 2π)\D, for H 1-almost all b ∈ Jθ,

dimH E ∩ Lθ,b = log 8/ log 3 − 1,

where dimH can be replaced with dimB or dimP . But from Marstrand’s Theorem,
we only have

L 1{b : dimH E ∩ Lθ,b = log 8/ log 3 − 1} > 0.

(2) For tan θ ∈ Q, by [LXZ], dimH E ∩ Lθ,b = cθ for a.e. b ∈ Jθ. For example,
θ = π/4, cθ = 0.8858 · · · < log 8/ log 3 − 1 (see also [KP] for tan θ = 1).

(3) When b and tan θ ∈ Q, as shown in [L], the section E ∩ Lθ,b will generate a
graph-directed construction, and thus its dimension can be computed.

Figure 4. The first three steps of generating C × C.

Example 5. Let F = C×C, where C is the Cantor ternary set. Then dimH F =
log 4/ log 3. Let the line Lθ,b = {(x, y) : y = (tan θ)x+b}, and Jθ = {b : F∩Lθ,b 6= ∅}.
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Then by Theorem 1, there is a small set D ⊂ (0, 2π) with H 1(D) = 0 such that
given any θ ∈ (0, 2π)\D , for H 1-almost all b ∈ Jθ,

(1.6) dimH F ∩ Lθ,b = log 4/ log 3 − 1,

where dimH could be dimB or dimP .
Here (1.6) is true for any typical direction, but it is invalid even for θ0 = π/4.

In fact, for almost all b ∈ Jθ0 = [−1, 1], dim F ∩ Lθ0,b = log 2/(3 log 3). That is a
consequence of the following result of Hawkes [Ha]:

dim[C ∩ (C + t)] = log 2/(3 log 3) for H 1 a.e. t ∈ [−1, 1].

where log 2/(3 log 3) < log 4/ log 3 − 1.
In addition, when b and tan θ ∈ Q, as shown in [L], the section F ∩ Lθ,b will

generate a graph-directed construction and thus its dimension can be computed.
For example, let G denote the corresponding line section with respect to the line
y = 2x/5. Then

dimH G = dimB G = dimP G = 0.34793 · · · .

Example 6. Given {ρi}
k
i=1 satisfying 0 < ρi < 1 and

∑k
i=1(ρi)

s = 1 with s >
m(∈ N). Let E(c) ⊂ Rn be the self-similar set generated by Tix = ρix+ci : Rn → Rn

(1 ≤ i ≤ k), where c = (c1, · · · , ck) ∈ (Rn)k. Let JV (c) = {a ∈ V ⊥ : E(c)∩ (V +a) 6=
∅}. By Theorem 9.12 in [Fa2], just for the simple case of similitudes, for (H n)k

almost all (c1, · · · ck) ∈ (Rn)k,

dimH E(c) = s.

It follows from Theorem 1 that for γn,n−m almost all V ∈ G(n, n−m), H m(JV (c)) > 0
and for any dimension dim appearing in Theorem 1,

dim[E(c) ∩ (V + a)] = s − m.

for H m almost all a ∈ JV (c).

Example 7. The Koch curve H has dimension log 4/ log 3 > 1. Then by Corol-
lary 1, for a typical direction V = {(x, y) : y = (tan θ)x} and a typical parameter
a ∈ JV (an interval), the section (V + a) ∩ H has dimension log 4/ log 3 − 1.

Example 8. In Figure 5, solid rectangles I and II include several copies with
ratio 1/2 of themselves, respectively. Any related similitude has the scaling form,
Se(x) = ρex + be, and thus (1.2) holds. The limit sets have dimension log 3/ log 2.
As the limit sets are path-connected, their projections are intervals. Then for typical
parameters, the corresponding section has dimension log 3/ log 2 − 1.

1
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II

1

I I

I

II

II

II

1

Figure 5. An irreducible graph-directed construction.



On the dimensions of sections for the graph-directed sets 521

Example 9. Figure 6 is a construction of Penrose fractals. Here the dimen-

sion of two connected limit sets is log 5/ log(
√

5+3
2

). Then by Theorem 1 for typical

parameters, the corresponding section has dimension log 5/ log(
√

5+3
2

) − 1.
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Figure 6. An irreducible construction of Penrose fractals.

1.4. Exceptional cases: Theorems 2 and 3. In Theorem 1, we focus on the
typical directions, but what about the exceptional directions? The following is our
second result about exceptional directions.

Theorem 2. Suppose {K1, · · · , Kl} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimH K1 = · · · = dimH Ki = s ≥ m. If V ∈ G(n, n − m), then there
exist constants c1, c2, c3, c4 depending on V , satisfying c2, c4 ∈ [c1, c3] and c3 ≤ (s−m)
such that for H m almost all a ∈ PV ⊥(Kj),

dimH [(V + a) ∩ Kj] = c1, dimB[(V + a) ∩ Kj] = c2,

dimB[(V + a) ∩ Kj] = c3, dimP [(V + a) ∩ Kj] = c4.

As the self-similar structure is a special irreducible graph-directed construction,
we have the following corollary:

Corollary 2. Given similitudes Si(x) = ρiRi(x) + bi (1 ≤ i ≤ k), let E denote
the self-similar set generated by {Si}i. Suppose that the set

{Ri}i is contained in a finite subgroup of O(n).

Then assumption (1.2) holds. Given V ∈ G(n, n − m) for some j, then there exist
constants c1, c2, c3, c4 only depending on V and E, satisfying c2, c4 ∈ [c1, c3] and
c3 ≤ (s − m) such that for H m almost all a ∈ PV ⊥(E),

dimH [(V + a) ∩ E] = c1, dimB[(V + a) ∩ E] = c2,

dimB[(V + a) ∩ E] = c3, dimP [(V + a) ∩ E] = c4.

Remark 2. As in Example 4 (or 5), for the fixed direction θ = π/4 and for
almost all a ∈ Jθ (or Jθ), the Hausdorff dimension of sections is not log 8/ log 3 − 1
(or log 4/ log 3 − 1). That means the exceptional set is not empty, that is,

{

V : H m{a ∈ PV ⊥(E) : dim(EV,a) = s − m} = H m(PV ⊥(E)) > 0
}

$ {V : H m(PV ⊥(E)) > 0}.

Remark 3. Theorem 2 is valid for each fixed direction but only meaningful for
the direction V satisfying H m(PV ⊥(Ki)) > 0 for all i.
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Remark 4. In Theorems 1 and 2, similitudes need not satisfy the open set

condition of the graph-directed construction. Also, we do not need the condition
0 < H s(Ki) < ∞ appearing in Marstrand’s theorem.

For every self-similar set E, we always have H s(E) < ∞ ( e.g., see [Fa3]). But
H s(E) > 0 maybe fails. For example, when s = dimH E is the self-similar dimension,

that is,
∑k

i=1 ρs
i = 1, then by Schief’s theorem [S], we notice that H s(E) > 0 if and

only if the family of similitudes satisfies the open set condition.

Let dim be any dimension function on the subsets of Rn satisfying the following
three conditions:

(C1) dim(A) ≤ dim(B) if A ⊂ B ⊂ Rn;
(C2) dim(A) ≤ dim(S(A)) for any contracting similitude S : Rn → Rn and A ⊂

Rn;
(C3) Given a Borel set A ⊂ Rn and V ∈ G(n, n − m), the function f : V ⊥ → R

defined by f(a) = dim[(V + a) ∩ A)] is H m-measurable.

For example, dimH , dimP , dimB, dimB satisfy these conditions, and dim(A) =
dim(S(A)) here (For (C3), see [MM] and Proposition 2).

We have a generalization of Theorem 2:

Theorem 3. Suppose {K1, · · · , Kl} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimH K1 = · · · = dimH Ki = s ≥ m. Let dim be any dimension
function satisfying (C1)–(C3). If V ∈ G(n, n − m), then there exist constants c
depending on V and dim such that for all j and for H m-almost all a ∈ PV ⊥(Kj),

dim[(V + a) ∩ Kj] = c.

The rest of the paper is organized as follows. In Section 2, we obtain some
preliminary on sections, including a weaker Marstrand’s theorem and a typical esti-
mation of the upper Box dimension of plane sections. In Section 3, we provide the
structure of the projection for graph-directed sets satisfying assumption (1.2). In
particular, the projection of the scaling self-similar set is a scaling self-similar set. In
Section 4, we provide a proposition of ergodic type for general graph-directed sets
without assumption (1.2). Using the proposition of ergodic type, we prove Theorems
in Section 5. In Section 3, Section 4 and Section 5, we deal with scaling self-similar
sets before the graph-directed sets, because the method of dealing with the scaling
self-similar sets is easy to read and leads to the general method.

2. Preliminaries on sections

Recall some classical results:

(1) Projection theorem (e.g., see [Mat5]): If E ⊂ Rn is a Borel set with dimH E >
m, then for γn,m-a.e. V ∈ G(n, m), H m[PV (E)] > 0.

(2) Marstrand’s theorem (e.g., see [Mat5]): Suppose m ≤ s ≤ n and A ⊂ Rn is
a Borel set with 0 < H s(A) < ∞. Then for γn,n−m-a.e. V ∈ G(n, n − m),

H m{a ∈ V ⊥ : dimH [A ∩ (V + a)] = s − m} > 0.

(3) If A ⊂ Rn is a Borel set and 0 ≤ t < dimH A, then there is a compact set
B ⊂ A satisfying 0 < H t(B) < ∞ (e.g., see [Fa2]).
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Proposition 1. Suppose m ≤ s ≤ n, and A ⊂ Rn is a Borel set with dimH A =
s. Then for any fixed t with m ≤ t < s, for γn,n−m-a.e. V ∈ G(n, n − m),

(2.1) H m{a ∈ V ⊥ : dimH [A ∩ (V + a)] ≥ t − m} > 0.

Proof. By the above classical result (3), there is a compact set B ⊂ A, such that
0 < H t(B) < ∞. It follows from Marstrand’s theorem that for a.e. V ,

H m{a ∈ V ⊥ : dimH [A ∩ (V + a)] ≥ t − m}

≥ H m{a ∈ V ⊥ : dimH [B ∩ (V + a)] ≥ t − m} > 0. �

Proposition 2. [MM] The following functions

f1(a) = dimH [K ∩ (W⊥ + a)], f4(a) = dimP [K ∩ (W⊥ + a)],

f2(a) = dimB[K ∩ (W⊥ + a)], f3(a) = dimB[K ∩ (W⊥ + a)],

are H m-measurable for any compact set K and any m-dimensional subspace W ⊂
Rn.

2.1. Estimation of upper box dimension. The following proposition is an
analogue of some classical results (see Lemma 5 of [Fa1] and Chapter 10 of [Mat5]):
If F ⊂ Rn and V ∈ G(n, n − m),

dimP [(V + a) ∩ F ] ≤ max{0, dimP F − m},

dimH [(V + a) ∩ F ] ≤ max{0, dimH F − m},

for H m-almost all a ∈ V ⊥.

Proposition 3. Given F ⊂ Rn and an (n − m)-dimensional subspace V , then
for H m-almost all a ∈ V ⊥ we have

(2.2) dimB[(V + a) ∩ F ] ≤ max{0, dimBF − m}.

The proof is standard, please refer to the proof of Lemma 5 in [Fa1].

3. Projection of graph-directed set

Given an (n − m)-dimensional subspace V ⊂ Rn, let PV ⊥ : Rn → V ⊥ be the
orthogonal projection from Rn onto V ⊥.

3.1. Version of scaling self-similar sets. Suppose Fi(x) = ρix + bi (1 ≤ i ≤

k), and E is the self-similar set generated by {Fi}
k
i=1, i.e., E =

⋃k
i=1 Fi(E). Now, a

family {Si}
k
i=1 of the self-contractions of V ⊥ is defined by

Si(x) = PV ⊥ ◦ Fi|V ⊥ = ρix + PV ⊥(bi), ∀ x ∈ V ⊥ (1 ≤ i ≤ k).

We have the following proposition.

Proposition 4. JV = PV ⊥(E) ⊂ V ⊥ is a self-similar set, that is,

(3.1) JV =
⋃

i

Si(JV ).

Proof. In fact, we have

PV ⊥(E) =

k
⋃

i=1

(PV ⊥ ◦ Fi)(E) =

k
⋃

i=1

(PV ⊥ ◦ Fi|V ⊥ ◦ PV ⊥)E =

k
⋃

i=1

Si(PV ⊥E),

and thus, JV = PV ⊥(E) is the invariant set of {Si}
k
i=1. �
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In general, we may consider some dimension function dim satisfying (C1) and
(C2) as follows.

(C1) dim(A) ≤ dim(B) if A ⊂ B ⊂ Rn;
(C2) dim(A) ≤ dim(S(A)) for any contracting similitude S : Rn → Rn and A ⊂

Rn.

For example, dimH , dimP , dimB, dimB satisfy these conditions with dim(A) =
dim(S(A)).

Now, we have the following proposition.

Proposition 5. For any dim satisfying(C1) and (C2),

(3.2) dim EV,Si(a) ≥ dim EV,a,

Proof. In fact,

EV,a = (V + a) ∩ E =

k
⋃

i=1

[(V + a) ∩ Fi(E)]

=

k
⋃

i=1

FiF
−1
i [(V + a) ∩ Fi(E)] =

k
⋃

i=1

Fi[F
−1
i (V + a) ∩ (E)],

with

F−1
i (V + a) = ρ−1

i (V + a) − ρ−1
i bi (asbi = PV bi + PV ⊥bi)

= [ρ−1
i V − ρ−1

i (PV bi)] + [ρ−1
i a − ρ−1

i PV ⊥bi] = V + S−1
i (a),

and thus

EV,a =

k
⋃

i=1

Fi[(V + S−1
i (a)) ∩ (E)] =

k
⋃

i=1

Fi(EV,S−1
i (a)) =

⋃

i,S−1
i (a)∈JV

Fi(EV,S−1
i (a)),

where Fi(EV,S−1
i (a)) is a similar copy of EV,S−1

i (a). Then it follows from (C1) and (C2)

that

dim[Fi(EV,S−1
i (a))] ≥ dim EV,S−1

i (a),

and thus

dim EV,a ≥ max
i,S−1

i (a)∈JV

dim EV,S−1
i (a).

In particular, as a = S−1
i (Sia) ∈ JV ,

dim EV,Si(a) ≥ dim EV,a. �

3.2. Version of graph-directed constructions. For each directed edge e in
the irreducible graph G, we have a similitude

Se(x) = ρeRex + be.

Then

Ai,j = {Re1 ◦ · · · ◦ Rek
: e1 · · · ek is a path from i to j}.

From the irreducibility of the graph, Ai,j is non-empty for any 1 ≤ i, j ≤ l.
Given W ∈ G(n, m), let PW : Rn → W be the orthogonal projection from Rn

onto W. Notice that for any orthogonal transformation R,

(3.3) R−1PWR = PR−1W .
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Since Ki =
⋃

j

⋃

e∈Γi,j

Se(Ki), we have

(PW Ki) =
⋃

j

⋃

e∈Γi,j

PW Se(Kj) =
⋃

j

⋃

e∈Γi,j

[ρePW Re(Kj) + PW be]

=
⋃

j

⋃

e∈Γi,j

[ρeRe(R
−1
e PWRe)(Kj) + PW be].

Then (3.3) yields

(3.4) (PWKi) =
⋃

j

⋃

e∈Γi,j

[ρeRe(PR−1
e W (Kj)) + PW be].

That means that (PWKi) includes a similar copy of PR−1
e W (Kj), where e is an edge

from i to j and the similitude from (PR−1
e W (Kj) ⊂)R−1

e W to (PW (Ki) ⊂)W is

(3.5) S(x) = ρeRe|R−1
e W (x) + PW be.

Fix W ∗ ∈ G(n, m) and 1 ≤ j∗ ≤ l, and define

(3.6) Ξ(W ∗, j∗) =
⋃

i

{(R−1W ∗, i) : R ∈ Aj∗,i}.

Then there is a graph-directed construction on the graph with the vertex set Ξ(W ∗, j∗).
(1) For each (W, i) ∈ Ξ(W ∗, j∗), we have the compact set

(3.7) K(W,i) = PW Ki.

(2) For any (W, i), (W ′, i′) ∈ Ξ(W ∗, j∗), if there is an edge e from i to i′ in the
graph G such that

(3.8) W ′ = R−1
e W,

then we consider the edge e as an edge in Ξ(W ∗, j∗) from (W, i) to (W ′, i′), which is
still denoted by e. For this edge, let

(3.9) Te(x) = ρeRe|W ′(x) + PW be

be the contracting similitude from (PW ′Ki′ ⊂)W ′ to (PWKi ⊂)W with respect to e
such that Te(x)(PW ′Ki′) ⊂ PW Ki.

Let Γ(W,i),(W ′,i′) be the set of all the edges from (W, i) to (W ′, i′) and Γk
(W,i),(W ′,i′)

the set of all the paths from (W, i) to (W ′, i′) of length k.
(3) By (3.4), we have

(3.10) K(W,i) =
⋃

(W ′,i′)

⋃

e∈Γ(W,i),(W ′ ,i′)

Te[K(W ′,i′)].

Naturally, for each positive integer k,

(3.11) K(W,i) =
⋃

(W ′,i′)

⋃

e∗∈Γk
(W,i),(W ′ ,i′)

Te∗ [K(W ′,i′)],

where Te∗ = Te1 ◦ · · · ◦ Tek
for e = e1 · · · ek.

Now, in the above construction, there is an edge e in G from i to j, if and only
if there is an edge from (W, i) to (R−1

e W, j). An important fact is that the above
construction is irreducible.
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Proposition 6. Ξ(W ∗, j∗) =
⋃

i

⋃

R∈Aj∗,i

(R−1W ∗ × {i}) is irreducible under the

above construction.

Proof. In fact, for any (W, i), (W ′, i′) ∈ Ξ(W ∗, j∗), one has

W = R−1W ∗ with R ∈ Aj∗,i,

W ′ = (R′)−1W ∗ with R′ ∈ Aj∗,i′.

Now we seek for a path from (W, i) to (W ′, i′).
By (2) of Lemma 1, Aj∗,i′ = Aj∗,iAi,i′, so there is a path e∗ = e1 · · · ek from i to

i′, passing through i = j0, j1, · · · , jk = i′, such that R′ = R · Re∗ , which implies

W ′ = (R′)−1W ∗ = R−1
ek

· · ·R−1
e1

R−1W ∗

Therefore, there is a path from (W, i) to (W ′, i′):

(W, i) = (R−1W ∗, j0)

→ (R−1
e1

R−1W ∗, j1) ∈ A−1
j∗,j1

× {j1} ⊂ Ξ

→ · · ·

→ (W ′, i′) = (R−1
ek

· · ·R−1
e1

R−1W ∗, jk) ∈ A−1
j∗,jk

× {jk} ⊂ Ξ. �

Example 10. For the Koch curve, {Re}e = {1, 1, eiπ/3, e−iπ/3}. Given W ∈
G(2, 1), let Wk = eikπ/3W for 0 ≤ k ≤ 5. Here Figure 7 is the graph for Ξ = Ξ(W, 1).

(W ,1)1

(W ,1)5

(W ,1)2

(W ,1)3 (W ,1)0

(W ,1)4

Figure 7. Ξ = Ξ(W, 1) for the Koch curve.

Given W ∗ ∈ G(n, m) and j∗ ∈ N ∩ [1, l], let

(3.12) Ξ =
⋃

i

A−1
j∗,iW

∗ × {i}.

For (W, i) ∈ Ξ, a function g(W,i) : W → R is defined by

(3.13) g(W,i)(x) = dim[(W⊥ + x) ∩ Ki] for x ∈ W,

where dim is any dimension function satisfying (C1) and (C2).
We need the following proposition:

Proposition 7. For any (W1, i1), (W2, i2) ∈ Ξ and any edge e from (W1, i1) to
(W2, i2),

(3.14) g(W1,i1)(Te(x)) ≥ g(W2,i2)(x),
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that is

(3.15) dim[(W⊥
1 + Te(x)) ∩ Ki1 ] ≥ dim[(W⊥

2 + x) ∩ Ki2 ]

for any x ∈ PW2Ki2 . Here (C1) and (C2) hold.

Proof. Here W2 = R−1
e W1, W⊥

2 = R−1
e W⊥

1 with the edge e from i1 to i2 in the
graph G, and for x ∈ W2,

Te(x) = ρeRe|W2(x) + PW1be.

It follows from the graph-directed construction that

Ki1 ⊃ Se(Ki2),

where Se(x) = ρeRe(x) + be. Hence,

(W⊥
1 + Te(x)) ∩ Ki1 ⊃ (W⊥

1 + Te(x)) ∩ (Se(Ki2))

= SeS
−1
e [(W⊥

1 + Te(x)) ∩ (Se(Ki2))]

= Se[(S
−1
e (W⊥

1 + Te(x))) ∩ Ki2 ].

As Se is a similitude and (C1), (C2) hold, we have

dim[(W⊥
1 + Te(x)) ∩ Ki1 ] ≥ dim{Se[(S

−1
e (W⊥

1 + Te(x))) ∩ Ki2]}

≥ dim[(S−1
e (W⊥

1 + Te(x))) ∩ Ki2 ],

where

S−1
e (W⊥

1 + Te(x))) = ρ−1
e R−1

e [W⊥
1 + (Tex − be)]

= W⊥
2 + ρ−1

e R−1
e [ρeRe(x) + PW1be − be]

= W⊥
2 + x + ρ−1

e R−1
e (PW⊥

1
bi) = W⊥

2 + x,

since
ρ−1

e [R−1
e (PW⊥

1
bi)] ∈ ρ−1

e [R−1
e W⊥

1 ] = ρ−1
e W⊥

2 = W⊥
2 .

Therefore,
dim[(W⊥

1 + Te(x)) ∩ Ki1 ] ≥ dim[(W⊥
2 + x) ∩ Ki2]. �

4. Result of ergodic type

4.1. Version of scaling self-similar sets. Suppose that {Ti(x) = ρiRi(x) +
bi}

k
i=1 is a family of contracting similitudes of Rm, where {Ri}

k
i=1 are orthogonal

transformations of Rm. Let F (⊂ Rm) denote the self-similar set generated by {Ti}
k
i=1.

For notational convenience, write

Ti1···ik = Ti1 ◦ · · · ◦ Tik .

Proposition 8. If B ⊂ F is an H m-measurable set such that

(4.1) ∪k
i=1Ti(B) ⊂ B,

then H m(B) = H m(F ) or 0.

Proof. Without loss of generality, we suppose H m(F ) > 0. On the contrary, we
may assume 0 < H m(B) < H m(F ). Then

0 < H m(F\B) < H m(F ).

Since ∪iTi(B) ⊂ B, we have Ti1···ip(B) ⊂ B.
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Obviously, we have

(Ti1···ip)
−1(F\B) ⊂ Rm\B for any i1 · · · ip.

Since H m(F\B) > 0, we can take a Lebesgue point x0 ∈ F\B with H m-density 1,
which implies that for any δ > 0 there exists ε0 > 0 such that

(4.2)
H m[I ∩ (F\B)]

H m(I)
≥ 1 − δ,

whenever x0 is the center of the ball I ⊂ Rm of diameter diam(I) ≤ ε0.
Take an integer p such that 2(maxi ρi)

p diam(F ) ≤ ε0. As F = ∪iTi(F ),

F =
⋃

j1···jp

Tj1···jp
(F ).

Since x0 ∈ F , we may assume x0 ∈ Ti1···ip(F ) for a certain sequence i1 · · · ip ∈
{1, · · · , k}p. Then let y = (Ti1···ip)

−1(x0) ∈ F . Choose a minimal ball I∗ centered
at y and covering F , which implies F ⊂ I∗, and the diameter of I∗ is less than
2 diam(F ). Then the ball I = Ti1···ip(I

∗) centered at x0 with diameter

diam(I) = (ρi1 · · · ρip) diam(I∗) ≤ (max
i

ρi)
p diam(I∗) ≤ 2(max

i
ρi)

p diam(F ) ≤ ε0.

Therefore, by (4.2), we have

H m[(Ti1···ip)
−1(I ∩ (F\B))]

H m[(Ti1···ip)
−1(I)]

=
(ρi1 · · · ρip)

−mH m[I ∩ (F\B)]

(ρi1 · · · ρip)
−mH m(I)

≥
H m[I ∩ (F\B)]

H m(I)
≥ 1 − δ.

We also have

(Ti1···ip)
−1[I ∩ (F\B)] ⊂ (Ti1···ip)

−1(F\B) ∩ (Ti1···ip)
−1(I)

⊂ (Rm\B) ∩ I∗ = I∗\B

and (Ti1···ip)
−1(I) = I∗. This implies that

(4.3)
H m(I∗\B)

H m(I∗)
≥

H m[(Ti1···ip)
−1[I ∩ (F\B)]]

H m[(Ti1···ip)
−1(I)]

≥ 1 − δ.

On the other hand, since the radius of I∗ is less than diam(F ), by [Mat5],

H m(I∗) = 2mα(m)−1L m(I∗) ≤ 2m[diam(F )]m,

we have
H m(I∗\B)

H m(I∗)
= 1 −

H m(B)

H m(I∗)
≤ 1 −

H m(B)

2m[diam(F )]m
.

This is in contradiction with the inequality (4.3) when δ is small enough so that

δ < H m(B)
2m[diam(F )]m

. �

Remark 5. The condition
⋃k

i=1 Ti(B) ⊂ B is like that of the definition of the
upper self-similar set [Fa3]. However, here we only need the assumption that B is a
Lebesgue measurable set.
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Corollary 3. Suppose f : F → R is an H m-measurable function such that for
any a ∈ F and 1 ≤ i ≤ k,

(4.4) f(Ti(a)) ≥ f(a).

Then
f(a) = d

for H m-almost all a ∈ F .

Proof. Assume H m(F ) > 0. Let d be the H m-essential upper bound of f . For
any integer p > 0, let us define the set

Cp = {a ∈ F : f(a) ≥ d − 1/p}.

It follows from the definition of the essential upper bound that for any p,

H m(Cp) > 0.

As f(Ti(a)) ≥ f(a) for any a ∈ F , we have
⋃

i

Ti(Cp) ⊂ Cp and H m(Cp) > 0.

Due to Proposition 8, H m(Cp) = H m(F ).
Consequently, the following subset of F

C = {a ∈ F : f(a) ≥ d} =
⋂

p≥1

Cp

has full measure H m(F ). Since d is the essential upper bound of f , we have

f(a) = d

for H m-almost all a ∈ F . �

4.2. Version of graph-directed constructions. We shall obtain a result of
ergodic type, in the sense that sets satisfying certain conditions have full measure or
measure zero.

Let G be an irreducible directed graph including l vertexes {1, · · · , l}. For each
i, there is an m-dimensional linear space Vi equipped with Euclidean metric and
Hausdorff measure H m. For any edge e from i to j, there is a contracting similitude
Te : Vj → Vi. That means

(4.5) dVi
(Te(x), Te(x

′)) = ρedVj
(x, x′)

for some ratio ρe ∈ (0, 1).
By [MW], there exists a unique family of compact sets {M1, · · · , Ml} satisfying

Mi ⊂ Vi and

(4.6) Mi =
⋃

j

⋃

e∈Ei,j

Te(Mj),

where Ei,j is the set of all the edges from i to j. Let E k
i,j be the set of all the paths of

length k from i to j. For the path e1 · · · ek, let Te∗ = Te1◦· · ·◦Tek
and ρe∗ = ρe1 · · · ρek

.

Proposition 9. Suppose {Bi}
l
i=1 are H m-measurable sets satisfying

(1) Bi ⊂ Mi,
(2)

⋃

j

⋃

e∈Ei,j

Te(Bj) ⊂ Bi.
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Then either
H m(Bi) = H m(Mi) for all i,

or
H m(Bi) = 0 for all i.

Proof. Without loss of generality, we suppose that there exists j0 such that

H m(Bj0) > 0.

Due to the irreducibility of G and the fact that

Mi =
⋃

j

⋃

e∈E k
i,j

Te∗(Mj) for every k,

for any i, the set Bi contains Te∗(Bj0) for a certain path e∗, where Te∗(Bj0) is a similar
copy of Bj0 and thus has positive H m-measure. Hence,

H m(Bi) > 0 for all i.

This also shows that
H m(Mi) > 0 for all i.

As a result, diam(Mi) > 0 for all i.
To prove the proposition, we assume on the contrary that 0 < H m(Bi0) <

H m(Mi0) for some i0. Then

0 < H m[Mi0\Bi0 ] < H m(Mi0).

For any path e∗ passing from i to j, we conclude that

(Te∗)
−1[Mi\Bi] ⊂ Vj\Bj .

Otherwise, take a point b ∈ [(Te∗)
−1(Mi\Bi)] ∩ Bj . Then we have

Te∗(b) ∈ Mi\Bi and Te∗(b) ∈ Te∗(Bj) ⊂ Bi,

which yields a contradiction.
Because H m[Mi0\Bi0 ] > 0, we can take a Lebesgue point x0 ∈ Mi0\Bi0 with

H m-density 1, which implies that for any ε > 0, there exists δ > 0 such that

(4.7)
H m[I ′ ∩ (Mi0\Bi0)]

H m(I ′)
≥ 1 − ε,

whenever I ′ ⊂ Vi0 is a ball centered at x0 with diameter diam(I ′) ≤ δ.
Take an integer p such that

2(max
e

ρe)
p(max

i
diam(Mi)) ≤ δ/2.

Then we have
Mi0 =

⋃

j

⋃

e∗∈E p
i0,j

Te∗(Mj).

As x0 ∈ Mi0 , we may assume x0 ∈ Te∗(Mj) for a certain path e∗ ∈ E p
i0,j. Let

y = (Te∗)
−1(x0) ∈ Mj .

Choose a minimal ball I ⊂ Vj centered at y and covering Mj , which implies Mj ⊂ I
and diam(I) ≤ 2 diam(Mj). Then the ball I∗ = Te∗(I) ⊂ Vi0 centered at x0 with
diameter

diam(I∗) = (ρe∗) diam(I) ≤ (max
e

ρe)
p diam(I) ≤ 2(max

e
ρe)

p diam(Mj) ≤ δ/2.
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Therefore, by (4.7), we have

H m[(Te∗)
−1(I∗ ∩ (Mi0\Bi0)]

H m[(Te∗)−1(I∗)]
=

(ρe∗)
−mH m[I∗ ∩ (Mi0\Bi0)]

(ρe∗)−mH m(I∗)

=
H m[I∗ ∩ (Mi0\Bi0)]

H m(I∗)
≥ 1 − ε.

In fact, since

(Te∗)
−1[I∗ ∩ (Mi0\Bi0)] = (Te∗)

−1(I∗) ∩ (Te∗)
−1[Mi0\Bi0] ⊂ I ∩ ((Vj)\Bj) ⊂ I\Bj ,

and (Te∗)
−1(I∗) = I, we have

H m(I\Bj)

H m(I)
≥

H m{(Te∗)
−1[I∗ ∩ (Mi0\Bi0)]}

H m[(Te∗)−1(I∗)]
≥ 1 − ε,

that is,

(4.8)
H m(I\Bj)

H m(I)
≥ 1 − ε.

On the other hand, H m(I) = 2mα(m)−1L m(I) ≤ 2m[diam(Mj)]
m, and thus

H m(I\Bj)

H m(I)
= 1 −

H m(Bj)

H m(I)
≤ 1 −

H m(Bj)

2m[diam(Mj)]m
.

This is in contradiction with the inequality (4.8) when ε is small enough, so that

ε < min
j′

H m(Bj′)

2m[diam(Mj′)]m
,

because here H m(Bj′) > 0 for all j′ shown above. �

Corollary 4. Suppose gi : Mi → R is an H m-measurable function for each
1 ≤ i ≤ l. If for any edge e and any x ∈ Mj ,

(4.9) gi(Te(x)) ≥ gj(x),

then there is a constant d such that for any i,

gi(y) = d,

for H m-almost all y ∈ Mi.

Proof. Without loss of generality, suppose H m(Mi) > 0 for all i. Let

d = max
i

[ess sup(gi)].

In particular, take i0 such that d = ess sup gi0 . For any integer p > 0, let the set

Bp,i = {x ∈ Mi : gi(x) ≥ d − 1/p}.

It follows from the definition of the essential upper bound that

H m(Bp,i0) > 0.

Using the inequality gi(Te(x)) ≥ gj(x) for e ∈ Ei,j, we have
⋃

j

⋃

e∈Ei,j

Te(Bp,j) ⊂ Bp,i.
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Since H m(Bp,i) > 0, applying Proposition 9 for all i, we have

H m(Bp,i) = H m(Mi) for any p ≥ 1.

It means that for any i the following subset of Mi

Ci =
⋂

p

Bp,i = {x ∈ Mi : gi(x) ≥ d}

has full measure H m(Mi). Since d is the maximal essential upper bound of {gi}i,
we have

gi(x) = d,

for H m-almost all x ∈ Mi. �

5. Proofs of Theorems

5.1. Version of scaling self-similar sets.

5.1.1. Proof of Theorem 1. It follows from Proposition 3 that given V ∈
G(n, n − m), then for H m-almost all a ∈ JV ,

dimBEV,a ≤ max(0, dimBE − m).

For a self-similar set, we always have dimB E = dimH E (e.g., see [Fa3]). And thus,
we have

(5.1) dimBEV,a ≤ max(0, s − m).

Case I: s = m. Using (5.1) and the inequality

dim EV,a ≤ dimBEV,a

for dim = dimH , dimB and dimP , we obtain the typical value 0 = s − m.

Case II : s > m. By Proposition 1, given t ∈ Q with m < t < s, for γn,n−m-a.e.
V ∈ G(n, n − m),

H m(Ωt) > 0,

where
Ωt = {a : dimH [E ∩ (V + a)] ≥ t − m} ⊂ PV ⊥E ⊂ V ⊥.

Let f1(a) = dimH(E ∩ (V + a)). Then f1 is measurable. By Proposition 5,

f1(Sia) ≥ f1(a) for all i.

As a result,
∪iSi(Ω

t) ⊂ Ωt with H m(Ωt) > 0,

where {Si : V ⊥ → V ⊥}i are similitudes. It follows from Proposition 8 that

H m(Ωt) = H m(PV ⊥E),

where PV ⊥E = ∪Si(PV ⊥E) (Proposition 4).
Letting t → s, we have

(5.2) H m{a : dimH(EV,a) ≥ s − m} = H m(
⋂

t∈Q,t<s

Ωt) = H m(PV ⊥E).

for γn,n−m-a.e. V ∈ G(n, n − m). Also we notice that

(5.3) dimBEV,a, dimP EV,a ∈ [dimH EV,a, dimBEV,a].

Therefore, Theorem 1 is proved by using (5.1)–(5.3).
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5.1.2. Proof of Theorems 2 and 3. Since dimH , dimB, dimB and dimP satisfy
(C1)–(C3), it is enough to prove Theorem 3. Here by Proposition 5, the conditions
(C1) and (C2) imply that for any a ∈ PV ⊥(E) = ∪iSi(PV ⊥(E)),

(5.4) f(Sia) ≥ f(a),

where f(a) = dim EV,a is H m-measurable by (C3) and {Si}i are contracting simili-
tudes of V ⊥. Therefore, it follows from Corollary 3 that

(5.5) dim EV,a = f(a)
a.e.

= c,

where c is a constant depending on V and dim.

5.2. Version of graph-directed constructions.

5.2.1. Proof of Theorem 1.

Lemma 2. Suppose dimH K1 = · · · = dimH Kl = s. Given any V ∈ G(n, n−m),
for each 1 ≤ i ≤ l and H m-almost all a ∈ PV ⊥(Ki)

(5.6) dimB[(V + a) ∩ Ki] ≤ max(0, s − m).

Proof. Notice that the irreducible graph-directed sets are always regular, that is,
dimH Ki = dimB Ki for each i (Section 3.1 of [Fa3]). Then the lemma follows from
Proposition 3. �

Case I : s = m. Using (5.6) and the inequality

dim[(V + a) ∩ Ki] ≤ dimB[(V + a) ∩ Ki]

for dim = dimH , dimB and dimP , we obtain the typical value 0 = s − m.

Case II : s > m.

Lemma 3. If dimH K1 = · · · = dimH Kl = s > m, then for each j and γn,n−m

almost all V ∈ G(n, n − m), we have H m[PV ⊥(Kj)] > 0 and

dimH [(V + a) ∩ Kj] ≥ s − m

for H m almost all a ∈ PV ⊥(Kj).

Proof. For t ∈ (m, s) ∩ Q, let

Ωt
(W,i) = {a ∈ W : dimH [(W⊥ + a) ∩ Ki] ≥ t − m}.

It follows from Proposition 1 that for γn,m-almost all W ∈ G(n, m),

(5.7) H m(Ωt
(W,i)) > 0, ∀ t ∈ (m, s) ∩Q and i.

Let

Π = {W ∈ G(n, m) : H m(Ωt
(W,i)) > 0, ∀ t ∈ (m, s) ∩ Q and i}.

Then

γn,m[G(n, m)\Π] = 0.

Given W ∗ ∈ Π and j∗ ∈ N ∩ [1, l], let

Ξ = Ξ(W ∗, j∗).

For (W, i) ∈ Ξ and t ∈ (m, s) ∩Q, let

Ωt
(W,i) = {a ∈ W : dimH [(W⊥ + a) ∩ Ki] ≥ t − m}.
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For any edge e from (W1, i1) to (W2, i2) and any x ∈ Ωt
(W2,i2)

, by Proposition 7, we
have

dim[(W⊥
1 + Te(x)) ∩ Ki1 ] ≥ dim[(W⊥

2 + x) ∩ Ki2 ] ≥ t − m,

which implies

Te(Ω
t
(W2,i2)) ⊂ Ωt

(W1,i1).

Now, we have

(1) By (3.10), {PWKi}(W,i)∈Ξ are compact sets satisfying

K(W,i) =
⋃

(W ′,i′)

⋃

e∈Γ(W,i),(W ′ ,i′)

Te[K(W ′,i′)],

and Ξ is irreducible (Proposition 6).
(2) For any (W, i) ∈ Ξ,

Ωt
(W,i) ⊂ PWKi.

For any edge e from (W1, i1) to (W2, i2),

Te(Ω
t
(W2,i2)) ⊂ Ωt

(W1,i1).

(3) Since W ∗ ∈ Π,

H m(Ωt
(W ∗,j∗)) > 0.

Applying (1)–(3) to Proposition 9, we have

H m(Ωt
(W,i)) = H m(PW Ki)

for any (W, i) ∈ Ξ and t ∈ (m, s) ∩ Q. Letting t → s, since (W ∗, j∗) ∈ Ξ, we have

H m{a ∈ W ∗ : dimH [((W ∗)⊥ + a) ∩ Kj∗] ≥ s − m} = H m(PW ∗Kj∗)

for any W ∗ ∈ Π and 1 ≤ j∗ ≤ l. The lemma is proved since γn,m[G(n, m)\Π] = 0. �

Now notice that for any set A,

(5.8) dimBA, dimP A ∈ [dimH A, dimBA].

Therefore, Theorem 1 is proved by Lemma 2, 3 and (5.8).

5.2.2. Proof of Theorems 2 and 3. Since dimH , dimB, dimB and dimP satisfy
(C1)–(C3), it is enough to prove Theorem 3. Let

g(W,i)(x) = dim[(W + x) ∩ Ki].

Then g(W,i)(x) is H m-measurable by (C3).
By Proposition 7, the conditions (C1) and (C2) imply that given an edge e

from (W1, i1) ∈ Ξ to (W2, i2) ∈ Ξ, then for any x ∈ PW2Ki2 ,

g(W1,i1)(Te(x)) ≥ g(W2,i2)(x).

Therefore, it follows from (C3) and Corollary 4 that

dim[(W + x) ∩ Ki] = g(W,i)(x)
a.e.

= c,

where c is a constant depending on W and dim, This completes the proof of Theo-
rems 2 and 3.
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