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Abstract. Let M be a closed surface and f a diffeomorphism of M . A diffeomorphism is said
to permute a dense collection of domains, if the union of the domains are dense and the iterates of
any one domain are mutually disjoint. In this note, we show that if f ∈ Diff1+α(M), with α > 0,
and permutes a dense collection of domains with bounded geometry, then f has zero topological
entropy.

1. Definitions and statement of results

A result of Norton and Sullivan [8] states that a diffeomorphism f ∈ Diff3
0(T

2)
having Denjoy-type can not have a wandering disk whose iterates have the same
generic shape. By diffeomorphisms of Denjoy-type are meant diffeomorphisms of the
two-torus, isotopic to the identity, that are obtained as an extension of an irrational
translation of the torus, for which the semi-conjugacy has countably many non-trivial
fibers. If these fibers have non-empty interior, then the corresponding diffeomorphism
has a wandering disk. Further, by generic shape is meant that the only elements of
SL(2,Z) preserving the shape are elements of SO(2,Z), such as round disks and
squares. In a similar spirit, Bonatti, Gambaudo, Lion and Tresser in [1] show that
certain infinitely renormalizable diffeomorphisms of the two-disk that are sufficiently
smooth, can not have wandering domains if these domains have a certain boundedness
of geometry.

In this note, we study an analogous problem, namely the interplay between the
geometry of iterates of domains under a diffeomorphism and its topological entropy.
To state the precise result, we first need some definitions. Let (M, g) be a closed
surface, that is, a smooth, closed, oriented Riemannian two-manifold, equipped with
the canonical metric g induced from the standard conformal metric of the universal
cover P1,C or D2. We denote by d(·, ·) the distance function relative to the metric
g. Let Diffr(M) be the group of diffeomorphisms of M , where for r ≥ 0 finite, f
is said to be of class Cr if f is continuously differentiable up to order [r] and the
[r]-th derivative is (r)-Hölder, with [r] and (r) the integral and fractional part of r
respectively. We identity Diff0(M) with Homeo(M), the group of homeomorphisms
of M .

Given f ∈ Homeo(M), for each n ≥ 1, define the metric dn on M given by
dn(x, y) = max1≤i≤n{d(f i(x), f i(y))}. Given ε > 0, a subset U ⊂ M is said to be
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(n, ε) separated if dn(x, y) ≥ ε for every x, y ∈ U with x 6= y. Let N(n, ε) be the
maximum cardinality of an (n, ε) separated set. The topological entropy is defined
as

htop(f) = lim
ε→0

(
lim

n→∞
sup

1

n
log N(n, ε)

)
.

Next, we make precise the notion of a homeomorphism of a surface permuting a dense
collection of domains.

Definition 1.1. Let S ⊂ M be compact and D := {Dk}k∈Z the collection of
connected components of the complement of S, with the property that Int(Cl(Dk)) =
Dk, where Cl(D) is the closure of D in M . We say f ∈ Homeo(M) permutes a dense
collection of domains if

(1) f(S) = S and Cl(Dk) ∩ Cl(Dk′) = ∅ if k 6= k′,
(2) for every k ∈ Z, fn(Dk) ∩Dk = ∅ for all n 6= 0, and
(3)

⋃
k∈Z Dk is dense in M .

Note that we do not assume a domain to be recurrent, nor do we assume the
orbit of a single domain to be dense. A wandering domain is a domain with mutually
disjoint iterates under f such that the orbit of the domain is recurrent. Thus a diffeo-
morphism with a wandering domain with dense orbit is a special case of definition 1.1.
Denote expp : TpM → M the exponential mapping at p ∈ M . The injectivity radius
at a point p ∈ M is defined as the largest radius for which expp is a diffeomorphism.
The injectivity radius ι(M) of M is the infimum of the injectivity radii over all points
p ∈ M . As M is compact, ι(M) is positive.

Definition 1.2. (Bounded geometry) A collection of domains {Dk}k∈Z on a sur-
face M is said to have bounded geometry if the following holds: Cl(Dk) is contractible
in M and there exists a constant β ≥ 1 such that for every domain Dk in the collec-
tion, there exist pk ∈ Dk and 0 < rk ≤ Rk such that

(1) B(pk, rk) ⊆ Dk ⊆ B(pk, Rk), with Rk/rk ≤ β,

where B(p, r) ⊂ M is the ball centered at p ∈ M with radius r > 0. If no such β
exists, then the collection is said to have unbounded geometry.

By Cl(Dk) being contractible in M we mean that Cl(Dk) is contained in an em-
bedded topological disk in M . Our definition of bounded geometry is equivalent to
the notion of bounded geometry in the theory of Kleinian groups and complex dy-
namics. It is not difficult, given a surface of any genus, to construct homeomorphisms
of that surface with positive entropy that permute a dense collection of domains. We
show that producing examples that have a certain amount of smoothness is possible
only to a limited degree.

Theorem A. (Topological entropy versus bounded geometry) Let M be a closed
surface and f ∈ Diff1+α(M), with α > 0. If f permutes a dense collection of domains
with bounded geometry, then f has zero topological entropy.

The outline of the proof of Theorem A is as follows. First we show that the
bounded geometry of the permuted domains, combined with their density in the
surface, give bounds on the dilatation of f on the complement of the union of the
permuted domains. The differentiability assumptions on f allow us to estimate the



Topological entropy and diffeomorphisms of surfaces with wandering domains 505

rate of growth of the dilatation on the whole surface M . Using a result by Przyty-
cki [9], we show this rate of growth is slow enough so as to ensure the topological
entropy of f is zero.

Acknowledgement. We thank the referee for useful comments and suggestions on
the manuscript.

2. Entropy and diffeomorphisms with wandering domains

First, we study the relation between geometry of domains and the complex di-
latation of a diffeomorphism.

2.1. Geometry of domains and complex dilatation. We denote λ the
measure associated to g and dλ the Riemannian volume form. By compactness of
M , there exists a constant κ > 0 such that

(2) λ(B(p, r)) =

ˆ

B(p,r)

dλ ≥ κr2.

A sequence of positive real numbers xk is called a null-sequence, if for every given
ε > 0 there exist only finitely many elements of the sequence for which xk ≥ ε.
Henceforth, we denote `k := diam(Dk), the diameter of Dk measured in g, with
Dk ∈ D .

Lemma 2.1. Let M be a closed surface and let {Dk}k∈Z be a collection of
mutually disjoint domains with bounded geometry. Then the sequence `k is a null-
sequence.

Proof. Suppose, to the contrary, that {Dk}k∈Z is not a null-sequence. Then
there exist an ε > 0 and an infinite subsequence kt such that diam(Dkt) ≥ ε. By the
bounded geometry property, we have that diam(Dkt) ≤ 2Rkt ≤ 2βrkt and therefore
rkt ≥ ε/2β. Therefore, by (2),

λ(Dkt) ≥ κr2
kt
≥ κε2

4β2
,

for every t ∈ Z. But this yields that∑
t∈Z

λ(Dkt) = ∞,

contradicting the fact that λ(M) < ∞ as M is compact. ¤
Recall that S is the complement of the union of the permuted domains, i.e.

S = M \⋃
k∈Z Dk.

Lemma 2.2. Let M be a closed surface and let f ∈ Homeo(M) permute a
dense collection D of domains with bounded geometry. For every p ∈ S, there exists
a sequence of domains Dkt with diam(Dkt) → 0 for t →∞ such that Dkt → p.

Proof. Fix p ∈ S and let U ⊂ M be an open (connected) neighbourhood of p.
First assume that p ∈ S \ ⋃

k∈Z ∂Dk. This set in non-empty, as otherwise the sur-
face M is a union of countably many mutually disjoint continua; but this contradicts
Sierpiński’s Theorem, which states that no countable union of disjoint continua is con-
nected. We claim that U intersects infinitely many different elements of D . Indeed,
if U intersects only finitely many elements Dk1 , . . . , Dkm , then Ω :=

⋃m
i=1 Cl(Dki

) is
closed. This implies that U \ Ω is open and non-empty, as otherwise M would be
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a finite union of disjoint continua, which is impossible. However, as the union of
the elements of D is dense, U \ Ω can not be open. Thus, there are infinitely many
distinct elements Dk1 , Dk2 , . . . of D that intersect U . Taking a sequence of nested
open connected neighbourhoods Ut containing p, we can find elements Dkt ⊂ Ut\Ut+1

for every t ≥ 1. By Lemma 2.1, diam(Dkt) is a null-sequence and thus we obtain a
sequence of domains Dkt with diam(Dkt) → 0 for t →∞ such that Dkt → p.

As Int(Cl(Dk)) = Dk, given p ∈ ∂Dk and given any neighbourhood U 3 p, U
has non-empty intersection with M \ Cl(Dk). By the same reasoning as above, p is
again is a limit point of arbitrarily small domains in the collection D . Thus we have
proved the claim for all points p ∈ S and this concludes the proof. ¤

Next, we turn to the complex dilatation of a diffeomorphism f ∈ Diff(M) and its
behaviour under compositions of diffeomorphisms, see e.g. [5]. We first consider the
case where f ∈ Diff(C). The complex dilatation µf of f is defined by

(3) µf : C → D2, µf (p) =
fz̄

fz

(p),

and the corresponding differential

(4) µf (p)
dz̄

dz
is the Beltrami differential of f . The dilatation of f is defined by

(5) Kf (p) =
1 + |µf (p)|
1− |µf (p)| ,

which equals

(6) Kf (p) =
maxv |Dfp(v)|
minv |Dfp(v)| ,

where v ranges over the unit circle in TpC and the norm |·| is induced by the standard
(conformal) Euclidean metric g on C. Denote [·, ·] be the hyperbolic distance in D2,
i.e., the distance induced by the Poincaré metric on D2. When one composes two
diffeomorphisms f, g : C → C, then

(7) µg◦f (p) =
µf (p) + θf (p)µg(f(p))

1 + µf (p)θf (p)µg(f(p))
,

where θf (p) = fz

fz
(p). It follows that

(8) µfn+1(p) =
µf (p) + θf (p)µfn(f(p))

1 + µf (p)θf (p)µfn(f(p))
.

We can rewrite (7) as

(9) µg◦f (p) = Tµf (p)(θf (p)µg(f(p))),

where

(10) Ta(z) =
a + z

1 + āz
∈ Möb(D2)

is an isometry relative to the Poincaré metric, for a given a ∈ D2. Further, the
following relation holds

(11) log(Kg◦f−1(f(p))) = [µg(p), µf (p)] .



Topological entropy and diffeomorphisms of surfaces with wandering domains 507

To define the complex (and maximal) dilatation of a diffeomorphism of a surface
M , we first lift f : M → M to the universal cover f̃ : M̃ → M̃ and denote π : M̃ → M

be the corresponding canonical projection mapping, where M = M̃/Γ, with Γ a
Fuchsian group. We assume here that M̃ is either C or D2, the trivial case of
the sphere P1 is excluded here. As π is an analytic local diffeomorphism, f̃ is a
diffeomorphism. Further, as M is compact, f is K-quasiconformal on M for some
K ≥ 1 and thus f̃ is K-quasiconformal on M̃ . Since f̃ ◦h◦ f̃−1 is conformal for every
h ∈ Γ, it follows from (7) that

(12) µf̃ (p) = µf̃ (h(p))
hz

hz

(p).

In other words, µf̃ defines a Beltrami differential on M̃ for the group Γ, or equiva-
lently, it defines a Beltrami differential for f on the surface M . Furthermore, the same
formulas (5) and (6), defined relative to the canonical (conformal) metric defined on
M , hold for the dilatation Kf of f on M .

The following lemma shows that the bounded geometry assumption of the do-
mains has a strong effect on the dilatation of iterates of f on S. We say f has
uniformly bounded dilatation on S ⊂ M , if Kfn(p) is bounded by a constant inde-
pendent of n ∈ Z and p ∈ S.

Lemma 2.3. (Bounded dilatation) Let M be a closed surface and let f ∈
Diff1(M) permute a dense collection of domains D . If the collection D has bounded
geometry, then f has uniformly bounded dilatation on S.

Proof. Suppose the collection of domains D = {Dk}k∈Z has β-bounded geometry
for some β ≥ 1. Fix N ∈ Z and p ∈ S and take a small open neigbhourhood
U ⊂ M containing p. By Lemma 2.2, there exists a subsequence of domains Dkt ,
where |kt| → ∞ and diam(Dkt) → 0 for t → ∞ and such that Dkt → p. Denote
q = fN(p) ∈ S. We may as well assume that for all t ≥ 1 the domains Dkt are
contained in U . Define D′

kt
:= fN(Dkt). If we denote U ′ = fN(U), then the sequence

D′
kt

converges to q and D′
kt
⊂ U ′. By the bounded geometry assumption, for every

t ≥ 1, there exists pt ∈ Dkt and 0 < rt ≤ Rt such that

B(pt, rt) ⊆ Dkt ⊆ B(pt, Rt)

with Rt/rt ≤ β. As f ∈ Diff1(M), the local behaviour of fN around q converges to
the behaviour of the linear map DfN

p . In particular, if we take pt ∈ Dkt , then pt → p

and thus qt := fN(qt) → q, and in order for all D′
kt

to have β-bounded geometry, it
is required that

KfN (p) ≤ Rtβ

rt

,

for t sufficiently large. Indeed, this is easily seen to hold if the map acts locally
by a linear map and is thus sufficient as f ∈ Diff1(M) and the increasingly smaller
domains approach p. As Rt/rt ≤ β, we must therefore have KfN (p) ≤ β2. As this
argument holds for every (fixed) N ∈ Z and every p ∈ S, we find β2 the uniform
bound on the dilatation on S. ¤

Our smoothness assumptions on f allow us to give bounds on the (complex)
dilatation of iterates of f on M in terms of the diameters of the permuted domains.
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Lemma 2.4. (Sum of diameters) Let M be a closed surface and let f ∈
Diff1+α(M), with α > 0, which permutes a collection of domains D = {Dk}k∈Z

with β-bounded geometry. Then there exists a constant C = C(β) > 0 such that, if
p ∈ Dt (for some t ∈ Z) and q ∈ ∂Dt, then

(13) [µfn+1(p), µfn+1(q)] ≤ C ·
t+n∑
s=t

`α
s ,

where the domains are labeled such that f s(Dt) = Dt+s.

To prove Lemma 2.4, we use the following.

Lemma 2.5. Let f ∈ Diff1(M) and p0, q0 ∈ M . Then

[µfn+1(p0), µfn+1(q0)]

≤
n∑

s=0

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))

]
,

(14)

where ps = f s(p0) and qs = f s(q0).

Proof. Using (9), we write

[µfn+1(p0), µfn+1(q0)] =
[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (q0)(θf (q0)µfn(q1))

]
.

By the triangle inequality, we thus have the following inequality

[µfn+1(p0), µfn+1(q0)] ≤
[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (p0)(θf (p0)µfn(q1))

]

+
[
Tµf (p0)(θf (p0)µfn(q1)), Tµf (q0)(θf (q0)µfn(q1))

]
.

As both Ta (as defined by (10)) and rotations are isometries in the Poincaré disk, we
have that

[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (p0)(θf (p0)µfn(q1))

]
= [µfn(p1), µfn(q1)] .

Inequality (14) now follows by induction. ¤
As ∂Dt ⊂ S, by Lemma 2.3, µfn−s(qs+1) ∈ Bδ, with Bδ ⊂ D2 the compact disk

centered at 0 ∈ D2 with radius

(15) δ =
β2 − 1

β2 + 1
.

Further, define

(16) δ′ = sup
p∈M

|µf (p)| < 1,

and let Bδ′ ⊂ D2 be the compact disk centered at 0 ∈ D2 and radius δ′.

Lemma 2.6. There exists a constant C1(δ, δ
′) such that

(17) [Ta(z), Tb(z)] ≤ C1 [a, b] ,

for given a, b ∈ Bδ′ and z ∈ Bδ.

Proof. First we observe that there exists a constant 0 < δ′′ < 1 (depending only
on δ and δ′), such that [Ta(z), 0] ≤ δ′′, for every a ∈ Bδ′ and every z ∈ Bδ, as the
disks Bδ, Bδ′ ⊂ D2 are compact. Define δ̄ = max{δ, δ′, δ′′} and Bδ̄ ⊂ D2 the compact
disk with center 0 ∈ D2 and radius δ̄.
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As the Euclidean metric and the hyperbolic metric are equivalent on the compact
disk Bδ̄, it suffices to show that there exists a constant C ′

1(δ̄) such that

(18) |Ta(z)− Tb(z)| ≤ C ′
1 |a− b| ,

where |z−w| denotes the Euclidean distance between two points z, w ∈ D2. Indeed,
if this is shown then (17) follows for a constant C1 which differs from C ′

1 by a uniform
constant depending only on δ̄. To prove (18), we compute that

(19) |Ta(z)− Tb(z)| =
∣∣∣∣
(a− b) + (ab̄− āb)z + (b̄− ā)z2

(1 + āz)(1 + b̄z)

∣∣∣∣ .

As a, b ∈ Bδ′ and z ∈ Bδ, there exists a constant Q1(δ, δ
′) > 0 so that

|(1 + āz)(1 + b̄z)| ≥ Q−1
1 .

Therefore, it holds that

(20) |Ta(z)− Tb(z)| ≤ Q1

(|a− b|+ δ|ab̄− āb|+ δ2|a− b|) .

In order to prove (18), we show there exists a constant Q2(δ
′) > 0 such that

(21) |ab̄− āb| ≤ Q2|a− b|.
To this end, write a = reiφ and b = r′eiφ′ and x = ab̄, so that x = rr′eiν with ν =
φ−φ′. We may assume that ν ∈ [0, π). It follows that ab̄− āb = x− x̄ = 2irr′ sin(ν).
Therefore,

(22) |ab̄− āb| = |x− x̄| = 2rr′| sin(ν)| ≤ 2δ′r| sin(ν)|,
as r′ ≤ δ′. As the angle between the vectors a, b ∈ Bδ′ is ν, it is easily seen that
r| sin(ν)| ≤ |a− b|. Combining this estimate with (22), we obtain that

(23) |ab̄− āb| ≤ 2δ′r| sin(ν)| ≤ 2δ′|a− b|.
Setting Q2 = 2δ′ yields (21). If we now combine (23) in turn with (20), we obtain a
uniform constant

C ′
1(δ, δ

′) = Q1(1 + δQ2 + δ2)

for which (18) holds, as required. ¤
Proof of Lemma 2.4. As f ∈ Diff1+α(M), we have that µf (p) ∈ Cα(M,D2)

and θf ∈ Cα(M,C), are uniformly Hölder continuous by compactness of M . By the
triangle inequality, we can estimate the summand in the right-hand side of (14) of
Lemma 2.5 as[

Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))
]

(24)

≤ [
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

]
(25)

+
[
Tµf (qs)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))

]
.(26)

To estimate (24), define

zs := θf (ps)µfn−s(qs+1) ∈ Bδ and as = µf (ps), bs = µf (qs) ∈ Bδ′ ⊂ D2.

Then (24) reads

(27)
[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

]
= [Tas(zs), Tbs(zs)] .

By Lemma 2.6, there exists a constant C1 > 0 such that

(28) [Tas(zs), Tbs(zs)] ≤ C1[as, bs].
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By Hölder continuity of µf , there exists a constant Ĉ1 such that

(29) [as, bs] ≤ Ĉ1(d(ps, qs))
α.

Therefore, combining equations (27), (28) and (29), we obtain that

(30)
[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

] ≤ C̃1`
α
t+s,

as d(ps, qs) ≤ `t+s, with C̃1 := C1Ĉ1.
To estimate (25), we note that the hyperbolic distance and the Euclidean dis-

tance are equivalent on the compact disk Bδ. Therefore, as the (Euclidean) distance
between a point z ∈ Bδ and eiφz is bounded from above by a constant (depend-
ing only on δ) multiplied by the angle |φ|, by Hölder continuity of θf there exists a
constant C̃2(δ), such that

[θf (p)z, θf (p
′)z] ≤ C̃2(d(p, p′))α,

for all z ∈ Bδ and p, p′ ∈ M , using the local equivalence of the hyperbolic and
Euclidean metric. Hence, (25) reduces to

(31) [θf (ps)µfn−s(qs+1), θf (qs)µfn−s(qs+1)] ≤ C̃2d(ps, qs))
α ≤ C̃2`

α
t+s,

as d(ps, qs) ≤ `t+s. Therefore, if we set C := C̃1 + C̃2, then (13) follows. ¤
2.2. Upper bounds on the entropy of a surface diffeomorphism. Next,

we relate the topological entropy of a diffeomorphism to its dilatation.

Lemma 2.7. (Entropy and dilatation) Let M be a closed surface and let f ∈
Diff1+α(M) with α > 0. Then

(32) htop(f) ≤ lim
n→∞

sup
1

2n
log

ˆ

M

Kfn(p) dλ(p),

with Kf the dilatation of f .

To prove this we use a result of Przytycki [9]. We need the following notation.
Let L : Rm → Rm be a linear map and Lk∧ : Rm∧k → Rm∧k the induced map on the
k-th exterior algebra of Rm. L∧ denotes the induced map on the full exterior algebra.
The norm ‖Lk∧‖ of Lk has the following geometrical meaning. Let Volk(v1, . . . , vk)
be the k-dimensional volume of a parallelepiped spanned by the vectors v1, . . . , vk,
where vi ∈ Rm with 1 ≤ i ≤ k. Then

‖Lk∧‖ = sup
vi∈Rm

Volk(L(v1), . . . , L(vk))

Volk(v1, . . . , vk)
,(33)

‖L∧‖ = max
1≤k≤m

‖Lk∧‖.(34)

Further, let

(35) ‖L‖ = sup
|v|=1

|L(v)|,

the standard norm on operators, with v ∈ Rm and | · | induced by the corresponding
inner product on Rm. The following result is due to Przytycki [9] (see also [4]).
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Theorem 2.8. Given a smooth, closed Riemannian manifold M and f ∈Diff1+α(M)
with α > 0. Then

(36) htop(f) ≤ lim
n→∞

sup
1

n
log

ˆ

M

‖(Dfn)∧‖ dλ(p).

where htop(f) is the topological entropy of f , λ is a Riemannian measure on M in-
duced by a given Riemannian metric, (Dfn)∧ is a mapping between exterior algebras
of the tangent spaces TpM and Tfn(p)M , induced by the Dfn

p and ‖ · ‖ is the norm
on operators, induced from the Riemannian metric.

Proof of Lemma 2.7. Fix p ∈ M and let Dfn
p : TpM → Tfn(p)M . Then

‖Dfn
p ‖2 = Kfn(p)Jfn(p).

Thus

(37) ‖(Dfn
p )1∧‖ =

√
Kfn(p)Jfn(p), and ‖(Dfn

p )2∧‖ = Jfn(p).

It follows that

(38) ‖(Dfn
p )∧‖ = max

{√
Kfn(p)Jfn(p), Jfn(p)

}
.

As

max

{√
Kfn(p)Jfn(p), Jfn(p)

}
≤

√
Kfn(p)Jfn(p) + Jfn(p),

we have thatˆ

M

‖(Dfn
p )∧‖ dλ(p) ≤

ˆ

M

(√
KfnJfn + Jfn

)
dλ = λ(M) +

ˆ

M

√
KfnJfn dλ

as λ(M) =
´

M
Jfn dλ, for every n ∈ Z. Either

´
M

√
KfnJfn dλ is bounded as a

sequence in n, in which case (32) holds trivially, or the sequence is unbounded in n,
in which case it is readily verified that

lim
n→∞

sup
1

n
log

(
λ(M) +

ˆ

M

√
KfnJfn dλ

)
= lim

n→∞
sup

1

n
log

ˆ

M

√
KfnJfn dλ.

By the Cauchy–Schwartz inequality, we have that
ˆ

M

√
KfnJfn dλ ≤

√
λ(M) ·

√ˆ

M

Kfn dλ,

and thus,

log

ˆ

M

√
KfnJfn dλ ≤ 1

2
log λ(M) +

1

2
log

ˆ

M

Kfn dλ.

It now follows that

lim
n→∞

sup
1

n
log

ˆ

M

‖(Dfn)∧‖ dλ ≤ lim
n→∞

sup
1

2n
log

ˆ

M

Kfn dλ,

and this proves (32). ¤
2.3. Proof of Theorem A. Let us now complete the proof. Let f ∈ Diff1+α

A (M),
with α > 0, and suppose that f permutes a dense collection of domains {Dk}k∈Z with
bounded geometry. By Lemma 2.1, the sequence `k is a null-sequence. Therefore, `α

k
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is a null-sequence as well, for every α > 0. Let p ∈ Dt for some t ∈ Z and q ∈ ∂Dt

and label the domains such that f s(Dt) = Dt+s. By (11),

log Kfn(f(p)) = [µfn+1(p), µf (p)]

and thus, by the triangle inequality,

(39) log Kfn(f(p)) ≤ [µfn+1(p), µfn+1(q)] + [µfn+1(q), µf (p)]

As the second term in the right hand side of (39) stays uniformly bounded, we have
that

(40) log Kfn(f(p)) ≤ [µfn+1(p), µfn+1(q)] + C ′

for some constant C ′ > 0, independent of p ∈ M and n ∈ Z. Define

ξ(n) = max
n∑

i=0

`α
ki

where the maximum is taken over all collections of n + 1 distinct elements {Dk0 , . . . ,
Dkn} of D . As `α

k is a null-sequence, we have that

(41) lim
n→∞

sup
ξ(n)

n
= 0.

By Lemma 2.4, we have that

[µfn+1(p), µfn+1(q)] ≤ C ·
t+n∑
s=t

`α
s ,

for some constant C > 0. Combined with (40), we obtain the following uniform
estimate

(42) log Kfn(f(p)) ≤ Cξ(n) + C ′,

for every p ∈ M and n ∈ Z. Therefore

log

ˆ

M

Kfn dλ ≤ log

ˆ

M

exp(Cξ(n) + C ′) dλ(43)

= log ((exp(Cξ(n) + C ′)λ(M))(44)
= Cξ(n) + C ′ + log(λ(M)).(45)

Combining (45) in turn with Lemma 2.7 yields

(46) htop(f) ≤ lim
n→∞

sup
1

2n
log

ˆ

M

Kfn dλ ≤ C lim
n→∞

sup
ξ(n)

2n
= 0,

by (41). This proves Theorem A. ¤

3. Concluding remarks

Our main result poses the following natural

Question 1. (Differentiable counterexamples) Let M be a closed surface. Do
there exist diffeomorphisms f ∈ Diff1(M) with positive entropy that permute a dense
collection of domains with bounded geometry?
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Remark 1. The referee pointed out that, if f ∈ Diff1(M), then µf has a modulus
of continuity η; that is
(47) [µf (p), µf (q)] ≤ η(d(p, q)),

where η(`) → 0 if ` → 0. It follows that, if f ∈ Diff1(M), by adapting the proof of
Lemma 2.4,

(48)
[µfn+1(p), µfn+1(q)]

n
is still a null-sequence. However, it is not known whether Przytycki’s Theorem holds
in the class of Diff1(M) that would guarantee zero entropy.

Lastly, the following

Remark 2. Oleg Kozlovski and Jean-Marc Gambaudo pointed out that Theo-
rem A can also be derived from Katok’s results in [3] about the existence of saddle
fixed points for C1+α diffeomorphisms with positive entropy. However, our proof is
independent from that in [3]; moreover, it is very likely that our result can be gener-
alized to higher dimensions, whereas the techniques in [3] do not appear to allow for
a straightforward generalization to higher dimensions.

References

[1] Bonatti, C., J.M. Gambaudo, J.M. Lion, and C. Tresser: Wandering domains for
infinitely renormalizable diffeomorphisms of the disk. - Proc. Amer. Math. Soc. 122:4, 1994,
1273–1278.

[2] Fletcher, A., and V. Markovic: Quasiconformal maps and Teichmüller theory. - Oxf.
Grad. Texts Math. 11, Oxford Univ. Press, 2007.

[3] Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. - Publ.
Math. Inst. Hautes Études Sci. 51:1, 1980, 137–173.

[4] Kozlovski, O. S.: An integral formula for topological entropy of C∞ maps. - Ergodic Theory
Dynam. Systems 18, 1998, 405–424.

[5] Lehto, O.: Univalent functions and Teichmüller spaces. - Grad. Texts in Math. 109, Springer-
Verlag, 1987.

[6] McSwiggen, P.: Diffeomorphisms of the torus with wandering domains. - Proc. Amer. Math.
Soc. 117:4, 1993, 1175–1186.

[7] Navas, A.: Wandering disks for diffeomorphisms of the k-torus: a remark on a theorem by
Norton and Sullivan. - Preprint, 2007.

[8] Norton, A., and D. Sullivan: Wandering domains and invariant conformal structures for
mappings of he 2-torus. - Ann. Acad. Sci. Fenn. Math. 21, 1996, 51–68.

[9] Przytycki, F.: An upper estimation for topological entropy of diffeomorphisms. - Invent.
Math. 59, 1980, 205–213.

Received 14 September 2009


