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Abstract. Any simply connected rectifiable domain Ω can be decomposed into uniformly
chord-arc subdomains using only crosscuts of the domain. We show that such a decomposition
allows one to construct a map from Ω to the disk which is close to conformal in a uniformly
quasiconformal sense. This answers a question of Vavasis.

1. Introduction

Any simply connected plane domain Ω has a collection of crosscuts that divide it
into uniformly chord-arc subdomains (a crosscut is an arc in Ω with distinct endpoints
on ∂Ω). We call this a tree-like decomposition of Ω since the pieces form the vertices
of a tree under the obvious adjacency relation. Vavasis suggested using tree-like
decompositions to approximate the Riemann map from Ω to the unit disk, D, and
here we make this idea precise by associating to such a decomposition a map ∂Ω →
T = ∂D that has a uniformly quasiconformal extension to the interiors.

If Ω has a rectifiable boundary then the most obvious map of ∂Ω to a circle is the
one which preserves length up to a constant factor. If the boundary is also chord-arc,
then this map is known to have an quasiconformal extension to a map Ω → D with
constant depending only on the chord-arc constant of ∂Ω. Given a domain with
a tree-like decomposition into rectifiable pieces we will define a “piecewise length
preserving map” and if the pieces are chord-arc with uniformly bounded constant,
we will show this boundary map also has a uniformly QC extension to the interior.

So suppose we are given a tree-like decomposition {Ωk} of the domain Ω into
rectifiable pieces. Define the “obvious” map on each piece and glue them together as
follows: (1) map fk : ∂Ωk → T by a map multiplying length by a constant factor, (2)
map T to the hyperbolic convex hull of Ek = f(∂Ωk ∩ ∂Ω) by the hyperbolic nearest
point retraction Nk and (3) apply a Möbius transformation τk of the disk so the image
“matches up” with the image of its parent (i.e., the maps for a piece and its parent
are normalized to agree at the endpoints and center of the crosscut separating them;
at other points along the crosscut the maps may differ, but this will not be important
and we will show later the discontinuity is bounded in the hyperbolic metric). Let
ψk = τk ◦Nk ◦ fk : ∂Ωk → D and define ψ : ∂Ω → T by setting ψ = ψk on ∂Ωk ∩ ∂Ω.
We will call this a piecewise length preserving map (or PLP map).
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Figure 1. The boundary of each piece of the decomposition is mapped into the disk by a
composition of three maps: a length preserving map f , the retraction to a hyperbolic convex hull
N and a Möbius transformation τ to match it against previously defined maps.

Theorem 1.1. Suppose Ω is a simply connected domain with a tree-like decom-
position into chord-arc pieces, all with constants ≤ M . Then the PLP map defined
above has a quasiconformal extension Ψ: Ω → D with QC constant depending only
of M .

Actually we will prove this under the weaker assumption that the decomposition
pieces are inner chord-arc (both chord-arc and inner chord-arc domains will be defined
in Section 3). Explicit maps that are approximately conformal are used in various
computational conformal mapping techniques such as the CRDT algorithm of Driscoll
and Vavasis [11], [4]), the medial axis method in [5], [7] and Davis’ method [9]. In
fact, we can think of our map as a way of making Davis’ method behave like CRDT
for general domains. See Section 5.

The map Nn is not really needed in the definition above; in fact, since it is
the identity on En, it does not effect the values of final map except through the
choice of τ , and this could have been accomplished in other ways, e.g. using cross
ratios as in CRDT. The advantage of introducing Nn really concerns the proof of
Theorem 1.1, rather than its statement. Using the retraction map sends pieces of
the decomposition to non-overlapping sets in D and defines a map of Ω → D. This
map need not be quasiconformal (see Figure 2), but we shall prove that it is a quasi-
isometry between the hyperbolic metrics of Ω and D and hence (by known results)
there is a quasiconformal map with the same boundary values.

Figure 2. The extension to the interior we have described is not quasiconformal in general. For
example, two crosscuts that have a common endpoint can be a positive hyperbolic distance apart
in Ω, but be mapped to geodesics in D which are distance 0 apart in D. This is impossible for a
quasiconformal map, but possible for our map which is only a quasi-isometry.
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This paper is one of three related papers that were prompted by questions of
Vavasis. He was interested in whether nice tree-like decompositions of a domain
exist, and whether they could be used to construct a good approximation of the
conformal map. He also suggested using such a decomposition to study harmonic
conjugation on L2(∂Ω). In [8], we answer his first question affirmatively and here we
answer the second. In [6] we estimate the L2 norm of harmonic conjugation using
tree-like decompositions.

I thank Stephen Vavasis for his comments on earlier drafts of this paper. I also
thank the referee for numerous comments and suggestions that greatly improved the
clarity of the paper.

In Section 2 we review some basic facts about hyperbolic geometry, conformal
and quasiconformal maps. In Section 3 we prove a few results about tree-like decom-
positions and in Section 4 we prove Theorem 1.1. In Section 5 we conclude with an
example of how our map could be used in the numerical approximation of conformal
maps and compare this to CRDT.

2. Hyperbolic geometry and quasiconformal maps

The hyperbolic metric on the unit disk is given locally by

|dρ| = 2 |dz|
1− |z|2 .

Hyperbolic geodesics are circular arcs which are orthogonal to the boundary. Möbius
transformations of the disk are isometries for the hyperbolic metric.

Figure 3. The hyperbolic convex hull of a closed set on the circle. The nearest point retraction
collapses circular arcs foliating the complementary crescents. For points z on the unit circle we can
visualize this map by expanding a ball tangent to T at z until it first makes contact with the convex
hull.

Suppose E ⊂ T is compact. Then T \ E = ∪kIk is a union of open intervals.
Corresponding to each Ik there is a hyperbolic geodesic with the same endpoints.
These geodesics, together with E, bound a region in D called the hyperbolic convex
hull of E and denoted by C(E). The complement of C(E) in D is a union of crescents,
each bounded by Ik ∪ γk. Each crescent has an foliation by circular arcs orthogonal
to both boundary arcs and following these arcs until they hit γk defines a continuous
map of the crescent onto γk. If we extend this map to all of D by letting it be
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the identity on C(E), we get a map D → C(E) which is called the nearest point
retraction (because it corresponds to mapping each point of D to the unique closest
point of C(E) in the hyperbolic metric).

We will need the following estimate regarding hyperbolic geodesics.

Lemma 2.1. Suppose z1, z2, w1, w2 ∈ D and ρ(z1, z2) ≤ A, ρ(w1, w2) ≤ A and
ρ(z1, w1) ≥ B. Let γk be the hyperbolic geodesic connecting zk to wk for k = 1, 2. Let
x be the midpoint of γ1. Then γ2 passes within hyperbolic distance C exp(A− 1

2
B)

of x.

Proof. Wemay assume x = 0, and γ1 is on the real axis. Thus z1, w1 will be points
on the real axis approximately Euclidean distance e−B/2 from +1,−1 respectively.
Thus z2, w2 lie in disks of Euclidean radius ' exp(A − B/2) around ±1. Thus the
geodesic between them passes within O(exp(A− 1

2
B)) of the origin as desired. ¤

Simply connected, proper subdomains of the plane inherit a hyperbolic metric
from the unit disk via the Riemann map. If ϕ : D → Ω is conformal and w = ϕ(z)
then ρΩ(w1, w2) = ρD(z1, z2) defines the hyperbolic metric on Ω and is independent
of the particular choice of ϕ. It is often convenient to estimate ρΩ in terms of the
more geometric quasi-hyperbolic metric on Ω which is defined as

ρ̃(w1, w2) = inf

ˆ w2

w1

|dw|
dist(w, ∂Ω)

,

where the infimum is over all arcs in Ω joining w1 to w2. It follows from Koebe’s 1
4

theorem that the two metrics are comparable with bounds independent of the domain.
A Whitney decomposition of a domain Ω is a covering of Ω by squares {Qk} with
disjoint interiors and the property that diam(Qk) ' dist(Qk, ∂Ω). By our remarks
above, each square in a Whitney decomposition has uniformly bounded hyperbolic
diameter (and contains a ball with hyperbolic radius bounded uniformly from below).
Thus bounding the hyperbolic length of a path often reduces to simply estimating
the number of Whitney squares it hits. Here is a simple but useful estimate of the
hyperbolic distance. Let d(z) = dist(z, ∂Ω) (Euclidean distance).

Lemma 2.2. Suppose Ω is simply connected and z, w ∈ Ω. If |z −w| ≥ d(w) ≥
2d(z), then

ρ(z, w) & log
d(w)

d(z)
.

If |z − w| ≥ max(d(z), d(w)), then

ρ(z, w) & log
|z − w|
d(z)

+ log
|z − w|
d(w)

.

If, in addition, there is an ε > 0 and a curve σ in Ω from z, w with the property that
d(x) ≥ ε · dist(x, {z, w}) for every x ∈ σ, then

ρ(z, w) ' log
|z − w|
d(z)

+ log
|z − w|
d(w)

,

with a constant depending on ε (at most O(ε−2)).

Proof. It is enough to prove this for the quasi-hyperbolic metric, since it is
boundedly equivalent to the hyperbolic metric. Assume d(z) ≤ d(w). Let An be the
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annulus
An = {x : 2nd(z) < |z − x| < 2n+1d(z)},

and let Bn be the corresponding annuli around w. At each point of An the distance
to the boundary of Ω is . diam(An), so any curve that crosses the annulus has
hyperbolic length bounded uniformly from below. We can fit ' log d(w)/d(z) disjoint
annuli between z and w so, this gives a lower bound for the hyperbolic distance
between them.

If |z−w| ≥ max(d(z), d(w)) then we can fit ' log |z − w|/d(z) annuli around the
point z and inside the disk D(z, |z − w|/2). Similarly we can fit ' log |z − w|/d(w)
annuli around w and inside D(w, |z − w|/2). Thus the sum of these numbers is a
lower bound for the hyperbolic distance in this case.

If there is a curve between the points with the given bound, then this curve can
be covered by Whitney squares for Ω. See Figure 4. Only a uniformly bounded
number of such squares of a fixed size can hit an annulus of comparable size, so
the total number of distinct squares hit by the curve is bounded by a multiple of the
number of annuli. Each Whitney square has uniformly bounded hyperbolic diameter,
and they connect z to w, so the hyperbolic distance between z and w is bounded
by multiple of the number of squares, and hence the number of annuli. This is the
claimed estimate. ¤

Figure 4. Estimating the hyperbolic distance between points, by counting number of Whitney
squares needed to connect them.

If the given curve σ has the property that its intersection with any Whitney
cube has (Euclidean) length bounded by a multiple of the cube’s diameter, then the
proof above shows the hyperbolic length of σ is bounded by the hyperbolic distance
between z and w. We will use this observation later.

There are several equivalent definitions of a K-quasiconformal mapping between
planar domains. Suppose f : Ω → Ω′ is a homeomorphism. We say f is K-quasi-
conformal if either of the following equivalent conditions holds:

Analytic definition: f is absolutely continuous on almost every vertical and
horizontal line and the partial derivatives of f satisfy |fz̄| ≤ k|fz| where
k = (K − 1)/(K + 1).

Metric definition: For every x ∈ Ω

lim sup
r→0

maxy:|x−y|=r |f(x)− f(y)|
miny:|x−y|=r |f(x)− f(y)| ≤ K.
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Quasiconformal maps generalize biLipschitz maps, i.e., maps that satisfy
1

K
≤ |f(x)− f(y)|

|x− y| ≤ K.

From the metric definition it is clear that any K-biLipschitz map is K2-quasiconformal.
Although a quasiconformal map f : D → D need not be biLipschitz, it is a quasi-
isometry of the disk with its hyperbolic metric ρ, i.e., there is a constant A such
that

1

A
ρ(x, y)−B ≤ ρ(f(x), f(y)) ≤ Aρ(x, y) + B.

This says f is biLipschitz for the hyperbolic metric at large scales. Note that to
show a map f is a quasi-isometry it suffices to show that both f(E) and f−1(E) =
{x : f(x) ∈ E} have uniformly bounded diameter whenever E is a set of diameter
1 (assuming any two points in the domain and image space can be connected by
a curve with length comparable to distance between the points, which holds in the
cases we will consider).

A boundary mapping f : T → T is a quasisymmetric homeomorphism if there
is an k < ∞ (depending only on K) so that 1/k ≤ |f(I)|/|f(J)| ≤ k, whenever
I, J ⊂ T are adjacent intervals of equal length. It turns out that all the classes
discussed above have the same set of boundary values and these are all given by the
quasisymmetric maps, i.e.,

Theorem 2.3. For a map f : D → D we have (1) ⇒ (2) ⇒ (3) ⇒ (4) where
(1) f is biLipschitz with respect to the hyperbolic metric.
(2) f is quasiconformal.
(3) f is a quasi-isometry with respect to the hyperbolic metric.
(4) f has a continuous extension to T which is quasisymmetric.

Moreover, any quasisymmetric homeomorphism of the circle has a continuous exten-
sion to the disk which satisfies (1).

The implication (1) ⇒ (2) is clear from the definitions. (2) ⇒ (3) is proven in
[12] by Epstein, Marden and Markovic with A = K and B = K log 2 if 1 ≤ K ≤ 2
and B = 2.37(K − 1) if K > 2. (3) ⇒ (4) is a result of of Väisälä [18]. (4) ⇒ (1) is
a standard fact; see e.g. Ahlfors’ book [1].

3. Hyperbolic geometry of chord-arc decompositions

Given a set E in the plane we define its 1-dimensional measure as

`(E) = lim
δ→0

inf{
∑

2rj : E ⊂ ∪B(xj, rj), rj ≤ δ}
where the infimum is over all covers of E by open balls. We denote it by `(E), since
if E is a Jordan curve, this agrees with the usual notion of length. We say that
a simply connected domain Ω has a rectifiable boundary if `(∂Ω) < ∞. A Jordan
domain is called chord-arc if there is an M < ∞ so that

`(σ(x, y)) ≤ M |x− y|
for all x, y ∈ ∂Ω, where σ(x, y) denotes the shorter arc on ∂Ω between these points.
If Ω is chord-arc then a map f : ∂Ω → ∂D that multiplies length by 2π/`(∂Ω) has
a quasiconformal extension to the interiors with a constant depending only on the
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chord-arc constant of Ω (e.g., this follows from Theorem VII.4.3 of [13]). In fact, this
holds for “inner chord-arc” defined as follows.

Any crosscut γ of Ω is the conformal image of a crosscut in D which defines two
arcs on T. We will say Ω is inner chord-arc with constant M if for one of these arcs
I, we have ˆ

I

|f ′||dz| ≤ M`(γ).

In other words, I has length bounded by a multiple of any crosscut with the same
endpoints. It is a theorem of Gehring and Hayman [14] that all such crosscuts have
length bounded by a multiple of the Euclidean length of the hyperbolic geodesic with
the same endpoints, so we need only consider geodesics in this definition. Inner chord-
arc domains were introduced by Pommerenke in [16] and also studied by Väisälä
in [17] and Ghamsari [15]. They generalize the usual notion of chord-arc domain,
where the boundary is a Jordan curve and the length of the shortest boundary arc
connecting x, y is bounded by M |x− y|.

A curve γ is called regular if there is an M < ∞ so that the length of γ ∩D is
bounded by Mr for every disk D = D(x, r). It is not hard to see that the boundary of
a inner chord-arc domain Ω must be regular. There is nothing to do if r ' diam(Ω),
so assume r ¿ diam(Ω), Choose a base point z ∈ Ω \D with dist(z, ∂Ω) > r. The
part of γ inside D is separated from z by arcs of ∂D and by the inner chord-arc
condition their length is bounded by a multiple of the lengths of these arcs (which
are crosscuts of Ω). The total length of the arcs is at most 2πr, so we are done. See
Figure 5. This is due to Ghamsari [15].

Figure 5. Proof that an inner chord-arc boundary is regular.

If two inner chord-arc domains share a common boundary arc γ, then γ must be
chord arc. To see this, choose basepoints in each domain as above and consider any
two points z, w ∈ γ with |z − w| less than the distance of either basepoint to the
boundary. Let D = D((z + w)/2, |z − w|/2). Every point of the arc of γ between z
and w is separated from one of the basepoints by some arc of ∂D. Thus the argument
above shows the length of this arc is O(r), i.e., γ is chord-arc.

If Ω is inner chord-arc, we can still define a map f : ∂Ω → ∂D which multiplies
length by a constant, but we have to interpret ∂Ω as a topological circle. It is
a result of Väisälä [17] that an inner chord-arc domain Ω is a locally biLipschitz
image of the disk, say by a map g : D → Ω. Then f ◦ g : T → T is biLipschitz,
hence quasisymmetric, hence has a quasiconformal extension Φ: D → D. Thus
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Φ ◦ g−1 : Ω → D is an extension of f and is a composition of a locally biLipschitz
map and a quasiconformal map, hence is quasiconformal.

In what follows we will assume Ω is decomposed into inner chord-arc pieces (but
the reader may assume the pieces are chord-arc to avoid the technicalities about the
boundary map described above).

Lemma 3.1. Suppose Ω is simply connected, Γ = {γk} is a disjoint collection of
crosscuts in Ω and Ω\Γ = ∪kΩk is a tree-like decomposition of Ω into inner chord-arc
domains with constant M . Then there is an ε > 0, depending only on M , so that

(1) any two crosscuts from Γ are separated by at least hyperbolic distance ε,
(2) For each crosscut γ and every z ∈ γ, dist(z, ∂Ω) ≥ εdist(z, ∂γ), where ∂γ

denotes the two endpoints of γ.

Proof. Suppose z ∈ γ and z′ ∈ γ′ are points on distinct crosscuts such that
ρ(z, z′) < ε. Without loss of generality we may assume γ, γ′ are both on the boundary
of the same decomposition piece Ωk (otherwise consider the segment S between them
and replace these points by the endpoints of some component of S \ Γ which are in
different crosscuts, but still less than ε apart). Thus both arcs of ∂Ωk which connect
z, z′ hit the boundary of Ω and hence have length ≥ d(z) = dist(z, ∂Ω), whereas the
chord between z and z′ has Euclidean length ≤ εd(z). This is a contradiction for ε
small, so (1) holds. A similar argument proves (2). ¤

If Ω is simply connected we say that E ⊂ Ω is quasi-convex with constant C if
the shortest hyperbolic path in E between any two points z, w has length at most
C times the hyperbolic distance ρ(z, w) in Ω (the length of a path in E is measured
using the hyperbolic distance on Ω restricted to E).

Lemma 3.2. Suppose Ω is simply connected, and {Ωk} is a tree-like decompo-
sition of Ω into inner chord-arc domains with constant M . Then each Ωk is quasi-
convex with a constant depending only on M . Moreover, each crosscut γ of the
decomposition is quasi-convex.

Proof. If we can show the boundary arcs are quasi-convex then the interior must
be as well, since we can modify a hyperbolic geodesic in Ω between two points of Ωk

to follow the boundary of Ωk whenever it leaves Ωk. So suppose z, w ∈ γ ⊂ ∂Ωk ∩ Ω
and that σ is the arc of γ connecting them. Then σ is chord-arc and by our remarks
following Lemma 2.2 and part (2) of Lemma 3.1, the hyperbolic length of σ is bounded
by a multiple of the hyperbolic distance between z and w, so we are done. ¤

Lemma 3.3. Suppose γ is either a crosscut of Ω or connects two points z, w of
Ω. Assume γ is quasi-convex with constant M . Then there is an A < ∞ (depending
only on M) so that γ̃ stays within a hyperbolic A-neighborhood of γ, where γ̃ is the
hyperbolic geodesic with the same endpoints.

Proof. We prove this by assuming the conclusion fails for a large A, and find two
points on γ where the quasi-convexity also fails. With loss of generality, assume Ω is
the upper half-plane and normalize so that γ̃ lies on the positive imaginary axis. If
γ is a crosscut then γ̃ is the whole axis. Otherwise we assume the points z, w are at
least distance 10 apart and that we have normalized so Im(w) ≥ e5 and Im(z) ≤ e−5.

Suppose that i =
√−1 = (0, 1) is point of γ̃ which is at least distance C from γ.

Then γ ∩D(0, 1) must lie below the horizontal line {y = ε} where ε = O(exp(−C)).
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Fix s ∈ [−1, 1] and t > 0 and consider an open truncated cone with vertex at s + it,
i.e.,

Γ(s, t) = {z = x + iy : − 1 < x < 1, 1 > y > 6ε|x− s|+ t}.
First suppose s1 = 1/6 and choose the the minimal t > 0 so that Γ(s1, t) is disjoint
from γ. If this is strictly positive stop. If it is 0, then change s1 = −1/6 and consider
the same way of choosing t. If we get 0 again, then γ can’t connect 0 to ∞ in H so
one of these t’s must be positive. Fix s1 to be the choice (either ±1/6) that gives a
positive value for t and let this value be denoted t1. Now define s2, t2 in the same
way except with |s2| = 5/6. See Figure 6. Let

W = {x + iy : − 1 < x < 1, 0 < y < ε} \ (Γ(s1, t1) ∪ Γ(s2, t2).

By the minimality of t1 and t2, there is a point z1 = x1 + iy1 ∈ γ ∩ ∂Γ(s1, t2) and a
point z2 = x2 + iy2 ∈ γ ∩ ∂Γ(s2, t2). The hyperbolic distance between these points is

(3.1) ' | log y1|+ | log y2| = | log ε|+ | log ε/y1|+ | log ε/y2|,
but the length of γ between these points is at least the length of ∂W between these
points (since ∂W lies above γ) which is

(3.2) ≥ c

ε
(log ε/y1) + 1/(3ε) +

c

ε
(log ε/y2).

Since (3.2) À (3.1) if ε is small, we get a contradiction that proves the lemma. ¤

i

ε

Figure 6. If γ does not follow a geodesic it can’t be quasiconvex. If γ lies below the dashed
horizontal line there must be two points whose γ distance apart is much larger than there hyperbolic
distance.

Corollary 3.4. Suppose Ω is a simply connected domain which is decomposed
into inner chord-arc subdomains by a collection of crosscuts {γk} and let {γ̃k} be the
collection of hyperbolic geodesics with the same endpoints. Given a radius r, only a
bounded number C = C(r) of the γ̃k can intersect any hyperbolic ball of radius r.

Proof. Suppose some of the geodesics intersect a ball B. Then at least that
number of crosscuts intersect the concentric ball of radius r + A (where A is from
Lemma 3.3). The crosscuts are uniformly separated in the hyperbolic metric so this
number is bounded depending only on r + A. ¤

Lemma 3.5. Suppose Ω is simply connected, and {Ωk} is a tree-like decompo-
sition of Ω into inner chord-arc domains with constant M . Let fk : Ωk → D be the
map described above and let Ek = fk(∂Ωk ∩ ∂Ω) ⊂ T. Let Nk be the nearest point
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retraction onto C(Ek) (the hyperbolic convex hull of Ek). Let τk be a Möbius map-
ping of the disk to itself. Then τk ◦ Nk ◦ fk is a quasi-isometry from the hyperbolic
metric of Ω restricted to Ωk to the hyperbolic metric on D.

Proof. Since a Möbius self-mapping of the disk is an isometry of the hyperbolic
metric, we may ignore τk. As noted earlier, we have to show that forward and
backward images of unit balls have bounded diameter. However, by the definition of
our maps and Lemma 3.1, it is clear that for z ∈ Ωk

dist(z, ∂Ω)

diam(Ωk)
' dist(z, ∂Ωk ∩ ∂Ω)

diam(Ωk)
' dist(fk(z), Ek) ' dist(Nk(fk(z)),T).

Since Ωk is quasi-convex, this implies that the forward image of a unit ball intersected
with Ωk has bounded hyperbolic diameter in D.

Similarly, given two points in the image which are unit distance apart, consider a
curve connecting them in the interior of the image whose length is at most twice the
hyperbolic distance between them. Then N−1

k of the interior is itself, and f−1
k is a

quasi-isometry, so the interior has inverse image which has bounded diameter. Thus
we only have to check the inverse images of the endpoints, z, w, and we may assume
they are on the boundary of the image. Then N−1

k of a single point is a circular arc
connecting the boundary of the image to the unit circle and f−1

k sends this to an
arc whose Euclidean diameter and distance to ∂Ω are comparable (and hence have
bounded hyperbolic diameter). This completes the proof. ¤

Lemma 3.6. Suppose Ω is simply connected, and {Ωk} is a tree-like decompo-
sition of Ω into inner chord-arc domains with constant M . Let fk, Nk be as above.
Then Nk ◦ fk is biLipschitz on each crosscut (between the hyperbolic metrics on Ω
and D).

Proof. If z ∈ γ ⊂ ∂Ωk then Nk ◦ fk maps z to a point w with
dist(z, ∂Ω)

diam(γ)
' 1− |w|

diam(fk(γ))
.

This holds because fk multiplies distances and so f(z) is the essentially the same
distance (proportionally) from the endpoints of f(γ) that z is from the endpoints
of γ (we are also using that γ is chord-arc). Then the definition of Nk implies that
w = Nk(fk(z)) is essentially the same distance from ∂D that fk(z) was from the
endpoints of fk(γ). Finally, the displayed equation implies the composed map is
biLipschitz. ¤

4. Proof of Theorem 1.1

Recall from the introduction that we define a map ψn on each Ωn in the decom-
position as a composition

ψn : fn ◦Nn ◦ τn,

where fn maps Ωn onto the disk and multiplies boundary length by the constant factor
2π/`(∂Ωn), Nn is the nearest point retraction on C(En) where En = fn(∂Ωn ∩ ∂Ω)
and τn is a normalizing Möbius transformation so that the maps ψn, ψk corresponding
to adjacent pieces agree on the endpoints and midpoint of the crosscut separating Ωn

and Ωk. This defines a continuous map of ∂Ω, but it not necessarily continuous on the
interior. However, we will prove that it is a quasi-isometry between the hyperbolic
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metrics of Ω and D. Thus the boundary values have some other extension to the
interior which is quasiconformal.

Lemma 4.1. If x ∈ γn = ∂Ωn ∩ ∂Ωk then the two maps ψn, ψk map x to points
that are O(1) apart in the hyperbolic metric of D.

Proof. This is clear since both maps send a point z to images which lie on the
same geodesic and have comparable distances from the unit circle. ¤

Corollary 4.2. With notations as above, if Ω1, Ω2 are decompositions pieces
that share a common crosscut γ in their boundaries and z1 ∈ Ω1, z2 ∈ Ω2 are such
that ρD(ψ(z1), ψ(z2)) ≤ 1, then ρΩ(z1, z2) ≤ C.

Proof. Choose a geodesic between the image points and a point w where this
crosses the image of γ. Let w1, w2 be the preimages of this point under the continuous
boundary values of ψ restricted to Ω1 and Ω2 respectively. Then ρΩ(w1, z1) ≤ C since
ψ is a quasi-isometry on Ω. Similar for w2 and z2. Finally, ρ(w1, w2) ≤ C by Lem-
ma 4.1. ¤

Lemma 4.3. The map ψ : Ω → D is a quasi-isometry between the hyperbolic
metrics.

Proof. It is enough to show that the forward image of a hyperbolic unit ball has
bounded diameter and that the inverse image of a unit ball has bounded diameter.

The forward image is easy to deal with. If D has diameter 1, then it can hit
only a bounded number of distinct decomposition pieces, since there a lower bound
on the hyperbolic distance between distinct crosscut (Lemma 3.1). Moreover, where
D meets a crosscut, the map on different sides of the crosscut differ by a bounded
amount (Lemma 4.1). Moreover, the intersection D with each piece has bounded
diameter by Lemma 3.5. Thus the image is a bounded number of bounded sets, each
of which is a bounded distance from its neighbors. Thus the image has uniformly
bounded diameter.

For the other direction, first let C1 = C(1) in Corollary 3.4. Let C2 ≥ 1 be the
constant from Corollary 4.2 and let C3 be the quasi-isometry constant from Lemma
3.6. Let C4 be the constant C from Lemma 2.1. Now choose M > 8C1+C2C3(C4+8).

We need two facts about hyperbolic geometry in the disk:

Lemma 4.4. For any M > 0 there is an ε > 0 so that if two disjoint infinite
geodesics γ1, γ2 in D both hit the disk Dρ(0, ε) = {z : ρ(0, z) < ε}, then the segments
γ1∩Dρ(0,M) and γ2∩Dρ(0,M) each lie in a hyperbolic 1-neighborhood of the other.

Lemma 4.5. There is a r > 0 so that if γ1, γ2, γ3 are three disjoint infinite
geodesics in D so that none of them separates the other two, then no hyperbolic
r-disk can intersect all three geodesics.

Both of these follow from some elementary hyperbolic trigonometry. Suppose a
hyperbolic triangle has geodesic segments of lengths a, b, c for edges with opposite
angles of α, β, γ respectively. The first cosine rule says,

cosh c = cosh a cosh b− sinh a sinh b cos γ(4.1)
and the second cosine rule says

cosh c =
cos α cos β + cos γ

sin α sin β
(4.2)
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See page 148 of Beardon’s book [3].

Proof of Lemma 4.4. Consider the left side of Figure 7, which shows hyperbolic
disks of radii ε and M around 0, the geodesic γ1 through 0 connecting −1 and 1,
and a second geodesic γ2 starting at −1 and tangent to the ball of radius ε. This
geodesic has the greatest divergence from γ1 among those we are considering, so we
want to compute how far apart these geodesics are at the points x, y where they leave
the M -disk near 1. The origin is connected to γ2 by a radial segment of hyperbolic
length ε and making an angle θ = π

2
− δ with [−1, 0] and and angle π/2 with γ2. By

the second cosine rule (applied with angles 0, θ, θ),

cosh ε =
cos θ cos π/2 + 1

sin θ sin π/2
≤ 1

sin(π
2
− δ)

≤ 1 + δ2,

if δ is small enough. Thus ε ≤ 2δ if δ is small enough. Now consider the hyperbolic
triangle with vertices 0, x, y. It has two sides of hyperbolic length M meeting at an
angle φ > π

2
− θ = δ (because the angle marked τ must be < π

2
). Thus if s is the

hyperbolic distance from x to y, the first cosine rule implies,

cosh s = cosh2 M − sinh2 M cos φ = 1 + sinh2 M(1− cos φ) ≤ 1 +
1

2
δ2 sinh2 M.

Thus s ≤ 1
2
if δ ≤ (2(cosh(1

2
) − 1) sinh−2 M)1/2 ≤ √

2e−M for M large. This proves
that any geodesic hitting the ε-disk (with ε ≤ e−M) around 0 and disjoint from γ1

stays within hyperbolic distance 1
2
of γ1 as long as it is inside the M -disk around 0.

This proves the lemma. ¤

θ φ
ε M

1−1

x

y

M s
τ

Figure 7. The proofs of Lemmas 4.4 and 4.5. On the left we show that disjoint geodesics that
come close must stay close for a long time. On the right we show that three disjoint geodesics, none
of which separate the other two, cannot all come close to the same point.

Proof of Lemma 4.5. The smallest disk that hits three non-separating geodesics
will have minimal radius r when the geodesics form an ideal triangle as on the right
side Figure 7. Assume the disk is centered at 0 and connect 0 to closest point of one of
the sides and to the endpoint of this side, forming a triangle with angles 0, π/2, π/3.
The second cosine rule says

cosh r =
cos π

2
cos π

3
+ cos 0

sin π
2

sin π
3

=
2√
3

> 1,

which implies r > 0. ¤



Tree-like decompositions and conformal maps 401

Now we continue with the proof of Lemma 4.3. With M as above, choose ε > 0
as in Lemma 4.4. Without loss of generality, we also assume ε < δ where δ is from
Lemma 4.5. We claim that at most a bounded number of pieces can have images
which hit such an ε-ball D. This will prove the lemma (since if we can bound the
number of image pieces hitting an ε-ball we can bound the number hitting a unit ball
by covering it by ε-balls).

Suppose N + 1 pieces do. By out choice of ε < δ and Lemma 4.5, we can assume
the image domains Ω1, . . . , ΩN+1 and for a chain where each domain is adjacent to
its successor. Then there are N crosscuts whose images are geodesics that hit D. By
our choice of ε there are unit balls D1, D2 each distance M from D which hits all N
geodesics. See Figure 8. By Corollary 4.2, the preimages of these two balls each have
hyperbolic diameter which is C2N and their distance apart is ≥ M/C3. For each
piece Ωk, choose a pair of points, one each in the preimages of D1, D2 intersected
with Ωk and consider the geodesic between them.

We will prove N ≤ C1. Choose a connected subchain of K domains with K <
2C1 ≤ M/4. Then by our choice of M and Lemma 2.1, there is a single point z
so that all K geodesics pass within C4 exp(−C2(C4 + 8)/8) ≤ 1 of z. This means
K ≤ C1. But if all subchains have length ≤ C1 then N ≤ C1, as claimed. This
proves the lemma. ¤

D

D

D

1

2

Figure 8. If N pieces have images that hit an ε-ball D, then they must also hit unit balls that
are M À N apart. The preimages have diameter O(N) and geodesics between the two preimages
must all hit a fixed unit ball, which limits the number of possible geodesics (since they are uniformly
separated). The dashed line indicates the M -ball concentric with D.

5. Iterating to a conformal map

Suppose Ω is a simply connected plane domain bounded by a polygonal curve.
The Schwarz–Christoffel formula gives the general form of a conformal map f : D →
Ω as

f(z) = A + C

ˆ z n∏

k=1

(1− w

zk

)αk−1dw,

where απ = {α1π, . . . , αnπ}, are the interior angles at the vertices v = {v1, . . . , vn},
and z = {z1, . . . , zn} = f−1(v) are the conformal preimages of the vertices (also
know as the Schwartz–Christoffel parameters). We know the angles, so finding the
conformal map is equivalent to finding the SC-parameters. For a fixed α, we can
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think of the Schwartz–Christoffel formula as giving a map S from n-tuples on the
circle to n-tuples of complex numbers.

Given a map G going from polygons to n-tuples, we can compose it with S to
get a map F = G ◦ S mapping n-tuples to n-tuples and the desired parameters z∗
are a solution to F (z) = z0 = G(P ), where P is the target polygon. If G is a good
approximation to the inverse of S, then F should be close to the identity and we can
try to solve this equation by the iteration

z0 = L(Ω), zn+1 = zn − (F (zn)− z0)).(5.1)

In [11] Driscoll and Vavasis define a map G using cross ratios and the Delaunay
triangulation and call this iteration “simple CRDT”. Note that (5.1) is a special case
of

zn+1 = zn − A−1(F (zn)− zn),(5.2)

when A is the identity matrix. If A is the Jacobian of the function F (z)−z0, then this
is Newton’s method for several variables. However, it may be expensive to compute
or even approximate the Jacobian. A compromise is to start the iteration with A
equal to the identity matrix and use a Broyden update to modify A at each step. (A
Broyden update multiplies the current matrix A by a rank one matrix based on the
on our most recent evaluation of F ; the details are described in Chapter 8 of [10]).
The CRDT iteration with Newton’s method is called “full CRDT” in [11]; the version
with Broyden updates is called “shortcut CRDT”.

Theorem 1.1 says that a treelike decomposition of Ω gives rise to a piecewise
length preserving mapping G : ∂Ω → ∂D which is only a bounded distance away
from the Riemann mapping in a quasiconformal sense. If we compose our two maps
F = G ◦ S, we get a mapping of n-tuples to n-tuples and Theorem 1.1 roughly says
that points are moved only a bounded distance by this map, at least for the distance

dQC(w, z) = inf{log K : ∃ K-quasiconformal h : D → D such that h(z) = w}.
Thus on large scales, composition looks like the identity and we can hope that (5.1)
and (5.2) will converge. When the decomposition is trivial (just one piece equal to
all of Ω), iteration (5.1) is just Davis’s method [9], [2]. If the decomposition is the
Delaunay triangulation, the resulting iteration is similar to CRDT (but not quite the
same; we will refer to it as ELDT for Edge Lengths and Delaunay Triangulations).
As with CRDT we can define “simple”, “full” or “shortcut” ELDT, although these
methods do not seem to do quite as well as the CRDT variants.

See Figures 9 and 10 for a comparison of the methods for one example. Figure 9
shows the polygon, its Delaunay triangulation and two intermediate decompositions.
Figure 10 show that the Schwarz–Christoffel images corresponding to the first ten
iterations of shortcut ELDT (this uses Broyden updates starting from the identity).

In Figure 10, we plot − log(K−1) where K is an upper bound for the quasiconfor-
mal error at each step, and the PLP maps corresponding to the three decompositions
in Figure 9. The method for estimating the upper bound K is as follows. Suppose
P0 is the target polygon and Pn = S(zn). For each triangle T in the Delaunay tri-
angulation of P0 compute the affine map from T to the corresponding triangle T ′ in
Pn. More explicitly, use a conformal linear map to send each triangle to one of the
form {0, 1, a} and {0, 1, b}. The affine map which fixes 0 and 1 and sends a to b is of
the form f(z) → αz + βz̄ where α + β = 1 and β = (b− a)/(a− ā) and from this it
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is easy to compute that

Kf =
1 + |µf |
1− |µf | , where µf =

fz̄

fz

=
β

α
=

b− a

b− ā
.

If the triangle T ′ is degenerate, or has the opposite orientation as T , we simply give
∞ as our QC bound K. The maps on each triangle fit together to give a QC map
between P0 and Pn. Transferring this map back to the disk by conformal maps gives
a QC map of the disk to itself which sends the true parameters to current guess. This
gives a rigorous upper bound on the QC distance between z∗ and zn, even though
we do not know z∗.

Figure 9. A 98-gon and three tree-like decompositions, including the Delaunay triangulation
on the bottom.

2 4 6 8 10 12 14

-2

2

4

6

8

10

Figure 10. On the left are the first ten iterations of “shortcut ELDT”. On the right is the plot
of − log(K − 1) for 15 iterations using Broyden updates and G corresponding to the CRDT map
(diamonds) and the PLP maps for the three decompositions in Figure 9. CRDT is the best and the
PLP maps do better as the decomposition becomes finer. The left picture corresponds to first 10
points plotted with squares.
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