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Abstract. This paper is concerned with the type of region that arises when infinitely many
disjoint closed balls, or “bubbles”, are removed from the unit ball of Euclidean space. It characterises
those configurations of balls which carry full harmonic measure for the resultant region.

1. Main results

Let B(x, r) denote the open ball of centre x and radius r in Euclidean space Rn

(n ≥ 2), and let B = B(0, 1). This paper is concerned with domains of the form
Ω = B\(∪kB(xk, rk)), where the closed balls B(xk, rk) are pairwise disjoint, |xk| → 1
and supk rk/(1 − |xk|) < 1. Such domains are known as champagne regions and the
removed balls are referred to collectively as the bubbles. It is convenient to assume
that 0 ∈ Ω. The main problem is to determine those configurations of bubbles which
cause the unit sphere to carry no harmonic measure for Ω. Since this is equivalent
to the bubbles being unavoidable for Brownian motion starting at 0, we will describe
such configurations as unavoidable.

When n = 2 Akeroyd [3] has shown that, for any ε > 0, there are champagne
regions for which ∪kB(xk, rk) is unavoidable and yet

∑
k rk < ε. Ortega-Cerdà and

Seip [7], also working in the disc, subsequently showed that this phenomenon can
occur for any given sequence (xk) satisfying

(1) inf
j 6=k

|xj − xk|
1− |xk| > 0

and

(2) B(x, a(1− |x|)) ∩ {xk : k ∈ N} 6= ∅ (x ∈ B)

for some a ∈ (0, 1). In this case, if rk = (1−|xk|)φ(|xk|) for some decreasing function
φ : [0, 1) → (0, 1), it was shown that the bubbles are unavoidable if and only if

∫ 1

0

1

(1− t) log(1/φ(t))
dt = ∞.
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This result was recently extended by O’Donovan [6] to higher dimensions, where the
corresponding condition on φ is

∫ 1

0

{φ(t)}n−2

1− t
dt = ∞.

The main purpose of this paper is to obtain results of this nature for more
general champagne subregions of the unit ball, where the separation condition (1) is
substantially relaxed. From now on we will assume that n ≥ 3. Normalised surface
area measure on ∂B will be denoted by σ.

Theorem 1. Let Ω be a champagne subregion of the unit ball.
(a) If the bubbles are unavoidable, then

(3)
∑

k

(1− |xk|)2

|y − xk|n rn−2
k = ∞ for σ-almost every y ∈ ∂B.

(b) Conversely, if (3) holds, together with the separation condition

(4) inf
j 6=k

|xj − xk|
r
1−2/n
k (1− |xk|)2/n

> 0,

then the bubbles are unavoidable.

We note that condition (4) is strictly weaker than (1) when n ≥ 3. To see that
it cannot be omitted, let Kj denote the closed cube of centre (1 − 2−j, 0, ..., 0) and
sidelength 2−j−1/

√
n, with sides parallel to the coordinate hyperplanes. If, for each

j ∈ N, we choose 2jn2 disjoint closed balls of radius 2−j−3−jn/
√

n inside Kj, the
resultant configuration of balls is certainly avoidable and yet satisfies (3).

As we will indicate briefly at the end of the paper, our approach to proving The-
orem 1 also leads to an improvement of related results for unavoidable configurations
of balls in space that have recently been obtained by Carroll and Ortega-Cerdà [5].

Next, following Ortega-Cerdà and Seip [7] and O’Donovan [6], we consider what
more can be said when rk is of the form (1− |xk|)φ(|xk|), where φ : [0, 1) → (0, 1) is
decreasing. We note that (1) and (2) together imply that the number of points

Na(x) = # [B(x, a(1− |x|)) ∩ {xk : k ∈ N}]
satisfies 1 ≤ Na(x) ≤ b for some constants a ∈ (0, 1) and b > 1. In the next result we
will allow Na(x) to grow, as |x| → 1, like some increasing function M : [0, 1) → [1,∞)
where

M(1− t/2) ≤ cM(1− t) (0 < t ≤ 1),

for some c > 1.

Theorem 2. Let φ and M be as above, and let Ω be a champagne subregion of
the unit ball, where rk = (1− |xk|)φ(|xk|).

(a) If the bubbles are unavoidable and there are constants a ∈ (0, 1) and b > 0
such that Na(x) ≤ bM(|x|) for all x ∈ B, then

(5)
∫ 1

0

{φ(t)}n−2 M(t)

1− t
dt = ∞.
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(b) Conversely, if (5) holds, together with the separation condition

(6) inf
j 6=k

|xj − xk|
{φ(|xk|)}1−2/n (1− |xk|)

> 0,

and there are constants a ∈ (0, 1) and b > 0 such that Na(x) ≥ bM(|x|) for
all x ∈ B, then the bubbles are unavoidable.

We can now deduce a higher dimensional version of Akeroyd’s result.

Corollary 3. Let ε > 0.
(a) There is a champagne subregion of the unit ball satisfying (1), (2) and∑

k rn−1
k < ε, such that the bubbles are unavoidable.

(b) For any α > n− 2 there is a champagne subregion of the unit ball such that∑
k rα

k < ε and the bubbles are unavoidable.

To see that part (b) of the corollary is sharp, suppose we have a champagne
subregion of the unit ball such that

∑
k rn−2

k < ∞. By omitting finitely many of
the balls we can arrange that B(xk, rk) ⊂ B\B(0, 1/2) for all k and

∑
k rn−2

k < 2−n.
By subadditivity this would imply that the Newtonian capacity of the union of the
remaining balls is at most 2−n, whence the associated capacitary potential is valued
at most 1/4 at 0. Thus these balls are avoidable, and it follows that the full collection
of balls is also avoidable.

The above results will be proved using Whitney decompositions, two different
types of quasiadditivity of Newtonian capacity, and minimal thinness. For potential
theoretic background material we refer to the book [4].

2. Proof of Theorem 1

Let E = ∪kB(xk, rk), so that Ω = B\E. For a positive superharmonic function
u on B we define the usual reduced function

RE
u = inf{v : v is positive and superharmonic on B and v ≥ u on E}.

Then E is unavoidable if and only if RE
1 (0) = 1. The Poisson kernel for B with pole

at y ∈ ∂B is given by

P (x, y) =
1− |x|2
|x− y|n (x ∈ B).

Since
∫

P (·, y) dσ(y) ≡ 1, we see that

RE
1 (0) = RE∫

P (·,y) dσ(y)(0) =

∫

∂B

RE
P (·,y)(0) dσ(y).

Hence E is unavoidable if and only if RE
P (·,y)(0) = 1 = P (0, y) for σ-almost every

y ∈ ∂B. By the connectedness of Ω and the maximum principle,

(7) E is unavoidable if and only if RE
P (·,y) ≡ P (·, y) for σ-a.e. y ∈ ∂B.

We note, for use below, that the condition RA
P (·,y) 6≡ P (·, y) characterizes minimal

thinness with respect to B of a set A ⊂ B at a boundary point y (see Chapter 9 of
[4]).
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Next we choose a Whitney decomposition of B; this is a collection of closed cubes
{Qm : m ∈ N} with sides parallel to the coordinate hyperplanes such that their union
is B, their interiors are pairwise disjoint, and

(8) diam(Qm) ≤ dist(Qm, ∂B) ≤ 4diam(Qm) (m ∈ N)

(see Chapter VI of Stein [8]). A Wiener-type criterion for minimal thinness (see
Corollary 7.4.4 of Aikawa and Essén [2]), based on the quasiadditivity of Green
capacity with respect to Whitney decompositions, tells us that

(9) RE
P (·,y) ≡ P (·, y) if and only if

∑
m

{dist(Qm, ∂B)}2

{dist(y, Qm)}n C (E ∩Qm) = ∞,

where C (·) denotes Newtonian capacity.
We will need the following elementary lemma, the proof of which is left to the

reader. It relies on the fact that supk rk/(1 − |xk|) < 1, and the constant c1 below
depends on the value of this supremum.

Lemma 4. There is a constant c1 > 1 such that, for any Qm and any B(xk, rk)
which intersects Qm:

1

c1

≤ dist(Qm, ∂B)

1− |xk| ≤ c1, and
1

c1

≤ dist(y,Qm)

|y − xk| ≤ c1 for all y ∈ ∂B.

Now suppose that E is unavoidable. By (7) and (9),

(10)
∑
m

{dist(Qm, ∂B)}2

{dist(y, Qm)}n C (E ∩Qm) = ∞ for σ-almost every y ∈ ∂B.

By the countable subadditivity of Newtonian capacity,

C (E ∩Qm) = C (
[∪kB(xk, rk)

] ∩Qm) ≤
∑

k

C (B(xk, rk) ∩Qm).

Since the number of cubes Qm which intersect a given ball B(xk, rk) is bounded above
by a constant c2, independent of k, and since

C (B(xk, rk) ∩Qm) ≤ C (B(xk, rk)) = rn−2
k ,

we see from the above lemma that
∑
m

{dist(Qm, ∂B)}2

{dist(y, Qm)}n C (E ∩Qm) ≤
∑

k

∑
m

{dist(Qm, ∂B)}2

{dist(y,Qm)}n C (B(xk, rk) ∩Qm)

≤ cn+2
1 c2

∑

k

(1− |xk|)2

|y − xk|n rn−2
k .

Hence (3) follows from (10). This proves part (a) of Theorem 1.
For part (b) we require the following.

Lemma 5. Suppose that

(11)
|xj − xk|

r
1−2/n
k (1− |xk|)2/n

≥ 4c
4/n
1 (j 6= k),
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where c1 is as in Lemma 4. Then there is a constant c3 > 0 depending only on n
such that, for any Whitney cube Qm,

(12) C (E ∩Qm) ≥ c3

∑

k

C (B(xk, rk) ∩Qm).

Proof of Lemma. We will establish this by applying a different type of quasiad-
ditivity property of Newtonian capacity to a scaled version of E∩Qm. Let λn denote
the Lebesgue measure of B. A result of Aikawa and Borichev [1] tells us that, if F

is an analytic subset of ∪kB(yk, ρk), where ρk ≤ λ
−1/2
n 2−n/2 for all k, and if the balls{

B(yk, λ
−1/n
n ρ

1−2/n
k ) : k ∈ N

}
are pairwise disjoint, then

∑

k

C (F∩B(yk, ρk)) ≤ C(n)C (F ),

where C(n) is a constant that depends only on n. We will apply it to the set E◦∩Qm

after scaling by the factor

α =
λ
−1/2
n 2−n/2

c1dist(Qm, ∂B)
.

Thus we define
F = (∪kB(yk, ρk)) ∩ αQm,

where yk = αxk, ρk = αrk and αQm = {αx : x ∈ Qm}. If B(xk, rk) ∩ Qm 6= ∅, then
we see from Lemma 4 and (11) that

ρk = αrk ≤ α(1− |xk|) ≤ αc1dist(Qm, ∂B) = λ−1/2
n 2−n/2

and
|yj − yk|
ρ

1−2/n
k

=
α |xj − xk|

α1−2/nr
1−2/n
k

≥ 4
{
αc2

1 (1− |xk|)
}2/n

≥ 4 {αc1dist(Qm, ∂B)}2/n = 2λ−1/n
n (j 6= k).

Thus the hypotheses of the above quasiadditivity theorem are satisfied. The estimate
(12) follows, using the facts that C (αA) = αn−2C (A) for any analytic set A and that
C (B(xk, rk) ∩Qm) = C (B(xk, rk) ∩Qm) for all m and k. ¤

Now suppose that (3) and (4) hold. We choose δ ∈ (0, 1) small enough so that

|xj − xk|
(δrk)

1−2/n (1− |xk|)2/n
≥ 4c

4/n
1 (j 6= k)

and define Eδ = ∪kB(xk, δrk). From Lemmas 4 and 5 we see that
∑
m

{dist(Qm, ∂B)}2

{dist(y,Qm)}n C (Eδ ∩Qm) ≥ c3

cn+2
1

∑

k

∑
m

(1− |xk|)2

|y − xk|n C (B(xk, δrk) ∩Qm).

Subadditivity of capacity implies that, for each k, there exists m such that

C (B(xk, δrk) ∩Qm) ≥ c−1
2 C (B(xk, δrk)) = c−1

2 δn−2rn−2
k ,

where c2 is as above. Thus
∑
m

{dist(Qm, ∂B)}2

{dist(y, Qm)}n C (Eδ ∩Qm) ≥ c3δ
n−2

cn+2
1 c2

∑

k

(1− |xk|)2

|y − xk|n rn−2
k ,
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and (3), (7) and (9) together show that Eδ, and hence also E, is unavoidable. This
completes the proof of Theorem 1.

3. Proof of Theorem 2

Suppose firstly that E is unavoidable and that Na(x) ≤ bM(|x|) for all x ∈ B.
Since rk = (1− |xk|)φ(|xk|), we see from Theorem 1(a) that

(13)
∑

k

(1− |xk|)n

|y − xk|n {φ(|xk|)}n−2 = ∞ for σ-almost every y ∈ ∂B.

Any given centre xk belongs to some Whitney cube Qm. Clearly

1− |xk| ≤ dist(Qm, ∂B) + diam(Qm),

so

(14) 1− |xk| ≤ 5diam(Qm) and 1− |xk| ≤ 2(1− |x|) (x ∈ Qm),

by (8). Also, by Lemma 4,

|y − xk| ≥ 1

c1

dist(y,Qm) ≥ 1

2c1

{dist(y, Qm) + diam(Qm)} ≥ |y − x|
2c1

(x ∈ Qm),

so
(1− |xk|)n

|y − xk|n {φ(|xk|)}n−2 ≤ {10c1diam(Qm)}n {φ((2 |x| − 1)+)}n−2

|y − x|n (x ∈ Qm),

in view of the fact that φ is decreasing. Since the number of centres xk that belong
to Qm is bounded above by C(a, c, n)bM((2 |x| − 1)+) for all x ∈ Qm, we see that
∑

k

(1− |xk|)n

|y − xk|n {φ(|xk|)}n−2≤ C(a, c, n)bcn
1

∫

B

{φ((2 |x| − 1)+)}n−2
M((2 |x| − 1)+)

|y − x|n dx.

Integration with respect to dσ(y), together with (13) and the fact that∫

∂B

|y − x|−n dσ(y) =
1

1− |x|2 (x ∈ B)

by the harmonicity of the Poisson kernel, yields
∫

B

{φ((2 |x| − 1)+)}n−2
M((2 |x| − 1)+)

1− |x|2 dx = ∞.

Hence ∫ 1

1/2

{φ(2t− 1)}n−2 M(2t− 1)

1− t
dt = ∞,

and (5) follows. Thus part (a) of Theorem 2 is established.
To prove part (b), suppose that (5) and (6) hold, and that Na(x) ≥ bM(|x|) for

all x ∈ B. Let y ∈ ∂B and define

zi =

(
1− αi

2

)
y (i ∈ N), where α =

1− a

1 + a
.

The balls {B(zi, a(1− |zi|))} are then pairwise disjoint. Since

1− |x| ≥ (1− a)
αi

2
and |y − x| ≤ (1 + a)

αi

2
when x ∈ B(zi, a(1− |zi|)),
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we see that
∑

k

(1− |xk|)2

|y − xk|n rn−2
k =

∑

k

(1− |xk|)n

|y − xk|n {φ(|xk|)}n−2

≥
∑

i

∑

{k:xk∈B(zi,a(1−|zi|))}

(1− |xk|)n

|y − xk|n {φ(|xk|)}n−2

≥ αnb
∑

i

{
φ

(
1− (1− a)

αi

2

)}n−2

M(|zi|)

≥ C(a, b, c, n)
∑

i

{
φ

(
1− (1− a)

αi

2

)}n−2

M

(
1− (1− a)

αi+1

2

)

≥ C(a, b, c, n)

∫ 1

1−(1−a)α/2

{φ(t)}n−2 M(t)

1− t
dt = ∞.

Hence E is unavoidable, by Theorem 1(b), using the fact that (6) corresponds to (4)
in this case.

4. Proof of the corollary

To prove part (a) of the corollary, let {xk : k ∈ N} be an enumeration of the
centres of the Whitney cubes that do not contain 0, and define

φ(t) =
{1− log(1− t)}−1/(n−2)

10
√

n
.

Then ∫ 1

0

{φ(t)}n−2

1− t
dt = ∞

and, in view of (14), the balls B(xk, (1 − |xk|)φ(|xk|)) lie inside the corresponding
Whitney cubes, and so will be disjoint. Thus we can apply Theorem 2(b), with
M(t) ≡ 1, to see that E is unavoidable. Further,

∑

k

rn−1
k = C(n)

∑

k

(1− |xk|)n−1

{1− log(1− |xk|)}(n−1)/(n−2)

≤ C(n)

∫

B

1

(1− |x|){1− log(1− |x|)}(n−1)/(n−2)
dx < ∞,

by (14). By omitting a finite number of the balls, we can arrange that
∑

k rn−1
k is

arbitrarily small.
In proving part (b), we may assume that α ∈ (n−2, n−1). Let φ(t) = c0(1− t)β,

where β > (n − 1 − α)/(α − n + 2) and c0 ∈ (0, 1). We divide each Whitney cube
Qm that does not contain 0 into pn

m subcubes of equal size, where pm is the integer
part of {dist(Qm, ∂B)}β(2−n)/n. Let {xk : k ∈ N} be an enumeration of the centres
of all such subcubes. Then (6) holds. Also, Na(x) ≥ {φ(|x|)}2−n for all x ∈ B, for
a suitable choice of a ∈ (0, 1), and the balls B(xk, rk), where rk = (1 − |xk|)φ(|xk|),
will be pairwise disjoint, provided we choose c0 to be small enough. Since (5) holds
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with M(t) = {φ(t)}2−n, Theorem 2(b) shows that E is unavoidable. Further,
∑

k

rα
k ≤ cα

0

∑

k

(1− |xk|)(1+β)α

≤ cα
0 c

(1+β)α
1

∑
m

{dist(Qm, ∂B)}(1+β)α pn
m

≤ cα
0C(n, α, β)

∫

B

(1− |x|)β(α−n+2)+α−n dx < ∞,

by our choice of β. The result now follows, as before.

5. Unavoidable configurations of balls in space

It is also natural to consider domains of the form ω = Rn\(∪kB(xk, rk)), where
the balls B(xk, rk) are pairwise disjoint, 0 ∈ ω and |xk| → ∞, and to ask when the
balls are unavoidable, that is, when they carry full harmonic measure for ω. This
is a simpler problem since the underlying domain is the whole of space, rather than
B, and the question reduces to asking when the set F = ∪kB(xk, rk) is non-thin
at infinity (see Theorem 7.6.5 in [4]). For each j ∈ N we form the closed cube of
centre 0 and sidelength 3j with sides parallel to the coordinate hyperplanes, divide
it into 3n subcubes of sidelength 3j−1, and discard the central cube. Let {Rm} be an
enumeration of the resulting collection of cubes. Wiener’s criterion tells us that F is
non-thin at infinity if and only if

∑
m

{dist(0,Rm)}2−n C (F ∩Rm) = ∞,

so this divergence condition characterizes when F is unavoidable. Following the
approach of Section 2 we arrive at the following analogue of Theorem 1.

Theorem 6. Let ω be as above.

(a) If F is unavoidable, then

(15)
∑

k

(
rk

|xk|
)n−2

= ∞.

(b) Conversely, if (15) holds, together with the separation condition

(16) inf
j 6=k

|xj − xk|
r
1−2/n
k |xk|2/n

> 0,

then F is unavoidable.

Part (a) above corresponds to Proposition 1 of Carroll and Ortega-Cerdà [5], and
has a straightforward proof. Part (b) improves Theorem 1 of [5] where, in place of
(16), there is the stronger pair of assumptions that

inf
j 6=k

|xj − xk| > 0 and sup
k

rn−2
k |xk|2 < ∞.
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