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Abstract. The Nehari functional assigns a number to subdomains of a fixed domain. For each
choice of a certain singularity function, one obtains a different functional. In the case that the fixed
outer domain is the unit disc, and the singularity is at the origin, we compute the derivative of
Nehari’s functional using a time-reversed Loewner equation and the power matrix. At an extremal,
the derivative of Nehari’s functional has a very simple form in terms of a quadratic differential
associated with the singularity function.

1. Introduction

In this note it is shown that the derivative at an extremal of a functional of
Nehari has a surprisingly simple expression in terms of a quadratic differential. The
quadratic differential is naturally associated with the functional. The method of
proof combines the Loewner method with Nehari’s Dirichlet energy technique, with
the help of the power matrix.

The Nehari functional, which assigns real numbers to subsets of the disc, is
defined as follows in the case we consider here. Let

x(z) =
n∑

k=−n

xkz
k

be such that q = Re(x) is zero on the boundary of the unit disc D. For any simply
connected domain D1 ⊂ D which is bounded by piecewise C1 curves, let q1 be the
unique function on D1 such that q1 = 0 on the boundary ∂D1 of D1 and q − q1 is
harmonic on D1. The Nehari functional is

(1.1) Neh(D1) =

ˆ

∂D1

q
∂q1

∂n
ds.

In the case of equality, the domain D1 is admissible for the quadratic differential
x′(z)2dz2 in the sense that the boundary is a trajectory.

Let f : D → D1 be the bounded univalent function onto D satisfying f(0) = 0
and f ′(0) > 0 and let y = x ◦ f . Let p = 1 + p1z + p2z

2 + · · · ∈ P where P is the
set of holomorphic functions on D satisfying Re(p) > 0 and p(0) = 1.

The results of this paper are the following.
(1) We derive a formula for the functional derivative of Neh at D1 in the direction

p (Theorem 4.9).
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(2) Let ft be a solution of ḟt = −zptft with p0 = p and f0 = f , where ḟt denotes
the derivative with respect to t. We show that the functional derivative of
the Nehari functional at an extremal domain f(D) in the direction specified
by p is

d

dt

∣∣∣∣
t=0

Neh(ft(D)) = lim
r→1−

Re
1

πi

ˆ

γr

(zy′(z))2 · p(z) · dz

z
,

where γr denotes the circle |z| = r oriented positively (Corollary 4.11).
To differentiate the functional, we combine a time-reversed Loewner equation

sometimes called the Friedland–Schiffer equation, with the Dirichlet energy method
of Nehari. The computations are facilitated by the use of the power matrix, as in
Schiffer and Tammi [6]. However, a simplification is obtained by our explicit use of
the Lie algebra of the set of power matrices.

Unfortunately the use of the power matrix requires the introduction of some
notation, and the reformulation of some standard results. However, this pays off
as the use of the power matrix greatly simplifies the computation of the functional
derivative. (The reader is invited to attempt to state and prove Theorem 4.9 without
the power matrix). Furthermore, we can express Nehari’s functional in an elegant
form in terms of natural operators on extended Dirichlet space (Proposition 4.8).

Section 2 derives the necessary power matrix identities for one-parameter flows
and the derivative of extended Dirichlet energy along a one-parameter flow. Section 3
proves a Green’s identity for extended Dirichlet energy which is central to the proof
of the main result. In Section 4.1, we state Nehari’s theorem and show that without
loss of generality the test function can be associated with a quadratic differential.
The main results appear in Section 4, where we reformulate Nehari’s functional in
terms of the power matrix and differentiate the functional.

I am grateful to Oliver Roth for valuable discussions on this material. I am also
grateful to the referee for suggestions which greatly improved the presentation of this
paper.

2. Preliminaries

2.1. Vector and matrix notation for function spaces. Denote the Dirichlet
energy of a holomorphic function f on a open connected set E ⊂ C by

‖f‖2
E =

1

π

¨

E

|f ′|2.

In particular, if E = D and f(z) =
∑∞

1 akz
k, then

‖f‖2
D =

∞∑

k=1

k|ak|2.

Let D denote the Dirichlet space of holomorphic functions

D = {f : D → C : ‖f‖D < ∞, f(0) = 0} .

We will also consider an extension of the Dirichlet space

D−m =

{
f(z) =

∞∑

k=−m

akz
k

∣∣∣∣∣
∞∑

k=1

akz
k ∈ D , f(0) = 0

}
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and the truncated space

Dm
−m =

{
f(z) =

n∑

k=−m

akz
k, f(0) = 0

}
.

Define a degenerate inner product on Dm
−m by

(2.1) (f, g) =
m∑

k=−m

kākbk

for f(z) =
∑m

−m akz
k and g(z) =

∑m
−m bkz

k. For f, g ∈ D−m, we will also write

(f, g) =
m∑

k=−m

kākbk

for the inner product of the truncations of f and g in Dm
−m .

Denote the row vector consisting of the first coefficients of f(z) =
∑∞

k=−m akz
k ∈

D−m by
f = (a−n, a−n+1, . . . , an)

and write (f ,g) = (f, g).

Remark 2.1. Although Nehari’s functional is usually written in terms of Dirich-
let energy, we found the most convenient expression for the present purposes to be
in terms of extended Dirichlet energy (Proposition 4.8 ahead; see also [6]). In order
to avoid confusion between the two, we will adopt the following convention: we will
always use a norm ‖ · ‖ to refer to standard Dirichlet energy, and an inner product
(·, ·) for extended Dirichlet energy.

Consider also the set of bounded univalent functions

B = {f : D → D | f one-to-one, holomorphic, f(0) = 0, f ′(0) > 0}.
B forms a group under composition. Given f ∈ B denote by [f ] the matrix whose
entry in the mth row and nth column is the nth coefficient of the power series of fm

at 0. We denote this coefficient by [f ]mn . We adopt the convention that upper indices
always denote row number and lower indices denote column number. Negative values
of m and n are allowed, so the matrices are doubly infinite. It is easy to verify that
composition of functions becomes matrix multiplication:

[f ◦ g] = [f ][g].

Since the matrix is upper triangular for any f , multiplication involves only finite
sums. Details on the power matrix can be found in [2, 6, 7, 8].

Let f be a function holomorphic on D except for a pole of order −m at 0. B
acts naturally on f by composition on the right via f 7→ f ◦ g. If f(z) =

∑∞
−m fkz

k,
then the power series of f ◦ g is given by

(2.2) f ◦ g(z) =
∞∑

k=−m

fk

∞∑

l=k

[g]kl z
l =

∞∑

l=−m

l∑

k=−m

fk[g]kl z
l.

The infinitesimal generators of power matrices have a particularly simple repre-
sentation. By differentiating a one-parameter family of matrices [ft], for which the



294 Eric Schippers

corresponding family of functions satisfies f0(z) = z and ft = f0 + th(z) + o(t) where
h(0) = 0, one can show that the derivative of [ft] at t = 0 has the form

(2.3) 〈h〉mn = mhn−m+1.

Note that any holomorphic function h(z) such that h(0) = 0 is an infinitesimal
generator; e.g. ft(z) = z + th(z). We use the notation 〈h〉 to distinguish matrices of
the form (2.3) from power matrices (note that 〈h〉 6= [h] always).

We will need an identity for the coefficients of products and compositions [7]. It
can be interpreted as representing the derivative of left multiplication.

Proposition 2.2. Let h be a holomorphic function in a neighbourhood of 0
satisfying h(0) = 0. Let g be a holomorphic functions in a neighbourhood of 0
satisfying g(0) = 0 and g′(0) 6= 0. Then

(2.4) m
[
gm−1 g′ h

]1

n
=

∑

k

[g]mk 〈h〉kn .

This identity was only stated in the case that m ≥ 0 in [7]. The proofs given
there are also valid for m < 0 [8].

Remark 2.3. Since the power matrices are upper triangular, they behave nicely
under truncation. That is, for any fixed m, if −m ≤ k ≤ l ≤ m, then the k, lth entry
of [f ][g] is

k∑

j=l

[f ]kj [g]jl .

This sum depends only on the entries [f ]kj of f and [g]jl for which n ≤ j ≤ m. In
other words, the multiplication formula [f ◦g] = [f ][g] continues to hold for the square
blocks with rows and columns ranging between −m and m. In the same way it can
be shown that Proposition 2.2 continues to hold for such square blocks. We will not
introduce new notation for these truncated power matrices. Thus by equation (2.2)
we may for example write for f ∈ D−n, g ∈ B,

f ◦ g = f [g]

where f ◦ g denotes the coefficient row vector of f ◦ g as above.

2.2. The Friedland–Schiffer equation and the power matrix. In this
section, we derive formulas for the derivatives of power matrices of one-parameter
flows of bounded univalent maps. These are used to derive simple expressions for the
derivative of extended Dirichlet energy of one-parameter flows.

A time-reversed Loewner equation was introduced by Friedland and Schiffer:

(2.5) ḟt = −zpt(z)f ′t(z)

where the dot denotes differentiation with respect to t, and ft is a one-parameter
family of holomorphic functions. For pt ∈ P measurable in t, t ∈ [0,∞), it can be
shown that this differential equation with univalent initial condition f0 : D → D has
a solution on D almost everywhere in t [5]. (Friedland and Schiffer prove this for pt

which are extreme points of P [1].) The solution is an inward flow in the sense that
ft(D) ⊂ fs(D) whenever s ≥ t.

The power matrix of ft satisfying the Friedland–Schiffer equation satisfies the
following simple differential equation.
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Proposition 2.4. Let pt(z) ∈ P be measurable in t. Let ft be a solution to the
Friedland–Schiffer equation ḟt = −zpt(z)f ′t(z) on [0, T ] with infinitesimal generator
pt ∈ P. Then for almost all t ∈ P

d

dt
[ft] = −[ft] 〈zpt〉 .

Proof. This follows from Proposition 2.2 (see [7, 8]). ¤

Remark 2.5. It follows from Remark 2.3 that Proposition 2.4 holds for trun-
cated matrices.

Next we derive an expression for the derivative of extended Dirichlet energy
(yt, yt) for yt = x ◦ ft, where ft is a one-parameter flow satisfying the Friedland–
Schiffer equation. Some notation is necessary. Let I ′ be the diagonal matrix, all of
whose diagonal entries are 1 with the exception of the 0, 0th entry which is zero.
Note that

(x, yI ′) = (xI ′, y) = (x, y)

for any x, y ∈ Dn
−n. Let N be the (2n + 1)× (2n + 1) matrix with entries

(N)i
j =

{
0, i 6= j,

i, i = j,

and let

(N ′)i
j =

{
0, i 6= j or i = 0,

1/i, i = j.

N ′ is the “inverse” of N in the sense that N ′N = NN ′ = I ′. Given an (2n+1)×(2n+1)
matrix define

(2.6) A∗ = NAT N ′.

A∗ is the adjoint of A in the following sense.

Proposition 2.6. For all f, g ∈ Dn
−n

(fA∗,g) = (f ,gA).

Proof. It is clear that (f ,g) = g N f
T , so

(f ,gA) = gAN f
T

= gNN ′AN f
T

= gN fNA
T
N ′

T

= (fA∗,g). ¤
Proposition 2.7. Let x ∈ Dn

−n with x(0) = 0. Let ft be a solution to the
Friedland–Schiffer equation ḟt = −zptft, and yt = x ◦ ft. Then

d

dt
yt = −yt 〈zpt〉

and
d

dt
(yt,yt) = −(yt,yt [〈zpt〉+ 〈zpt〉∗] ).

Proof. Since x and y are the first rows of a truncated power matrix, by Propo-
sition 2.4 and the multiplicative property of power matrices under composition it
follows that

d

dt
yt =

d

dt
x[ft] = x

d

dt
[ft] = −x[ft] 〈zpt〉 = −yt 〈zpt〉 .
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It is then easy to compute that
d

dt
(yt,yt) = −(yt,yt 〈zpt〉)− (yt 〈zpt〉 ,yt). ¤

Remark 2.8. The right hand side is −2 Re(yt,yt 〈zp〉), and in particular is real
(as it must be).

3. A Green’s identity for extended Dirichlet energy

Because elements of Dn
−n can have a singularity at 0, one cannot apply the com-

plex form of Green’s theorem directly to convert extended Dirichlet energy to a con-
tour integral. In this section we derive an identity which replaces Green’s theorem
in this general setting.

For w ∈ Dn
−n let

w+ =
n∑

k=1

wkz
k

and

w− =
−1∑

k=−n

wkz
k.

Denote the reflection of a function in the circle by

(3.1) w∗(z) = w(1/z̄).

It is easy to verify that for w, v ∈ Dn
−n

(3.2) (w, v) =
n∑

k=1

kwkvk −
−1∑

k=−n

|k|wkvk = (w+, v+)− (w∗−, v∗−).

Note that both terms on the far right hand side of equation (3.2) are Dirichlet inte-
grals of analytic functions without singularities.

Below, for F ∈ D−n let {F}n denote the truncation of F in Dn
−n.

Proposition 3.1. For w, v ∈ Dn
−n and p analytic in D,

(w, zpv′) =
1

2πi

ˆ

∂D

(zw′)∗(z) {zv′(z)p(z)}n

dz

z
.

Furthermore, the right hand side can be written

(w, zpv′) =
1

2πi

ˆ

∂D

(zw′)∗(z) · zv′(z) {p(z)}2n

dz

z
.

Proof. Below we denote the positive part of the truncated function {zpv′}n by
(zpv′)+. By the complex form of Green’s identity

(w+, (zpv′)+) =
1

π

ˆ

D

w′
+(z)(zpv′)′+(z)

dz̄ ∧ dz

2i
= − 1

2πi

ˆ

∂D

w′
+(z)(zpv′)+(z) dz̄.

Since dz̄ = −z̄dz/z and z = 1/z̄ on the region of integration,

(w+, (zpv′)+) =
1

2πi

ˆ

∂D

(zw′)+(z)(zpv′)+(z)
dz

z

=
1

2πi

ˆ

∂D

(zw′)+(1/z̄)(zpv′)+(z)
dz

z
.
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Applying the complex form of Green’s identity to the second term in equation
(3.2)

(w−(1/z̄), (zpv′)−(1/z̄)) =
1

π

¨

D

∂

∂z
w−(1/z̄)

∂

∂z
(zpv′)−(1/z̄)

dz̄ ∧ dz

2i

=
1

2πi

¨

D

∂

∂z
w−(1/z̄)

∂

∂z̄
[(zpv′)−(1/z̄)] dz̄ ∧ dz

=
1

2πi

ˆ

D

∂

∂z
w−(1/z̄)(zpv′)−(1/z̄) dz.

Again using the fact that |z|2 = 1 on ∂D,

(w−(1/z̄), (zpv′)−(1/z̄)) = − 1

2πi

ˆ

∂D

1

z̄
w′−(1/z̄)(zpv′)−(1/z̄)

dz

z

= − 1

2πi

ˆ

∂D

(zw′)−(1/z̄)(zpv′)−(z)
dz

z
.

The first claim now follows from the observation thatˆ

∂D

(zw′)+(1/z̄)(zpv′)−(z)
dz

z
=

ˆ

∂D

(zw′)−(1/z̄)(zpv′)+(z)
dz

z
= 0

by the residue theorem.
To prove the second claim, observe that if

g =
n∑

k=−n

∈ Dn
−n,

then (adopting the convention that gk = 0 for k > n)

{gp}n =

{ ∞∑

k=−n

k∑
j=−n

gjpn+jz
k

}

n

=
n∑

k=−n

k∑
j=−n

gjpn+jz
k

=

{(
n∑

k=−n

gkz
k

)(
2n∑

j=0

pjz
j

)}

n

= g{p}2n.

Thus, if f, g ∈ Dn
−n, then ˆ

∂D

f{gp}n
dz

z
=

ˆ

∂D

fg{p}2n
dz

z
,

from which the second claim follows. ¤
This has a expression in terms of the Hardy space inner product, which does not

explicitly involve truncation.

Corollary 3.2. Let γr denote the curve |z| = r with positive orientation. For
w, v ∈ Dn

−n and p analytic in D,

(w, zpv′) = lim
r→1−

1

2πi

ˆ

γr

(zw′)∗(z) · zv′(z) · p(z)
dz

z
.

Proof. This follows from the second part of Proposition 3.1 and the fact that
(zw′)∗(z) · zv′(z) has only finitely many negative terms. ¤
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4. Nehari’s functional and its derivative

Nehari’s monotonicity theorem associates a functional of pairs of nested domains
to a test function x. We are concerned with the case that both domains are simply
connected, the outer domain is D, and x is a holomorphic function on D except for a
pole at the origin. In this section, we state Nehari’s theorem, and rewrite it in terms
of the power matrix. We then prove the main results on the derivative of Nehari’s
functional.

4.1. Nehari’s monotonicity theorem. In this section, we rewrite Nehari’s
functional in terms of the coefficients of x, and show that without loss of generality
the test function x can be chosen in such a way that x′2dz2 is a quadratic differential
on the disc.

Let D1 ⊂ D be a simply connected domain. We will assume that D1 is bounded
by a piecewise C1 curve. Let q be a real-valued function on D which is harmonic
except with specified singularities at a finite set of points zk. That is, for some
singularity function

(4.1) S(z) = Re
n∑

k=1

αk

(z − zk)mk
,

let q be the unique function such that q = 0 on ∂D and q + S is harmonic on D.
Similarly, let q1 be the unique real-valued function such that q1 = 0 on ∂D1 and
q1 + S is harmonic on D1.

Remark 4.1. Nehari allows S, and hence q, to have a logarithmic singularity.
In this case x will be multi-valued. We do not consider this case here.

We then have the following. Denote the Dirichlet energy of a real function over
a domain E by ‖ · ‖E, i.e.

‖q‖2
E =

¨

E

|∇q|2.

Theorem 4.2. (Nehari monotonicity theorem) Let S be a singularity function
(4.1). Let D1 ⊂ D2 ⊂ D, with D1 and D2 simply connected domains bounded by
piecewise C1 curves. Let q1, q2 and q be the harmonic functions corresponding to
D1, D2 and D respectively, as defined above. The inequality

ˆ

∂D1

S
∂q1

∂n
ds ≥

ˆ

∂D2

S
∂q2

∂n
ds

holds, where n denotes the outward unit normal and ds denotes infinitesimal arc
length.

It follows from Theorem 4.2 that the lower bound of the functionalˆ

∂D1

S
∂q1

∂n
ds

is attained by D1 = D, that is

(4.2)
ˆ

∂D1

S
∂q1

∂n
ds−

ˆ

∂D

S
∂q

∂n
ds ≥ 0.

Clearly the left hand side of the above inequality is still monotonic.
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We will now give this functional a more convenient form. For D1, S, q and q1 as
above,

(4.3)
ˆ

∂D1

S
∂q1

∂n
ds−

ˆ

∂D

S
∂q

∂n
ds =

ˆ

∂D1

−q
∂q1

∂n
ds.

To see this, let

u(z) =

{
S(z), z ∈ D\D1,

q1(z) + S(z), z ∈ D1,

and

v(z) = q(z) + S(z)− u(z) =

{
q(z), z ∈ D\D1,

q(z)− q1(z), z ∈ D1.

Since v = 0 on ∂D and q1 = 0 on ∂D1, by Green’s identity¨

D

∇v · ∇(q + S) dA = 0.

It follows that ‖u‖2
D − ‖q + S‖2

D = ‖v‖2
D. Using Green’s identity, it can be shown

that
‖u‖2

D − ‖q + S‖2
D =

ˆ

∂D1

S
∂q1

∂n
ds−

ˆ

∂D

S
∂q

∂n
ds.

Again using Green’s identity it is easily shown that

‖v‖2
D =

ˆ

∂D1

−q
∂q1

∂n
ds

which completes the proof of equation (4.3).
Thus, by subtracting the lower boundˆ

∂D

S
∂q

∂n
ds

and changing the sign, we may define Nehari’s functional to be

(4.4) Neh(D1) =

ˆ

∂D1

q
∂q1

∂n
ds

and it holds that D1 ⊂ D2 ⇒ Neh(D1) ≤ Neh(D2). The upper bound of the
functional is zero.

The function q is associated with a quadratic differential on D. Let x be an
analytic function such that q = Re(x). The condition that q is constant is equivalent
to the condition that x′2dz2 is a quadratic differential admissible for the disc. To see
this, note that q is constant if and only if

(4.5) 0 = qxdx + qydy = 2 Re(x′(z)dz) = 2 Re(izx′(z)dθ)

(where z = eiθ along the boundary of the disc) which holds if and only if Im zx′(z) =
0. Thus ∂D is a negative trajectory of x′(z)2dz2. Assuming that q is associated to a
quadratic differential this way amounts to subtracting a constant and thus there is
no loss of generality.

Remark 4.3. Setting q = 0 and q1 = 0 on the boundaries of D and D1 is only
a convention. The method only requires that they be constant on the boundary.
Adding a constant to q or q1 doesn’t change the inequality.
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Next we derive an expression for the Nehari functional in terms of the coefficients
of x. We will henceforth assume that x ∈ Dn

−n. Let f : D → D1 be a one-to-one onto
map satisfying f(0) = 0. It is necessary to find the relation between the functions
y = x ◦ f and q1. We claim that if q = Re x and D1 = f(D), then

q1 ◦ f = Re

( −1∑

k=−n

(
ykz

k − ȳkz
−k

)
)

.

Let h(z) denote the right hand side of the above equation. First, note that h(z)
is zero on ∂D since z̄k = z−k. Also h(z) − Re x ◦ f is non-singular on D. Thus
h ◦ f−1 = q1 which proves the claim. Furthermore, we have that

q ◦ f − q1 ◦ f = Re

( ∞∑

k=n+1

ykz
k +

n∑

k=1

(yk + ȳk)z
k

)
.

Thus we have
||q||2D\D1

+ ||q − q1||2D1
= ||q||2D\D1

+ ||q ◦ f − q1 ◦ f ||2D

= ||x||2D\D1
+

∥∥∥∥∥
∞∑

k=n+1

ykz
k

∥∥∥∥∥

2

D

+

∥∥∥∥∥
n∑

k=1

(yk + ȳ−k) zk

∥∥∥∥∥

2

D

= (x, x)− (y, y) +

∥∥∥∥∥
n∑

k=1

(yk + ȳ−k) zk

∥∥∥∥∥

2

D

.

(4.6)

The last step follows from a simple computation using Green’s identity [6, pp. 4–5]:

‖x‖2
D\D =

n∑

k=−n

k|xk|2 −
∞∑

k=−n

k|yk|2.

In summary, in the case that the outer domain is D, the inner domain is simply
connected, and the test function has a pole at 0, we may formulate Nehari’s theorem
as follows.

Theorem 4.4. (Reformulation of Nehari’s inequalities) Let x ∈ Dn
−n be such

that x′(z)2dz2 is a quadratic differential on the disc (that is, x′(z)2 dz2 ≤ 0 on ∂D).
Let D1 ⊂ D be a simply connected domain bounded by a piecewise C1 curve. Let
f : D → D1 be a univalent function such that f(0) = 0 and f ′(0) > 0, and let
y = x ◦ f . The functional

(4.7) Neh(D1) = (x, x)− (y, y) +

∥∥∥∥∥
n∑

k=1

(yk + ȳ−k) zk

∥∥∥∥∥

2

D

is such that D1 ⊂ D2 ⇒ Neh(D1) ≤ Neh(D2). The upper bound of the functional is
zero.

The preceding paragraphs show that there is no loss of generality in assuming
that x′2dz2 is a quadratic differential on D.

Of course we may view Neh as a function of D1, f or y. Note that since the
expression for Neh given in equation (4.4) only depends on the domain D1 and
not on f , expression (4.7) must be invariant under rotations f 7→ eiθf . Thus the
normalization f ′(0) > 0 is inconsequential, and only serves to uniquely determine f .
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4.2. The case of equality. In this section we show that equality is attained in
Neh if and only if y = x ◦ f is such that y′(z)2 dz2 is a quadratic differential which is
admissible for the disc in the sense that ∂D is a negative trajectory. Equivalently, f
maps D onto the disc minus trajectories of x′(z)2 dz2.

Let y ∈ D−n. The boundary of D is a negative trajectory of y′(z)2 dz2 if and only
if z2y′(z)2 ≥ 0 on ∂D, which holds if and only if Im(zy′(z)) = 0 for all z ∈ D. Thus

(4.8) y′(z)2dz2 ≤ 0 on ∂D ⇔ yk = −ȳ−k, k = 1, . . . , n and yk = 0, k ≥ n + 1.

The upper bound of the Nehari functional is zero, which is attained by D for
every choice of function x. It is also attained by any domain D1 which is admissible
for the quadratic differential x′2 dz2, and these are the only domains for which this
is true. This can be read easily from the second equality of equation (4.6). If the
Nehari functional is zero, we must have that

(1) ||x||2D\D1
= 0, so D\D1 has measure zero,

(2)
∥∥∑∞

k=n+1 ykz
k
∥∥2

D
= 0, so yk = 0 for k ≥ n + 1,

(3)
∥∥∑n

k=1 (yk + ȳ−k) zk
∥∥2

D
= 0 so yk = −ȳ−k for k = 1, . . . , n.

So by (4.8) this occurs if and only if ∂D is a negative trajectory of y′(z)2 dz2. This
implies that D1 = f(D) is admissible for x′(z)2 dz2. By admissible, we mean that D1

is D minus arcs of negative trajectories of x′(z)2 dz2.
Conversely, if D1 is admissible for x′(z)2 dz2, f : D → D1 is the normalized

mapping function, and y = x ◦ f , then condition (1) above is satified. Furthermore,
D is admissible for y′2(z) dz2. This implies that yk = −ȳ−k and, in particular, yk = 0
for k > n. Thus conditions (2) and (3) are satisfied, and so D1 is extremal for the
Nehari functional.

Remark 4.5. Although here Nehari’s functional has only been defined for do-
mains bounded by piecewise C1 curves, it can be extended to all simply connected
subdomains of D for example by expressing it in terms of the coefficients of x and
f . The inequality can likewise be extended. In this case one can apply Schiffer vari-
ation to show that the extremals domains must map onto D minus curves which are
sufficiently regular to apply the above argument. So there are no extremals for the
extended functional other than those found above.

4.3. Derivative of the Nehari functional. In order to compute the deriva-
tive of the Nehari functional, we introduce two convenient operations on vectors: a
reflection and the Hilbert transform. We will adopt the convention that operators
act on vectors on the right.

Remark 4.6. This convention is necessary, if we use row vectors to denote
elements of Dn

−n. Using row vectors is in turn forced on us by the power matrix
multiplication formula, and the fact that composition acts on the right.

Define the reflection operator R on vectors by

(4.9) (y−n, y−n+1, . . . , yn−1, yn)R = (ȳn, ȳn−1, . . . , ȳ−n).

This corresponds to reflecting the function y(z) in the unit circle. That is, if

g(z) = y∗(z) = y(1/z̄),

then
g = yR.
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It has the following easily verified properties:

(4.10) (v,wR) = −(vR,w)

since

(v,wR) =
n∑

k=−n

kv̄kw̄−k =
n∑

k=−n

−kv̄−kw̄k = −(vR,w).

Clearly R2 is the identity. It follows immediately from equation (4.10) that

(4.11) (vR,wR) = −(v,w) and (wR,wR) = −(w,w),

so furthermore

(4.12) (w,wR) = 0.

We thus also have that

(4.13) (w + wR,w + wR) = 0.

We need the action of R on matrices 〈zp〉 of infinitesimal generators.

Proposition 4.7. For matrices of the form 〈zp〉,
〈zp〉RI ′ = −〈zp〉∗ I ′.

Proof. Define the flip operator on square matrices whose entries range from −n
to n:

(4.14) Af
ij = A−i−j.

With this definition

(4.15) (vA) R = vRAf .

To see this compute

(vA) R =

(
n∑

k=−n

vkAk−n, . . . ,

n∑

k=−n

vkAkn

)
R =

(
n∑

k=−n

vkAkn, . . . ,

n∑

k=−n

vkAk−n

)

=

(
n∑

k=−n

v−kA−kn, . . . ,

n∑

k=−n

v−kA−k−n

)
= vRAf .

By equations (2.6) and (2.3) it can be computed that

〈zp〉∗kj =

{
kpk−j, j ≤ k, j 6= 0,

0, otherwise.

On the other hand

〈zp〉fkj =

{
−kpk−j, j ≤ k,

0, otherwise,
which proves the claim. ¤

Next we define the operator

(y−n, . . . , yn)J = (−yn,−y−n+1, . . . ,−y−1, 0, y1, . . . , yn).

The operator iJ is the Hilbert transform. It is clear that

(4.16) (wJ) R = −wRJ,
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(4.17) J2 = I ′

and

(4.18) (vJ,w) = (v,wJ).

We are now prepared to differentiate the Nehari functional. Let ft satisfy the
Friedland–Schiffer equation for some pt and initial condition f0(z) = z, and let yt =
x ◦ ft. Recall that the Nehari functional is

Neh(ft(D)) = (x,x)− (yt,yt) +

∥∥∥∥∥
n∑

k=1

(yk + y−k) zk

∥∥∥∥∥

2

D

.

We now write the Nehari functional in a more convenient form.

Proposition 4.8. The Nehari functional can be written in the following form,

Neh(ft(D)) = (x,x)− Re (yt(I + R),yt(I − J)) .

Proof. We will temporarily suppress the subscript t to reduce clutter. It is clear
that

n∑

k=1

(yk + y−k)z
k =

1

2
[(y + yR) + (y + yR) J ] I ′.

From equations (4.13) and (4.18) it follows that

((y + yR)J, (y + yR)J) = (y + yR,y + yR) = 0,

so

(4.19)

∥∥∥∥∥
n∑

k=1

(yk + y−k) zk

∥∥∥∥∥

2

=
1

2
Re (y + yR, (y + yR) J) .

By equations (4.16) and (4.11) it follows that

(y,yJ) = −(yR,yJR) = (yR,yRJ).

By equations (4.16) and (4.10),

(y,yRJ) = (yR,yJ).

Applying these last two equations to (4.19) proves the claim. ¤
We are now ready to differentiate the Nehari functional. Let [A, B] = AB −BA

denote the matrix commutator.

Theorem 4.9.
d

dt
Neh(ft(D)) = −Re (yt + ytR,yt [(I−J) , 〈zp〉])+Re (yt,yt (〈zp〉+ 〈zp〉∗) (I−J)) .

Proof. By Propositions 2.7 and 4.7 and equation (4.15),

d

dt
yR = −y 〈zp〉R = yR 〈zp〉∗

(again suppressing t) and clearly

d

dt
yJ = −y 〈zp〉 J.
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So using the second expression of Proposition 4.8

d

dt
Neh(ft(D)) = −Re (−y 〈zp〉+ yR 〈zp〉∗ ,y (I−J)) + Re (y + yR,y 〈zp〉 (I−J))

= Re (y 〈zp〉 ,y (I − J))− Re (yR,y (I − J) 〈zp〉)
− Re (y,y (I − J) 〈zp〉) + Re (y 〈zp〉∗ ,y(I − J))(4.20)
+ Re (y + yR,y 〈zp〉 (I − J)) ,

where we have inserted the two terms

0 = −Re (y,y(I − J) 〈zp〉) + Re (y 〈zp〉∗ ,y(I − J)) .

Collecting terms in equation (4.20) and using the fact that I − J is self-adjoint, the
claim follows. ¤

In the special case that the domain D1 is extremal and hence admissible for
the fixed quadratic differential x′2dz2, the derivative of the Nehari functional has a
particularly nice form.

Corollary 4.10. Let x ∈ Dn
−n be such that x′(z)dz2 is a quadratic differential

on the disc (i.e. such that xk = −x−k). Let ft : D → D satisfy the Friedland–Schiffer
equation for some pt and let yt = x ◦ ft. If ft0 is admissible for this quadratic
differential for some fixed t0 then

d

dt

∣∣∣∣
t=t0

Neh(ft(D)) = 2 Re(yt0 ,yt0 〈zpt0〉).

Proof. We suppress t subscripts as usual. The condition that ft0 be admissible
implies that yk = 0 for k > n and yk = −y−k, that is yR = −y. Thus the first term
of Theorem 4.9 vanishes. Furthermore, by Proposition 4.7 and equations (4.10) and
(4.16),

(y,y (〈zp〉+ 〈zp〉∗) [I − J ]) = − (yR,y (〈zp〉+ 〈zp〉∗) [I − J ])

= (y,y (〈zp〉+ 〈zp〉∗) R [I + J ])

= (y,y (〈zp〉∗ + 〈zp〉) [I + J ]).

Thus

d

dt
Neh(ft(D)) =

1

2
Re [(y,y [〈zp〉+ 〈zp〉∗] [I − J ]) + (y,y (〈zp〉∗ + 〈zp〉) [I + J ])]

= Re (y,y [〈zp〉+ 〈zp〉∗]) = 2 Re(y,y 〈zp〉). ¤
Corollary 4.11. Let x ∈ Dn

−n satisfy xk = −x−k, k = 1, . . . , n. Under the
hypotheses of the previous theorem,

d

dt

∣∣∣∣
t=t0

Neh(yt) = Re lim
r→1−

1

πi

ˆ

γr

(zy′t0(z))2pt0(z)
dz

z
.
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Proof. Note that (zy′)∗ = −z(y∗)′. By Corollaries 3.2 and 4.10, we have that
d

dt
Neh(y) = lim

r→1−
2 Re

1

2πi

ˆ

∂D

(zy′)∗(z) · (zy′)(z) · p(z)
dz

z

= − lim
r→1−

Re
1

πi

ˆ

∂D

zy∗′(z) · zy′(z) · p(z)
dz

z

= lim
r→1−

Re
1

πi

ˆ

∂D

z2y′(z)2 · p(z)
dz

z
. ¤

Thus the derivative of the Nehari functional, at points where f is admissible for
the quadratic differential x′2 dz2, is naturally associated to the pull-back

y′(z)2dz2 = (x′ ◦ f(z))2f ′(z)2 dz2

of x under f .
In particular, if we denote

Qt(z)

z2
dz2 = y′(z)2 dz2

and

Qt(z) =
2n∑

k=−2n

dkz
k,

then

(4.21)
d

dt
Neh(yt)

∣∣∣∣
t=t0

= 2 Re
2n∑

k=0

d−kpk.

Remark 4.12. Note that what we have computed above is the functional de-
rivative, not just the derivative with respect to the time parameter. That is, Theo-
rem 4.9, Corollary 4.10 and Corollary 4.11 hold whether or not pt is the generator of
the extremal one-parameter flow for t ≥ t0.

5. Concluding remarks

First, we observe that Corollary 4.11 specifies a natural pairing of quadratic
differentials and infinitesimal generators of the Friedland–Schiffer equation. One
may think of the operator

zp(z)
∂

∂z
as the infinitesimal generator. The result of contracting a quadratic differential with
an infinitesimal generator is an abelian differential:

Q(z)

z2
dz2

(
zp(z)

∂

∂z

)
=

Q(z)

z
p(z) dz.

Integrating this over the circle results in a natural pairing: for γr the positively
oriented curve |z| = r we have for any Q and p the number

lim
r→1−

1

2πi

ˆ

γr

Q(z)

z
p(z) dz,

which for Q(z)/z2 = y′(z)2 agrees with the right hand side of the expression in
Corollary 4.11 up to a multiplicative constant.
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Remark 5.1. This association of quadratic differentials with a dual space of
infinitesimal generators (in fact, the dual of the positive part of the Witt algebra
[7, Remark 4]) appears naturally in the Loewner–Schiffer system for a quadratic
differential arising from the combination of Schiffer variation with Loewner theory
[4]. See [7, Theorem 2].

Next, we make some observations about the infinitesimal expression of the case
of equality. Assume that some domain D1 is extremal for the Nehari functional. We
saw in Section 4.2 that D1 is D minus some system of trajectories of the quadratic
differential x′(z)2 dz2. Since the Nehari functional increases as the domain increases,
and Neh(D1) = 0, it follows that if D2 is obtained from D1 by truncating some or all
of the arcs (i.e. D2 is chosen such that D1 ⊂ D2 ⊂ D) then Neh(D2) = 0. Thus one
obtains a family of extremals by arc truncation.

On the other hand, assume that ft0 is extremal for the functional. If ft is a
one-parameter family of maps solving the Friedland–Schiffer equation with initial
condition ft0 at t = t0, and ft extremal for the Nehari functional on some interval
[t0, a), then we know that ft must continue to be a slit map. We can thus assume
that pt has the special form

pt(z) =
κ(t) + z

κ(t)− z

for some κ of unit modulus. Denote

Qt(z) = z2y′t(z)2 =
2n∑

k=−2n

dkz
k.

Since y−k = −ȳk, we have that dk = d̄−k and d0 is real. (Note that both dk and yk

depend on t.) For γr the circle |z| = r

d

dt
Neh(yt) = lim

r→1−
Re

1

πi

ˆ

γr

Qt(z)pt(z)
dz

z
= 2d0 + 4 Re

2n∑
1

d−kκ(t)
k

= 2d0 + 2
−1∑
−2n

dkκ(t)
k
+ 2

−1∑
−2n

dkκ(t)k = 2
2n∑

k=−2n

dkκ(t)
k

= 2Qt(κ(t)).

Thus we see that, at an ft which is admissible for x′2 dz2, the derivative of the Nehari
functional is zero if and only if κ(t) is a zero of Qt(z) = z2y′t(z)2 dz2.

This has the following geometric interpretation. Either x′(ft(κ)) = 0, in which
case ft(κ) is a zero of the quadratic differential x′(z)2 dz2, or f ′t(κ) = 0, in which case
κ maps to the tip of an arc of the boundary of D1. Thus the condition that Q(κ) = 0
means that either ft continues to lengthen an existing trajectory of x′(z)2 dz2 or
begins a new fork at a zero of x′(z)2 dz2.

Finally we observe that these results are an example of what is sometimes called
Teichmüller’s principle, which says that a functional is associated in general with a
quadratic differential. Here, Teichmüller’s principle manifests itself in two ways.
First, given a quadratic differential, we obtain a specific functional by Nehari’s
method (Theorem 4.4). Second, the derivative of the functional at an extremal
is given by a quadratic differential (Theorem 4.9 and Corollary 4.11), which is a
general consequence of Schiffer’s variational method. Thus, first a choice of qua-
dratic differential determines a functional, and then the derivative of the functional
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in turn determines a quadratic differential. The point of interest is that Corollary 4.11
demonstrates that the resulting quadratic differential is the pull-back of the original
quadratic differential under the extremal map.
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