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Abstract. We prove that the ambient quasiconformal homogeneity constant of a hyperbolic
planar domain which is not simply connected is uniformly bounded away from 1.

We also consider a component Ω0 of the domain of discontinuity of a finitely generated Kleinian
group Γ. We show that if Ω0/Γ is compact, then Ω0 is uniformly ambiently quasiconformally
homogeneous, and that if Ω0 is not simply connected and its quotient Ω0/Γ is non-compact, then
Ω0 is not uniformly quasiconformally homogeneous.

1. Introduction

An orientable hyperbolic manifold N is called K-quasiconformally homogeneous
if for any x, y ∈ N , there exists a K-quasiconformal automorphism of N taking x to
y. In earlier work [6], the authors established that for any n ≥ 3 there exists Kn > 1
such that if N is a K-quasiconformally homogeneous hyperbolic n-manifold, other
than Hn, then K ≥ Kn. It is natural to ask whether or not such a constant can be
found in dimension 2 (see, for example, [5]).

For planar domains, one can define a more restrictive notion of quasiconformal
homogeneity. An open set Ω ⊆ Ĉ is ambiently K-quasiconformally homogeneous if,
for all x, y ∈ Ω, there exists a K-quasiconformal homeomorphism f : Ĉ → Ĉ such
that f(x) = y and f(Ω) = Ω. We will say that a planar domain Ω is uniformly
ambiently quasiconformally homogeneous if there exists some K such that Ω is am-
biently K-quasiconformally homogeneous. Sarvas [21] showed that any ambiently
K-quasiconformally homogeneous Jordan domain is a quasidisk. As any Jordan do-
main is conformally homogeneous, we see that, in general, ambient quasiconformal
homogeneity is much stronger than quasiconformal homogeneity.
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Our first main result shows that the ambient quasiconformal homogeneity con-
stant is uniformly bounded away from 1 for hyperbolic planar domains which are not
simply connected. Notice that any K-quasidisk (which is not round) is ambiently K-
quasiconformally homogeneous, but not ambiently 1-quasiconformally homogeneous
(see Gehring–Palka [12] and Erkama [11]) so one cannot bound the constant away
from 1 in the simply connected case.

Theorem 1.1. There exists K0 > 1 such that if Ω is an ambiently K-quasicon-
formally homogeneous hyperbolic planar domain which is not simply connected, then
K ≥ K0.

It is clear that for a planar domain whose complement is removable for K-
quasiconformal maps, K-quasiconformal homogeneity is equivalent to ambient K-
quasiconformal homogeneity. Recall that a closed subset R of Ĉ is removable for
L-quasiconformal maps if whenever f : Ĉ − R → Ĉ is L-quasiconformal, then it
admits a L-quasiconformal extension to a map f̄ : Ĉ → Ĉ. Thus, we obtain the
following corollary:

Corollary 1.2. If Ω is a hyperbolic, K-quasiconformally homogeneous planar
domain which is not simply connected, and Ĉ−Ω is removable for L-quasiconformal
maps, then K ≥ min{K0, L}.

Iwaniec and Martin [15, Theorem 11.3] showed that given any d < 1, there exists
Ld > 1 such that any subset of Ĉ of Hausdorff dimension at most d is removable for
Ld-quasiconformal maps (see also the discussion in the Historical remarks at the end
of the section). Thus, we obtain a lower bound on the usual uniform quasiconformal
homogeneity constant for planar domains whose complements have small Hausdorff
dimension. (Recall that any closed subset of Ĉ of Hausdorff dimension less than one
is totally disconnected.)

Corollary 1.3. Given any d < 1, there exists Kd > 1 such that if Ω is a
hyperbolic K-quasiconformally homogeneous planar domain whose complement has
Hausdorff dimension at most d, then K ≥ Kd.

A result of Martio, Rickman and Väisälä [19] shows that sets of zero capacity
are quasiconformally removable (i.e., removable for K-quasiconformal maps for all
K). Moreover, Heinonen and Koskela [13] show that spherically porous sets are
quasiconformally removable. So, we obtain:

Corollary 1.4. If Ω is a hyperbolic, K-quasiconformally homogeneous planar
domain and either Ĉ− Ω has zero capacity or is spherically porous, then K ≥ K0.

In a final section, we study quasiconformal homogeneity for components of do-
mains of discontinuity of Kleinian groups. We recall that a Kleinian group Γ is a
discrete subgroup of PSL2(C), regarded as the group of conformal automorphisms of
Ĉ, and that its domain of discontinuity Ω(Γ) is the largest open subset of Ĉ on which
Γ acts properly discontinuously. A Kleinian group Γ is said to be analytically finite
if Ω(Γ)/Γ is of finite type. Recall that Ahlfors [1] proved that every finitely gener-
ated Kleinian group is analytically finite and that there exist examples of infinitely
generated Kleinian groups that are analytically finite.

We show that the quasiconformal homogeneity of a non-simply connected com-
ponent Ω0 of the domain of discontinuity of a finitely generated Kleinian group is
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determined entirely by the compactness, or lack thereof, of the quotient Riemann
surface Ω0/Γ. (In section 4 we will establish a quantitative version of this result.)

Theorem 1.5. Suppose that Ω0 is a component of the domain of discontinuity
of a non-elementary analytically finite Kleinian group Γ.

(1) If Ω0/Γ is compact, then Ω0 is uniformly ambiently quasiconformally homo-
geneous, and

(2) if Ω0/Γ is non-compact and Ω0 is not simply connected, then Ω0 is not uni-
formly quasiconformally homogeneous.

If the limit set of the Kleinian group has Hausdorff dimension less than 1, then
Corollary 1.3 allows one to obtain lower bounds on the quasiconformal homogeneity
constant of the domain of discontinuity. It follows immediately from work of Canary
and Taylor [10] that if the limit set of a finitely generated Kleinian group Γ has
Hausdorff dimension less than one and Ω(Γ)/Γ is compact, then Γ has a finite index
subgroup Γ0 which is a Schottky group (i.e., H3 ∪ Ω(Γ0)/Γ0 is homeomorphic to a
handlebody.) The domain of discontinuity of a finitely generated Schottky group is
known as a Schottky domain.

Corollary 1.6. If Ω is a K-quasiconformally homogeneous Schottky domain
whose complement has Hausdorff dimension at most d < 1, then K ≥ Kd where Kd

is the constant in Corollary 1.3.
We will use Theorem 1.5, see Example 4.1, to exhibit a uniformly ambiently

quasiconformally homogeneous domain whose complement has infinitely many com-
ponents, Hausdorff dimension 2 and measure zero.

Historical remarks. Quasiconformally homogeneous domains were first studied
by Gehring and Palka [12]. Ambient quasiconformal homogeneity, and the stronger
notion of quasiconformal bihomogeneity, were first introduced by MacManus, Näkki
and Palka [17], where it is simply called quasiconformal homogeneity. (For further
results on ambient quasiconformal homogeneity and bihomogeneity, see the paper by
Bonfert-Taylor and Taylor [7].)

Gehring and Palka, see Lemma 4.3 in Gehring–Palka [12], showed that if the
quotient of a component Ω0 of the domain of discontinuity of a Kleinian group is
compact, then Ω0 is uniformly quasiconformally homogeneous. In fact, the argument
they give also proves part (1) of Theorem 1.5 and we will essentially follow their
argument. Example 4.1 is inspired by Example 4.6 in [12].

Astala, Clop, Mateu, Orobitg and Uriarte-Tuero [2] have sharpened the result
of Iwaniec–Martin [15] to show that any set of σ-finite 2

K+1
-dimensionsal Hausdorff

measure is removable for K-quasiconformal mappings. See section 13.5 of Astala–
Iwaniec–Martin [3] for further discussion of this and related issues.

In both [15] and [19] the removability results are stated for bounded quasiregular
maps. For quasiconformal maps f : Ω → Ĉ, we may normalize so that ∞ ∈ Ω and
f(∞) = ∞, so, by considering f |Ω−C where C ⊂ Ω is a closed neighborhood of ∞,
we are able to dispense with the boundedness assumptions in our statements.
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2. Basic facts

In this section, we develop the background material necessary to establish our
two main results, Theorems 1.1 and 1.5.

2.1. The ambient quasiconformal homogeneity constant. It is natural to
define the ambient quasiconformal homogeneity constant of a uniformly ambiently
quasiconformally homogeneous domain to be

Kamb(Ω) = inf{K > 1 | Ω is ambiently K-quasiconformally homogeneous}.
A normal family argument (see Lemma 2.1 in [6]) shows that this infimum is achieved.

Lemma 2.1. If Ω is a uniformly ambiently quasiconformally homogeneous pla-
nar domain, then Ω is ambiently Kamb(Ω)-quasiconformally homogeneous.

Similarly, we recall that if a hyperbolic manifold N is uniformly quasiconformally
homogeneous, then we can define

K(N) = min{K > 1 | N is K-quasiconformally homogeneous}.
2.2. Bounded geometry. A key observation in the study of K-quasicon-

formally homogeneous hyperbolic manifolds is that they have bounded geometry.
If N is a hyperbolic n-manifold, then let l(N) = 2 infx∈N injN(x) and let d(N) =
supx∈N injN(x), where injN(x) denotes the injectivity radius of N at the point x.

Theorem 2.2. (Theorem 1.1 in [6]) For all n and K > 1, there exists m(n,K) >
0 such that if N is a K-quasiconformally homogeneous hyperbolic n-manifold other
than Hn, then

(1) d(N) ≤ Kl(N) + 2K log 4, and
(2) l(N) ≥ m(n,K).

This result has a few immediate corollaries for quasiconformally homogeneous
planar domains. Recall that a compact set A in Ĉ is uniformly perfect if there exists
K such that all annuli in Ĉ \ A that separate A have modulus at most K. For
example, Pommerenke [20] showed that the limit set of a finitely generated, non-
elementary Kleinian group is uniformly perfect. Canary [8] observed that the limit
set of an analytically finite Kleinian group is uniformly perfect (see also [16]).

Corollary 2.3. If Ω ⊂ Ĉ is a uniformly quasiconformally homogeneous hyper-
bolic planar domain, and Λ = Ĉ− Ω, then

(1) Λ is uniformly perfect,
(2) Λ does not have isolated points, and
(3) if Ω is not simply connected, then Ω has infinitely generated fundamental

group.

Proof. By Theorem 2.2, there is a positive lower bound on the injectivity radius
in Ω. The existence of such a bound is equivalent to uniform perfectness of Ω’s
complement, by Theorem 1 in [20]. This establishes (1).

If Λ has an isolated point, then Ω would contain annuli with arbitrarily large
moduli that separate Λ. This contradiction establishes (2).

Recall that any complete non-compact surface having finitely generated non-
trivial fundamental group, does not have bounded geometry, i.e. either it has points
with arbitrarily large injectivity radius or points with injectivity radius arbitrarily
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close to 0. Therefore, since Ω is non-compact and has bounded geometry, it must
have infinitely generated fundamental group if it is not simply connected, which
establishes (3). ¤

2.3. Ambient conformal homogeneity. If an open set is ambiently 1-
quasiconformally homogeneous, we say that it is ambiently conformally homogeneous.
One may combine Theorem 8.1 of Gehring–Palka [12] with the main result of Erkama
[11] to obtain a complete characterization of ambiently conformally homogeneous do-
mains.

Proposition 2.4. An open set Ω in Ĉ is ambiently conformally homogeneous if
and only if Ω = Ĉ, Ω is a round disk, Ω is the complement of a round circle in Ĉ or
Ω is the complement of one or two points in Ĉ.

2.4. Carathéodory convergence. We recall that a sequence {Ωn} of open sets
in Ĉ converges to an open set Ω ⊂ Ĉ in the sense of Carathéodory if the following
are satisfied:

(1) If C ⊂ Ω is compact, then there exists N such that C ⊂ Ωn if n ≥ N , and
(2) if an open set U is contained in Ωn for infinitely many values of n, then U ⊂ Ω.

This type of convergence is also known as kernel convergence. Notice that we allow
the limit Ω to be empty.

We recall that every sequence of planar domains has a subsequence which con-
verges in the sense of Carathéodory and that {Ωn} converges to Ω in the sense of
Carathéodory if and only if Λ = Ĉ − Ω is the Hausdorff limit of the complements
{Λn = Ĉ− Ωn}.

3. A lower bound on the ambient quasiconformal homogeneity constant

In this section we give the proof of Theorem 1.1. We recall the statement of the
theorem for the reader’s convenience.

Theorem 1.1. There exists K0 > 1 such that if Ω is a uniformly ambiently qua-
siconformally homogeneous hyperbolic planar domain which is not simply connected,
then

Kamb(Ω) ≥ K0.

We proceed by contradiction. We assume that there exists a sequence {Ωn} of
ambiently Kn-quasiconformally homogeneous planar domains which are not simply
connected such that lim Kn = 1. Then we normalize appropriately and study the
Carathéodory limit of a convergent subsequence to obtain a contradiction. In par-
ticular, we note that the proof does not yield an explicit estimate for K0.

We may assume that ∞ ∈ ∂Ωn for all n, where ∂Ωn = Ωn − Ωn ⊂ Ĉ. Let αn

be a homotopically non-trivial simple closed curve in Ωn. Let Λn = Ĉ− Ωn and let
An be the portion of Λn inside the region enclosed by αn and let Bn be the portion
of Λn − {∞} lying outside the region enclosed by αn. Since ∞ is not an isolated
point of Λn (by Corollary 2.3), Bn is non-empty. Let an ∈ An and bn ∈ Bn be points
which minimize the (Euclidean) distance between An and Bn. We may assume, by
normalizing by a similarity of C, that an = −1 and bn = 1. By construction An

cannot intersect the open ball of radius 2 about 1, while Bn cannot intersect the
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open ball of radius 2 about −1. Therefore, the intersection D of the open ball of
radius 2 about 1 and the open ball of radius 2 about −1 must be contained in Ωn.

An

αn

An nB
bn

an

D

=1

=-1

Decomposition of Λn

We now pass to a subsequence so that {Ωn} converges, in the sense of Carathéo-
dory, to a planar domain Ω. Since D is open and contained in Ωn for all n, we see
that D ⊂ Ω. Since, 1, −1 and ∞ do not lie in Ωn for any n, they must not lie in Ω
either. In particular, −1, 1 ∈ ∂Ω.

We now claim that Ω is ambiently conformally homogeneous. Let x, y ∈ Ω, then
x, y ∈ Ωn for all large enough n (by the definition of Carathéodory convergence). So
there exists, for all large n, a Kn-quasiconformal map fn : Ĉ → Ĉ such that fn(x) = y
and fn(Ωn) = Ωn. We can pass to a subsequence such that either

(1) lim fn = f and f is conformal, or
(2) fn converges, uniformly on compact subsets of Ĉ − {x0}, for some point

x0 ∈ Ĉ, to a constant map with image y

(see, for example, Corollaries 21.3 and 37.2 in Väisälä [24]).
In case (2), either x0 6= 1 or x0 6= −1. Assuming that x0 6= 1, we see that

lim fn(1) = y which would imply that y ∈ Λ = Ĉ − Ω since fn(1) ∈ Λn for all n
and Λ is the Hausdorff limit of {Λn}. If x0 = 1, then lim fn(−1) = y and again we
conclude that y ∈ Λ. This is a contradiction, so we must be in case (1).

In case (1) it remains to show that f(Ω) = Ω. If z ∈ Λ, then there exists zn ∈ Λn

such that lim zn = z (since Λ is the Hausdorff limit of Λn). So, since fn(Λn) = Λn

for all n, fn(zn) ∈ Λn and, again since Λ is the Hausdorff limit of Λn, we see that
f(z) = lim fn(zn) ∈ Λ. Therefore, f(Λ) ⊂ Λ. But, we may similarly show that
f−1(Λ) ⊂ Λ. Since f is a homeomorphism, this implies that f(Ω) = Ω as desired.
Therefore, there exists a conformal map f : Ĉ → Ĉ such that f(x) = y and f(Ω) = Ω.
Since x and y were arbitrary elements in Ω, it follows that Ω is ambiently conformally
homogeneous.

Since Ω is ambiently conformally homogeneous, it has one of the forms described
in Proposition 2.4. Since Ĉ−Ω contains at least three points, it follows that Ω must
be a round disk or the complement of a round circle. However, in either case ∂Ω
must be a circle passing through −1 and 1. But, any circle passing through 1 and −1
must intersect D which is contained in Ω. This contradiction completes the proof. ¤
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4. Quasiconformal homogeneity and Kleinian groups

In this section, we establish a quantitative version of Theorem 1.5 and use it to
construct various examples of uniformly ambiently quasiconformally homogeneous
domains.

Theorem 1.5. (Quantitative version) Suppose that Ω0 is a component of the
domain of discontinuity of an analytically finite Kleinian group Γ.

(1) If Ω0/Γ is compact, let D denote the diameter of Ω0/Γ and let L = l(Ω0)
4

=
1
2
infz∈Ω0 injΩ0

(z). Then Ω0 is ambiently K-quasiconformally homogeneous
where

K =
(
eL + 1

) 4D+2L
L ,

if Ω0 is not simply connected, and

K =
(
eD + 1

)2
,

if Ω0 is simply connected.
(2) If Ω0/Γ is non-compact and Ω0 is not simply connected, then Ω0 is not uni-

formly quasiconformally homogeneous.

Proof of Theorem 1.5. Let Ω0 be a component of the domain of discontinuity of
an analytically finite Kleinian group Γ.

We first suppose that Ω0/Γ is compact. Notice that since ΛΓ is uniformly perfect,
there is a positive lower bound for injΩ0

(z), so L > 0. There exists a compact
convex fundamental domain F for the action of Γ on Ω0 of diameter at most 2D
(in the Poincaré metric on Ω0.) Let U be a neighborhood of F in Ω0 of radius
2L. The argument in Lemma 2.6 in [6], which is itself an application of Lemma
3.2 of Gehring–Palka [12], then implies that if x, y ∈ F , then there exists a K-
quasiconformal automorphism f : Ĉ → Ĉ such that f(x) = y and f is the identity
on Ĉ− U where

K =
(
eL + 1

)2( 2D
L

+1)
.

To be more precise, there exists a sequence of points x = x0, . . . , xn = y in F such
that d(xi−1, xi) < L and n ≤ 2D

L
+ 1. Lemma 2.5 in [6] assures us that for all i we

can construct a (eL + 1)2-quasiconformal map fi : Ĉ → Ĉ which is the identity off
the ball of radius 2L about xi and fi(xi−1) = xi. The map f can then be taken to be
fn ◦ · · · ◦ f1. In the case that Ω0 is simply connected one may apply Lemma 2.5 from
[6] directly to construct a (eD + 1)2-quasiconformal map f : Ĉ → Ĉ which takes x to
y and is the identity off of the ball of radius 2D about x in Ω0.

Now suppose that z, w ∈ Ω0. Then there exist elements α, β ∈ Γ such that
α(z) ∈ F and β(w) ∈ F . By the argument above there exists a K-quasiconformal
automorphism f : Ĉ → Ĉ such that f(α(z)) = β(w) and f(Ω0) = Ω0. Then g =

β−1 ◦ f ◦ α is a K-quasiconformal automorphism of Ĉ such that g(Ω0) = Ω0 and
g(z) = w. It follows that Ω0 is ambiently K-quasiconformally homogenous. We have
established (1).

If Ω0/Γ is not compact, then, since it has finite type, it contains a subsurface C
which is a canonical neighborhood of a cusp. To be more explicit, C is homeomorphic
to S1 × (0,∞) and the metric is given by cdθ2 + e−2tdt2 for some c > 0. Let C̃ be a
component of the pre-image of C in Ω0. If the covering of C by C̃ is finite-to-one,
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then the injectivity radius of Ω0 (in its associated Poincaré metric) achieves values
arbitrarily close to 0 within C̃. (We note that this case cannot actually occur when
Γ is analytically finite, since Ω(Γ) is known to be uniformly perfect.) Otherwise,
C̃ is isometric to the universal cover of C, which is a horodisk, and the injectivity
radius of Ω obtains values arbitrarily close to ∞ in C̃. Since the injectivity radius of
a uniformly quasiconformally homogeneous surface, which is not simply connected,
is bounded between two positive constants (see Theorem 2.2), it follows that Ω0 is
not uniformly quasiconformally homogeneous, which establishes (2). This completes
the proof of Theorem 1.5. ¤

Theorem 1.5 provides many examples of ambiently quasiconformally homoge-
neous domains which are not even homeomorphic to conformally homogeneous do-
mains. Schottky domains are one class of examples, but the following example indi-
cates that the geometric behavior of these domains can be much worse.

Example 4.1. There exists a uniformly ambiently quasiconformally homoge-
neous domain Ω such that Ĉ−Ω has infinitely many components, Hausdorff dimen-
sion 2, measure zero, and is not homeomorphic to a Cantor set.

Construction of Example 4.1. We recall that a finitely generated, geometrically
infinite Kleinian group Γ is said to be a degenerate group if its domain Ω(Γ) of
discontinuity is connected and simply connected (and Γ does not contain an abelian
subgroup of finite index.) Let Γ1 and Γ2 be two degenerate groups such that Ω(Γ1)/Γ1

and Ω(Γ2)/Γ2 are both compact. For each i, let Fi be a compact, convex fundamental
domain for the action of Γi on Ω(Γi). We may conjugate Γ2 so that the closure of
Ĉ − F1 is contained in the interior of F2, the closure of Ĉ − F2 is contained in the
interior of F1, and the interior of F1 ∩ F2 contains a simple closed curve W which
separates ΛΓ1 from ΛΓ2 .

If we let Γ be the group generated by Γ1 and Γ2, then the Klein Combination
Theorem (see Theorem VII.A.13 or Theorem VII.C.2 in Maskit [18]) implies that Γ
is a Kleinian group, Ω(Γ) is connected and F1 ∩ F2 is a fundamental domain for the
action Γ on Ω(Γ) and Ĉ−Ω(Γ) has infinitely many components. Since Λ(Γ1) ⊂ Λ(Γ)
is not totally disconnected, we see that Λ(Γ) is not totally disconnected and hence
is not homeomorphic to a Cantor set. Moreover, Ω(Γ)/Γ is compact and Γ is finitely
generated, so Theorem 1.5 implies that Ω(Γ) is uniformly ambiently quasiconformally
homogeneous

It follows from Theorem 1 of Soma [22] that Γ is geometrically tame, so one can
apply work of Thurston [23] and Canary [9] to show that Λ(Γ) = Ĉ − Ω(Γ) has
measure zero. It is a consequence of work of Bishop and Jones [4] that Λ(Γ) has
Hausdorff dimension 2. Therefore, Ω = Ω(Γ) has all the claimed properties.

Remark. Hjelle [14] exhibited simply connected ambiently quasiconformally ho-
mogeneous domains which are not quasidisks. We note that domains of discontinuity
Ω(Γ) of degenerate Kleinian groups (such that Ω/Γ is compact) provide many such
examples.

References

[1] Ahlfors, L.: Finitely generated Kleinian groups. - Amer. J. Math. 86, 1964, 413–429.



Ambient quasiconformal homogeneity of planar domains 283

[2] Astala, K., A. Clop, J. Mateu, J. Orobitg, and I. Uriarte-Tuero: Distortion of
Hausdorff measures and improved Painlevé removability for quasiconformal mappings. - Duke
Math. J. 141, 2008, 539–571.

[3] Astala, K., T. Iwaniec, and G. Martin: Elliptic partial differential equations and quasi-
conformal mappings in the plane. - Princeton University Press, 2009.

[4] Bishop, C., and P. Jones: Hausdorff dimension and Kleinian groups. - Acta Math. 179, 1997,
1–39.

[5] Bonfert-Taylor, P., M. Bridgeman, R.D. Canary, and E.C. Taylor: Quasiconfor-
mal homogeneity of hyperbolic surfaces with fixed-point full automorphisms. - Math. Proc.
Cambridge Philos. Soc. 143, 2007, 71–84.

[6] Bonfert-Taylor, P., R.D. Canary, G. Martin, and E.C. Taylor: Quasiconformal
homogeneity of hyperbolic manifolds. - Math. Ann. 331, 2005, 281–295.

[7] Bonfert-Taylor, P., and E.C. Taylor: Quasiconformally homogeneous planar domains. -
Conform. Geom. Dyn. 12, 2008, 174–178.

[8] Canary, R.D.: The Poincaré metric and a conformal version of a theorem of Thurston. -
Duke Math. J. 64, 1991, 349–359.

[9] Canary, R.D.: Ends of hyperbolic 3-manifolds. - J. Amer. Math. Soc. 6, 1993, 1–35.

[10] Canary, R.D., and E.C. Taylor: Kleinian groups with small limit sets. - Duke Math. J.
73, 1994, 371–381.

[11] Erkama, T.: Möbius automorphisms of plane domains. - Ann. Acad. Sci. Fenn. Ser. A I Math.
10, 1985, 155–162.

[12] Gehring, F.W., and B. Palka: Quasiconformally homogeneous domains. - J. Anal. Math.
30, 1976, 172–199.

[13] Heinonen, J., and P. Koskela: Definitions of quasiconformality. - Invent. Math. 120, 1995,
61–79.

[14] Hjelle, G.: A simply connected, homogeneous domain which is not a quasidisk. - Ann. Acad.
Sci. Fenn. Math. 30, 2005, 135–142.

[15] Iwaniec, T., and G. Martin: Quasiregular mappings in even dimensions. - Acta Math. 170,
1993, 29–81.

[16] Järvi, P., and M. Vuorinen: Uniformly perfect sets and quasiregular mappings. - J. London
Math. Soc. 54, 1996, 515–529.

[17] MacManus, P., R. Näkki, and B. Palka: Quasiconformally bi-homogeneous compacta in
the complex plane. - Proc. London Math. Soc. 78, 1999, 215–240.

[18] Maskit, B.: Kleinian groups. - Springer-Verlag, 1988.

[19] Martio, O., S. Rickman, and J. Väisälä: Distortion and singularities of quasiregular map-
pings. - Ann. Acad. Sci. Fenn. Ser. A I Math. 465, 1970, 1–13.

[20] Pommerenke, Ch.: On uniformly perfect sets and Fuchsian groups. - Analysis 4, 1984, 299–
321.

[21] Sarvas, J.: Boundary of a homogeneous Jordan domain. - Ann. Acad. Sci. Fenn. Ser. A I
Math. 10, 1985, 511–514.

[22] Soma, T.: Function groups in Kleinian groups. - Math. Ann. 292, 1992, 181–190.

[23] Thurston, W.P.: The geometry and topology of 3-manifolds. - Lecture notes.

[24] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. - Springer-Verlag, 1971.

Received 23 March 2009


