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Abstract. This is the second of two papers devoted to the topic of conformality at a point
and related notions in the plane. We derive representation formulas and estimates for the mod-
ules of families of curves that are images of circles, radial segments and arcs of spirals under a
µ-homeomorphism. We use them to convert the extremal-length type sufficient and necessary con-
ditions for conformality at a point from Part I to analytic sufficient conditions, that depend on
directional dilatations and bypass the assumption of K-quaisconformality. Our results extend the
Teichmüller–Wittich–Belinskii theorem, results of Reich and Walczak, the author and Jenkins, and
Gutlyanskii and Martio.

1. Definitions and main results

Conformality at a point (see (1.3)) and related notions in the plane are rich
properties that have had applications in the theory of Riemann surfaces, Nevanlinna
theory, in the study of regularity properties of the boundary correspondence, local
modulus of continuity properties and others (e.g. [10, 15, 16, 17, 22, 26]). Our main
results, Theorems 1.2–1.4, provide sufficient conditions for conformality at a point
and related notions for ACL-homeomorphisms, not necessarily K-quasiconformal,
that depend on the directional dilatations in two or three directions.

Let Ω ⊂ C be a domain and let f be an ACL (absolutely continuous on lines),
sense-preserving homeomorphism f : Ω → f(Ω). Let µ be a Lebesgue-measurable
complex-valued function in Ω ⊂ C with |µ| < 1 a.e. and ||µ||∞ ≤ 1. f is called a
µ-homeomorphism if
(1.1) fz̄ = µfz

for a.e. z ∈ Ω. Then f has complex partial derivatives fz and fz̄ a.e., and the
Jacobian Jf = |fz|2 − |fz̄|2 ≥ 0 a.e. In this paper we make the additional regularity
assumptions that f is locally absolutely continuous and Jf > 0 a.e., thus f is regular
a.e. in Ω.

Recall that µ is referred to as the Beltrami coefficient. If ||µ||∞ < 1, (1.1) is re-
ferred to as the (complex) Beltrami equation. By the Existence theorem (measurable
Riemann mapping theorem [1, 5, 25]) for such µ we can solve (1.1) and its solutions
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are quasiconformal mappings. If µ = 0 a.e. in Ω then f is conformal in Ω [1, Corol-
lary 1]. If ||µ||∞ = 1, one refers to (1.1) as the degenerate Beltrami equation. Under
various conditions on µ, one can solve the Beltrami equation in the degenerate case
(see [24, 14, 8, 11, 19, 31] and others.) For the most recent research developments
concerning solutions of the degenerate Beltrami equation in the plane, in higher di-
mensions and on metric spaces, see the recent monographs [20, 27] and references
therein.

One says that z0 ∈ Ω is a regular point if f is totally differentiable at z0, i.e.
f(z) = f(z0) + fz(z0)(z − z0) + fz̄(z0)(z̄ − z̄0) + o(|z − z0|) and Jf (z0) > 0. It is a
well-known fact, in the theory of K-quasiconformal mappings, [25, 1], that an ACL-
homeomorphism is totally differentiable a.e. At the regular points of f , the complex

dilatation of f is defined as µf =
fz̄

fz

, and the real dilatation as Df =
1 + |µf |
1− |µf | , thus

Df ≥ 1 at such a point. Without loss of generality we may assume that Df = 1 and
µf = 0 outside of the set of regular points. Let α be a real number (the direction).
At a regular point z ∈ Ω the directional dilatation Df,α of f in direction α is defined
as

(1.2) Df,α =
|fα|2
Jf

,

where fα = fz + e−2iαfz̄ is the directional derivative of f in direction α. Note that

a.e. in Ω,
1

Df

≤ Df,α ≤ Df and that Df,α may assume any value in the interval

(0,∞). Check (3.1) for an equivalent expression to (1.2).
Further we normalize f so that it is defined in a neighborhood of the origin, say

the unit disk, U = {z : |z| < 1}, f(0) = 0. We say that f is conformal at the point 0
(at the origin) if

(1.3) lim
z→0

f(z)

z
= A 6= 0,∞.

Our main results on conformality hold under an additional assumption that:

Condition 1.1. Let t > 1 be fixed. There exists a constant C0 = C0(t) such
that

lim sup
r→0

∫∫

r<|z|<tr

1

1− |µf |2
dAz

|z|2 < C0(t) < ∞.1

The main results of this paper are as follows.

Theorem 1.2. If

(1.4) lim
r→0

∫∫

r<|z|<1

(Df,θ+α − 1)
dAz

|z|2

1Instead of the integral condition involving µf one could consider a weaker one, namely
∫∫

r<|z|<tr

|Df,θ+ π
2 j − 1|dAz

|z|2 = o(1), r → 0, j = 0, 1. It is clear that if Condition 1.1 holds for

some t > 1, then it holds for any other t > 1, and that it holds in case f is K-quasiconformal.
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is finite for α = 0, π/2, then

(1.5) lim
z→0

|f(z)|
|z| = A0 6= 0,∞,

f is asymptotically a rotation on circles at z = 0, namely (1.8) holds, and f preserves
asymptotically radial segments of any fixed aspect ratio t > 1 at the origin, namely
(1.9) holds.2

Theorem 1.3. If

lim
r→0

∫∫

r<|z|<1

(Df,θ+α − 1)
dAz

|z|2

is finite for α = 0, π/2 and α = α0, α0 6= k π
2
, k any integer, then f is conformal at

z = 0.

Theorem 1.4. If (1.4) is finite for α = 0,
π

2
, and if for some fixed θ0, lim

r→0
arg f(reiθ0)−

θ0 = const, then f is conformal at z = 0.

The above theorems extend several earlier results on conformality and related
notions, within the class of K-quasiconformal mappings and to the larger class of
µ-homeomorphisms. Section 5 provides a detailed account of the results we have in
mind and some examples. Note that Theorem 1.4 gives particularly weak conformal-
ity conditions, provided that f is known to preserve a direction in the limit. Later
on, in Theorems 4.4–4.6 and Theorem 4.9 we state the above results in equivalent
forms that depend explicitly on the complex dilatation.

In the special case when f is a smooth radial stretching, i.e. f(reiθ) = ρ(r)eiθ,
ρ(0) = 0, ρ(r) increasing and continuously differentiable,

(1.6)
∫∫

U

(Df − 1)
dAz

|z|2 < ∞

is a sufficient and necessary condition for conformality at a point (see [25, p. 221]).
In the case of K-quasiconformal mappings, by the well-known Teichmüller–Wittich–
Belinskii theorem (Theorem 5.1), (1.6) is a sufficient condition. However it is not
necessary. It is impossible to find, in the general case, sufficient and necessary con-
ditions for conformality that depend on the real dilatation alone. To show this, we
consider two K-quasiconformal mappings in U , f and g, f(0) = 0, g(0) = 0, such
that Df = Dg, or equivalently |µf | = |µg| in U , and such that f is conformal at 0 and
g is not. In Example 1.1, [12] we constructed a radial stretching f(reiθ) = ρ(r)eiθ

defined in U , f(0) = 0 such that f is conformal at the origin and µf (re
iθ) = −1

3
e2iθ.

Define g(reiθ) = rei(θ+
√

2
2

log r), 0 < r < 1, and g(0) = 0. Since µg(re
iθ) =

√
2i

4 +
√

2i
e2iθ,

it follows that |µf | = |µg|. Clearly g is not conformal at the origin. Note that, since
f from Example 1.1, [12] is conformal at the origin and (1.4) is not finite for any α,
the conditions in Theorem 1.3 and Theorem 1.4 are not necessary for conformality
either.

2(1.8) and (1.9) are introduced further in this section.
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Both sufficient and necessary conditions for µ-homeomorhisms, in terms of mod-
ules of families of curves, are obtained in [12]. Some of these results are stated in
section 2 and are used to prove our main theorems.

Notions related to the study of conformality at a point are introduced below. We
say that a µ-homeomorphism f is circle-like at the point 0 if it maps circles centered
at the origin onto “almost” such circles, namely

(1.7) lim
r→0

max
|z|=r

|f(z)|
min
|z|=r

|f(z)| = 1,

in other words the circular dilatation (see [25]), Hf (0) = 1. A µ-homeomorphism
conformal at 0 is circle-like at 0. The converse is not true, as the example f = z|z|
shows.

A µ-homeomorphism f is asymptotically a rotation on circles at the origin if (1.5)
holds and if for an appropriate choice of a branch of the argument

(1.8) arg f(reiθ2)− arg f(reiθ1)− (θ2 − θ1) → 0 as r → 0,

uniformly in θ1, θ2. This notion was introduced in [9]. A µ-homeomorphism, confor-
mal at 0, is asymptotically a rotation on circles at 0. However, the converse does not
hold as the example f(z) = ze−i log |z|, 0 < |z| < 1, f(0) = 0, shows.

A µ-homeomorphism is weakly conformal if it is circle-like, i.e. (1.7) holds, and if
for an appropriate choice of a branch of the argument, f satisfies (1.8). This notion
was introduced for K-quasiconformal maps in [18]. Weak conformality is a weaker
notion than asymptotical rotation on circles and stronger than circle-like behavior.

Let 0 < r2 < r1 < 1, and θ be a real number. Denote by σf,θ(r2, r1) the image
under f of the radial segment σθ(r2, r1) = {z : r2 < |z| < r1, arg z = θ}. We define
the angular oscillation of σf,θ(r2, r1) at the origin as

ωσf,θ
(r2, r1) = sup

σf,θ(r2,r1)

arg z − inf
σf,θ(r2,r1)

arg z.

In the above definition we choose a single-valued, continuous determination of the
argument. ωσf,θ

(r2, r1) measures the deviation of σf,θ(r2, r1) from a segment on a line
through the origin. ωσf,θ

(r2, r1) = 0 if and only if σf,θ(r2, r1) is such a segment.
Let t > 1, and r be such that 0 < tr < 1. We say that a µ-homeomorphism f

preserves asymptotically radial segments of fixed aspect ratio t at 0, if (1.7) holds and
uniformly in θ,

(1.9) ωσf,θ
(r, tr) → 0 as r → 0.

A µ-homeomorphism conformal at 0 preserves asymptotically radial segments of
fixed aspect ratio t at 0. The radial stretching f = z(1−log |z|), 0 < |z| < 1, f(0) = 0,
does that without being conformal.

The rest of the paper is structured as follows. In Section 2 we state the sufficient
and necessary conditions for conformality at a point from [12] that are applied in
this paper. In Section 3 we use directional dilatations to provide representation
formulas and estimates for modules of families of curves that are images under a
µ-homeomorphism of radial segments, circular arcs and arcs of spirals. In Section 4
we prove Theorems 1.2–1.4 and derive equivalent results, Theorems 4.4–4.6, and
Theorem 4.9 that depend explicitly on the complex dilatation. In Section 5 we give
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an overview of previously known results on conformality and related notions at a
point and discuss how we extend them.

2. Geometric results on conformality

In this section we state the sufficient and necessary conditions for conformality
at a point from [12] that are applied in this paper. For a definition of the module of
a family of curves and related terminology, see [2, 21], [12, Definition 1.3].

Let 0 < r2 < r1 < 1. Af = Af (r2, r1) denotes the image under f of A(r2, r1) =
{z : r2 < |z| < r1}. M(A(r2, r1)), M(Af (r2, r1)) are their modules, where M(A(r2, r1))

=
1

2π
log

r1

r2

.

Let θ1 < θ2 ≤ θ1 + 2π. Q(r2, r1, θ1, θ2) = {z = reiθ : r2 < r < r1, θ1 < θ < θ2}
denotes a quadrilateral with a-sides the circular arcs. Its image under f is denoted
by Qf (r2, r1, θ1, θ2). The a-sides of Qf (r2, r1, θ1, θ2) are the images of the a-sides
of Q(r2, r1, θ1, θ2). Let M(Q(r2, r1, θ1, θ2)) M(Qf (r2, r1, θ1, θ2)) be the modules of
the family of curves connecting the a-sides of each quadrilateral, respectively. Here

M(Q(r2, r1, θ1, θ2)) =
θ2 − θ1

log
r1

r2

.

Let β be a fixed real number. For θ ∈ [θ1, θ1 + 2π) we consider the arcs of
logarithmic spirals of inclination β, sβ

θ (r2, r1) = {z : z = rei(−β log r+θ), r2 < r <

r1, arg z = θ}. Then the family Sβ(r2, r1) =
⋃

θ∈[θ1,θ1+2π)

sβ
θ (r2, r1) sweeps out A(r2, r1).

Usually, θ1 = 0. Sβ
f (r2, r1) denotes its image, M(Sβ(r2, r1)) and M(Sβ

f (r2, r1))
the modules of the corresponding families of curves. As shown in Corollary 3.2,

M(Sβ(r2, r1)) =
2π

(1 + β2) log
r1

r2

.

Theorem 2.1. [12, Lemma 4.1] Let t > 1 be a fixed number. Assume that

(2.1) M(Af (r2, r1))−M(A(r2, r1)) = o(1) as r1 → 0,

and

(2.2) lim
r→0

M(Qf (r, tr, θ1, θ2)) =
θ2 − θ1

log t

uniformly in θ1 and θ2. Then lim
z→0

|f(z)|
|z| = A0 6= 0,∞, f is asymptotically a rotation

on circles at z = 0, namely (1.8) holds, and f preserves asymptotically radial seg-
ments of fixed aspect ratio t > 1 at the origin, namely (1.9) holds. Conditions (2.1)
and (2.2) are necessary for conformality at the origin.

Combining the results of Lemma 3.1, Lemma 4.1, and Lemma 5.2 from [12] one
obtains the following result.

Theorem 2.2. Assume that (2.1) and (2.2) from Theorem 2.1 hold, and that for
some β 6= 0 and for any ε > 0 there exists R = R(ε) such that for 0 < r2 < r1 < R

(2.3)
1

M(Sβ
f (r2, r1))

− 1

M(Sβ(r2, r1))
< ε.
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Then f is conformal at z = 0. Conditions (2.1) and (2.2) are necessary for confor-
mality at the origin.

Theorem 2.3. [12, Theorem 1.2] Assume that (2.1) and (2.2) from Theorem 2.1
hold. If for some fixed θ0, lim

r→0
arg f(reiθ0)− θ0 = const, then f is conformal at z = 0.

The above conditions are necessary for conformality at the origin.

3. Representation formulas and estimates for modules
of families of curves and ring domains

In this section we use directional dilatations to provide representation formu-
las and estimates for modules of families of curves that are images under a µ-
homeomorphism of radial segments, circular arcs and arcs of spirals.

Let α be a real number. Let z = reiθ ∈ U be a regular point. Then the directional
dilatation (1.2) in direction α can be written as

(3.1) Df,α =
|1 + e−2iαµf |2

1− |µf |2 .

For α = θ, θ + π/2 we have

(3.2) Df,θ =
|1 + e−2iθµf |2

1− |µf |2 , Df,θ+π/2 =
|1− e−2iθµf |2

1− |µf |2 .

Since fr = eiθ
(
fz + e−2iθfz̄

)
and fθ = ireiθ

(
fz − e−2iθfz̄

)
it follows that |fr|2 =

|fz|2|1+e−2iθµf |2, |fθ|2 = |fz|2r2|1−e−2iθµf |2. Thus we obtain the following equivalent
expressions at a regular point z = reiθ:

(3.3) Df,θ =
|fr|2
Jf

, Df,θ+π
2

=
|fθ|2
r2Jf

.

In the literature, Df,θ has been referred to as the radial dilatation, and Df,θ+π/2

as the angular dilatation, and denoted by D−µ and Dµ, respectively (see e.g. [18] and
[19]).

In addition, we observe that from (3.2) follows that at the regular point z = reiθ

(3.4) Df,θ − 1 = 2
|µf |2 + <(e−2iθµf )

1− |µf |2 , Df,θ+π
2
− 1 = 2

|µf |2 −<(e−2iθµf )

1− |µf |2 .

Let 0 < r2 < r < r1 < 1, 0 < r < 1, and θ1 < θ2 ≤ θ1 + 2π. Denote
by Cr(θ1, θ2) = {z : |z| = r, θ1 < arg z < θ2} a circular arc of the circle Cr =
{z : |z| = r}. Let C (r2, r1, θ1, θ2) =

⋃
r∈(r2,r1)

Cr(θ1, θ2) be the family of circular arcs.

Denote their images by Cf,r, Cf,r(θ1, θ2), Cf (r2, r1, θ1, θ2). M(C(r2, r1, θ1, θ2)) and
M(Cf (r2, r1, θ1, θ2)) are the corresponding modules. Note that

M(C (r2, r1, θ1, θ2)) =
log

r1

r2

θ2 − θ1

.

For θ ∈ [θ1, θ2), we denote by σθ(r2, r1) = {z : r2 < |z| < r1, arg z = θ} a
radial segment in A(r2, r1), and its image by σf,θ(r2, r1) (see Section 1.) Denote
Σ(r2, r1, θ1, θ2) =

⋃
θ∈(θ1,θ2)

σθ(r2, r1) the family of radial segments and the family of
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their images by Σf (r2, r1, θ1, θ2). M(Σ(r2, r1, θ1, θ2)) and M(Σf (r2, r1, θ1, θ2)) are the
modules of the corresponding families of curves. Note that

M(Σ(r2, r1, θ1, θ2)) =
θ2 − θ1

log
r1

r2

.

Lemma 3.1. Let z = reiθ ∈ Q(r2, r1, θ1, θ2). If Df,θ+π/2 ∈ L1(A(r2, r1)), then

(3.5) M(Cf (r2, r1, θ1, θ2)) =

r1∫

r2

dr

r
θ2∫
θ1

Df,θ+π
2
dθ

.

If Df,θ ∈ L1(A(r2, r1)), then

(3.6) M(Σf (r2, r1, θ1, θ2)) =

∫ θ2

θ1

dθ
r1∫
r2

Df,θ
dr

r

.

Proof. We only show the validity of (3.5). The proof of (3.6) is done in a similar
manner. We use properties of the Lebesgue integral (see [28]) that hold true due
to our regularity assumptions, including that f is locally absolutely continuous and
regular a.e. When necessary one should consider that the equalities below hold only
a.e. Consider

ρ =
|fθ|

Jf

θ2∫
θ1

|fθ|2
Jf

dθ

=
Df,θ+π

2

|fθ|
θ2∫
θ1

Df,θ+π
2
dθ

defined a.e. in Q(r2, r1, θ1, θ2), and ρ0 = ρ ◦ f−1 defined a.e. in Qf (r2, r1, θ1, θ2). The
ρ0-length of Cf,r(θ1, θ2) defined for almost every r ∈ (r2, r1) is

lρ0(Cf,r(θ1, θ2)) =

∫

Cf,r(θ1,θ2)

ρ0|dw| =
θ2∫

θ1

ρ|fθ|dθ = 1.

Thus ρ0 is an admissible function for the module problem defined by the family of
curves Cf (r2, r1, θ1, θ2), where Cf (r2, r1, θ1, θ2) ⊂ Qf (r2, r1, θ1, θ2). The ρ0-area of
Qf (r2, r1, θ1, θ2) is

Aρ0(Qf (r2, r1, θ1, θ2)) =

∫∫

Qf (r2,r1,θ1,θ2)

ρ2
0 dAw =

∫∫

Q(r2,r1,θ1,θ2)

ρ2Jf dAz

=

r1∫

r2

θ2∫

θ1

ρ2Jfr dr dθ =

r1∫

r2

r dr
θ2∫
θ1

|fθ|2
Jf

dθ

=

r1∫

r2

dr

r
θ2∫
θ1

Df,θ+π
2
dθ

.

Let ρ?
0 be any other admissible function for the module problem defined by the

family of curves Cf (r2, r1, θ1, θ2). Then

lρ?
0
(Cf,r(θ1, θ2)) =

∫

Cf,r(θ1,θ2)

ρ?
0 |dw| ≥ 1.
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Since
∫

Cf,r(θ1,θ2)

(ρ?
0 − ρ0) |dw| ≥ 0,




θ2∫

θ1

|fθ|2
Jf

dθ



−1 θ2∫

θ1

(ρ? − ρ) |fθ| dθ ≥ 0,

where ρ? = ρ?
0 ◦ f . Therefore

∫∫

Q(r2,r1,θ1,θ2)

(
ρ?ρ− ρ2

)
Jf dAz ≥ 0

and thus ∫∫

Qf (r2,r1,θ1,θ2)

(
ρ?

0ρ0 − ρ2
0

)
dAw ≥ 0.

The Cauchy–Schwarz inequality implies
∫∫

Qf (r2,r1,θ1,θ2)

(ρ?
0)

2 dAw ≥
∫∫

Qf (r2,r1,θ1,θ2)

(ρ0)
2 dAw

and therefore

M(Cf (r2, r1, θ1, θ2)) = Aρ0(Qf (r2, r1, θ1, θ2)) =

r1∫

r2

dr

r
θ2∫
θ1

Df,θ+π
2
dθ

. ¤

Remark 3.2. From (3.3) follows that (3.5) and (3.6) can be rewritten in the
following way. First,

M(Cf (r2, r1, θ1, θ2)) =

r1∫

r2

r dr
θ2∫
θ1

|fθ|2
Jf

dθ

,

and second,

M(Σf (r2, r1, θ1, θ2)) =

∫ θ2

θ1

dθ
r1∫
r2

|fr|2
Jf

dr

r

.

The proof of Lemma 3.1 is similar to the one used by Rodin in [30] for the case of
quadrilaterals, where f is assumed to be sufficiently smooth. General results in this
direction were obtained in the works of Andreian Cazacu (see [13] and the references
to her earlier results therein.)

Corollary 3.1. Let z = reiθ ∈ Q(r2, r1, θ1, θ2), Df,θ+α ∈ L1(A(r2, r1)) for α =
0, π/2. Then

(3.7)
∫ θ2

θ1

dθ
r1∫
r2

Df,θ
dr

r

≤ M(Qf (r2, r1, θ1, θ2)) ≤ 1(
log

r1

r2

)2

∫∫

Q(r2,r1,θ1,θ2)

Df,θ+π
2

dAz

|z|2 ,



Sufficient and necessary conditions for conformality. Part II. Analytic viewpoint 243

(3.8)
r1∫

r2

dr

r
θ2∫
θ1

Df,θ+π
2
dθ

≤ (M(Qf (r2, r1, θ1, θ2)))
−1 ≤ 1

(θ2 − θ1)2

∫∫

Q(r2,r1,θ1,θ2)

Df,θ
dAz

|z|2 ,

and

(3.9)
r1∫

r2

dr

r
2π∫
0

Df,θ+π
2
dθ

≤ M(Af (r2, r1)) ≤ 1

(2π)2

∫∫

A(r2,r1)

Df,θ
dAz

|z|2 .

Proof. We have

M(Σf (r2, r1, θ1, θ2)) ≤ M(Qf (r2, r1, θ1, θ2)) ≤ (M(Cf (r2, r1, θ1, θ2)))
−1

and
M(Cf (r2, r1, 0, 2π)) ≤ M(Af (r2, r1)) ≤ (M(Σf (r2, r1, 0, 2π)))−1

by the Comparison principle, see [1, 2]. Using (3.5), (3.6), and Cauchy–Schwarz
inequality, Corollary 3.1 follows. ¤

(3.9) is well-known if f is a K-qusiconformal mapping (see [26, 29]), though the es-
timates are usually expressed in terms of the complex dilatation or partial derivatives.
The upper estimate in (3.9) was proven for the general class of µ-homeomorphisms
by a different method in [19].

Let β be a fixed real number. In the next two corollaries we give a representation
formula and an estimate for the module of a family of arcs of logarithmic spirals of
inclination β and its image, defined in Section 2.

Corollary 3.2. We have

(3.10) M(Sβ(r2, r1)) =
2π

(1 + β2) log
r1

r2

.

Proof. Let z = reiθ, 0 ≤ θ < 2π, hβ(reiθ) = rei(−β log r+θ) be an area preserving

map of A(r2, r1) onto itself. By (3.3), Dhβ,θ
=
|(hβ)r|2

Jhβ

= 1 + β2. Moreover,

M(Σhβ
(r2, r1, 0, 2π)) =

∫ 2π

0

dθ
r1∫
r2

Dhβ,θ

dr

r

by (3.6). Since M(Σhβ
(r2, r1, 0, 2π)) = M(Sβ(r2, r1)), (3.10) follows. ¤

Corollary 3.3. Assume that Df,θ+α0 ∈ L1(A(r2, r1)), where α0 = − tan−1 β.
Then

(3.11) M(Sβ
f (r2, r1)) ≥


(1 + β2)

(2π)2

∫∫

A(r2,r1)

Df,θ+α0

dAz

|z|2




−1

.

Proof. Let z = reiθ, 0 ≤ θ < 2π, and hβ(reiθ) = rei(−β log r+θ) be the map defined
in the Corollary 3.2 above. Consider the map g = f ◦ hβ : A(r2, r1) → Af (r2, r1).
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Since (hβ)z + e−2iθ(hβ)z̄ = e−iθ(hβ)r and ¯(hβ)z + e−2iθ ¯(hβ)z̄ = e−iθ ¯(hβ)r, one has

(3.12)
∫∫

A(r2,r1)

Dg,θ
dAz

|z|2 =

∫∫

A(r2,r1)

|gz + e−2iθgz̄|2
Jg

dAz

|z|2 =

∫∫

A(r2,r1)

|fζ(hβ)r + fζ̄
¯(hβ)r|2

Jg

dAz

|z|2 .

After change of variables ζ = hβ(z), using the identity
1 + iβ

1− iβ
= e−2iα0 , the fact

that Jhβ
= 1, and r(hβ)r = (hβ)(1 − iβ), r ¯(hβ)r = ¯(hβ)(1 + iβ), the last term in

(3.12) is equal to

∫∫

A(r2,r1)

(1 + β2)

∣∣∣∣fζ +
1 + iβ

1− iβ
fζ̄

ζ̄

ζ

∣∣∣∣
2

Jf

dAζ

|ζ|2 =

∫∫

A(r2,r1)

Df,θ+α0

dAz

|z|2 .

Thus ∫∫

A(r2,r1)

Dg,θ
dAz

|z|2 =

∫∫

A(r2,r1)

Df,θ+α0

dAz

|z|2

and Dg,θ ∈ L1(A(r2, r1)). By (3.6) of Lemma 3.1 and the Cauchy–Schwarz inequality

(3.13) M(Σg(r2, r1, 0, 2π)) ≥


 1

(2π)2

∫∫

A(r2,r1)

Dg,θ
dAz

|z|2




−1

.

Since M(Σg(r2, r1, 0, 2π)) = M(Sβ
f (r2, r1)), (3.11) follows from (3.13). ¤

Corollary 3.4. Let z = reiθ, and let β be a fixed number. Assume that Df,θ+α ∈
L1(A(r2, r1)) for α =

π

2
, α0, where α0 = − tan−1 β. Then

(3.14)
r1∫

r2

dr

r
2π∫
0

Df,θ+π
2
dθ

≤ M(Af (r2, r1)) ≤ (1 + β2)

(2π)2

∫∫

A(r2,r1)

Df,θ+α0

dAz

|z|2 .

Proof. By the Comparison principle, M(Cf (r2, r1, 0, 2π)) ≤ M(Af (r2, r1)) ≤(
M(Sβ

f (r2, r1))
)−1

. Using (3.5) and (3.11) we obtain (3.14). ¤

(3.9) is a special case of (3.14) and the latter may provide, depending on the
choice of β, more precise upper estimate for M(Af (r2, r1)).

4. Proof of the main results

In this section we prove Theorems 1.2–1.4 and derive equivalent results, Theo-
rems 4.4–4.6.

Lemma 4.1. Let f be a µ-homeomorphism, Df,θ+α ∈ L1(A(r2, r1)) for α =
0, π/2. Denote by Q = Q(r2, r1, θ1, θ2), Qf = Qf (r2, r1, θ1, θ2), and by M(Qf ) the
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module of the latter. Then∣∣∣∣∣∣∣
1

M(Qf )
−

log
r1

r2

θ2 − θ1

∣∣∣∣∣∣∣
≤ 1

(θ2 − θ1)
2 max

j=0,1

∣∣∣∣∣∣

∫∫

Q

(
Df,θ+π

2
j − 1

) dAz

|z|2

∣∣∣∣∣∣

and ∣∣∣∣∣∣∣
M(Qf )− θ2 − θ1

log
r1

r2

∣∣∣∣∣∣∣
≤ 1(

log
r1

r2

)2 max
j=0,1

∣∣∣∣∣∣

∫∫

Q

(
Df,θ+π

2
j − 1

) dAz

|z|2

∣∣∣∣∣∣
.

Proof. Let m =
θ2 − θ1

log
r1

r2

. Then

M(Qf )−m ≤ 1(
log

r1

r2

)2

∫∫

Q

(Df,θ+π
2
− 1)

dAz

|z|2

and
1

M(Qf )
− 1

m
≤ 1

(θ2 − θ1)
2

∫∫

Q

(Df,θ − 1)
dAz

|z|2

follow from (3.7) and (3.8) of Corollary 3.1. This yields

m−M(Qf ) ≤ M(Qf )

m

1(
log

r1

r2

)2

∫∫

Q

(Df,θ − 1)
dAz

|z|2

and
1

m
− 1

M(Qf )
≤ m

M(Qf )

1

(θ2 − θ1)
2

∫∫

Q

(Df,θ+π
2
− 1)

dAz

|z|2 .

Considering separately the case when M(Qf ) −m > 0 (and therefore
m

M(Qf )
< 1)

and the case when M(Qf ) − m < 0 (and therefore
M(Qf )

m
< 1) from the above

inequalities we obtain the desired estimates. ¤

Lemma 4.2. Let Df,θ+α ∈ L1(A(r2, r1)) for α = 0, π/2. Then
∣∣∣∣∣∣∣
M(Af (r2, r1))−

log
r1

r2

2π

∣∣∣∣∣∣∣
≤ 1

(2π)2
max
j=0,1

∣∣∣∣∣∣∣

∫∫

A(r2,r1)

(
Df,θ+π

2
j − 1

) dAz

|z|2

∣∣∣∣∣∣∣
.

The proof of Lemma 4.2 is identical to the proof of Lemma 4.1.

Lemma 4.3. Let f satisfy Condition 1.1. Let t > 1 be a fixed number, 0 < r <
tr < 1, and A(r, tr) = {z : r < |z| < tr}. Assume that

(4.1)
∫∫

A(r,tr)

|µf |2
1− |µf |2

dAz

|z|2 = o(1) as r → 0.



246 Melkana A. Brakalova

Then

(4.2)
∫∫

A(r,tr)

|<(e−2iθµf )|
1− |µf |2

dAz

|z|2 = o(1) as r → 0.

Proof. Using Cauchy–Schwarz inequality and Condition 1.1 we have



∫∫

A(r,tr)

|<(e−2iθµf )|
1− |µf |2

dAz

|z|2




2

≤
∫∫

A(r,tr)

|µf |2
1− |µf |2

dAz

|z|2
∫∫

A(r,tr)

1

1− |µf |2
dAz

|z|2

≤ C0(t)

∫∫

A(r,tr)

|µf |2
1− |µf |2

dAz

|z|2

for r small enough, and (4.2) follows from (4.1). ¤
Proof of Theorem 1.2. Let 0 < r2 < r1 < 1. The assumptions in Theorem 1.2

imply

(4.3)
∫∫

A(r2,r1)

(Df,θ+α − 1)
dAz

|z|2 = o(1) as r1 → 0,

for α = 0, π/2. By Lemma 4.2

∣∣∣∣M(Af (r2, r1))− 1

2π
log

r1

r2

∣∣∣∣ ≤
1

(2π)2
max
j=0,1

∣∣∣∣∣∣∣

∫∫

A(r2,r1)

(
Df,θ+π

2
j − 1

) dAz

|z|2

∣∣∣∣∣∣∣
and, due to (4.3), (2.1) holds:

M(Af (r2, r1))− 1

2π
log

r1

r2

= o(1) as r1 → 0.

Let t > 1 be a fixed number. Denote for 0 < r < tr < 1, A(r, tr) = {z : r < |z| < tr}.
Next we show that for j = 0, 1,

(4.4)
∫∫

A(r,tr)

∣∣Df,θ+π
2
j − 1

∣∣ dAz

|z|2 = o(1) as r → 0.

From (3.4) follows

(4.5)
∫∫

Q(r,tr,θ1,θ2)

∣∣Df,θ+π
2
j − 1

∣∣ dAz

|z|2 ≤ 2

∫∫

A(r,tr)

|µf |2 + |<(e−2iθµf )|
1− |µf |2

dAz

|z|2 .

Since (1.4) is finite for α = 0, π/2, we have (4.1). Lemma 4.3 implies (4.2). From
this and (4.5) follows (4.4). By Lemma 4.1

∣∣∣∣M(Qf (r, tr, θ1, θ2))− θ2 − θ1

log t

∣∣∣∣ ≤
1

(log t)2
max
j=0,1




∫∫

A(r,tr)

∣∣Df,θ+π
2
j − 1

∣∣ dAz

|z|2


 .

Using (4.4) we have (2.2)

M(Qf (r, tr, θ1, θ2))− θ2 − θ1

log t
= o(1) as r → 0
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uniformly in θ1, θ2. Thus the assumptions of Theorem 1.2 imply (2.1) and (2.2) of
Theorem 2.1. Theorem 1.2 follows. ¤

Proof of Theorem 1.3. From the assumptions in Theorem 1.3 and the proof
of Theorem 1.2 follow (2.1) and (2.2) of Theorem 2.2. We only need to show (2.3).
Take β = − tan α0. Since (1.4) is finite for α = α0, for any sufficiently small ε > 0
we can choose R = R(ε) such that for 0 < r2 < r1 < R,

1 + β2

(2π)2

∣∣∣∣∣∣∣

∫∫

A(r2,r1)

(Df,θ+α0 − 1)
dAz

|z|2

∣∣∣∣∣∣∣
< ε.

From (3.11) of Corollary 3.3 follows that

1

M(Sβ
f (r2, r1))

−
(1 + β2) log

r1

r2

2π
≤ 1 + β2

(2π)2

∫∫

A(r2,r1)

(Df,θ+α0 − 1)
dAz

|z|2 .

Therefore, by Corollary 3.2, (2.3) holds. Theorem 1.3 follows from Theorem 2.2 and
thus f is conformal at z = 0. ¤

Proof of Theorem 1.4. From the assumptions in Theorem 1.4 and by Theo-

rem 1.2, lim
z→0

|f(z)|
|z| = A0 6= 0,∞ and arg f(reiθ2) − arg f(reiθ1) − (θ2 − θ1) → 0 as

r → 0. Since for some fixed θ0, lim
r→0

arg f(reiθ0) − θ0 = const, f is conformal at the
origin. ¤

The following Theorems 4.4–4.6 are equivalent to Theorems 1.2–1.4, respectively.

Theorem 4.4. If

(4.6)
∫∫

U

|µf |2
1− |µf |2

dAz

|z|2 < ∞,

(4.7)
∫∫

U

<(e−2iθµf )

1− |µf |2
dAz

|z|2

exists in the sense of principal value, then lim
z→0

|f(z)|
|z| = A0 6= 0,∞, f is asymptotically

a rotation on circles at z = 0, namely (1.8) holds, and f preserves asymptotically
radial segments of any fixed aspect ratio t > 1 at the origin, namely (1.9) holds.

Theorem 4.5. If (4.6) holds and

(4.8)
∫∫

U

µf

1− |µf |2
dAz

z2

exists in the sense of principal value, then f is conformal at z = 0.

Theorem 4.6. If (4.6) holds, (4.7) exists in the sense of principal value, and if
for some fixed θ0, lim

r→0
arg f(reiθ0)− θ0 = const, then f is conformal at z = 0.

The next results establish the equivalence between Theorems 1.2–1.4 and Theo-
rems 4.4–4.6, respectively.
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Lemma 4.7. If

(4.9) lim
r→0

∫∫

r<|z|<1

< (
e−2i(θ+α)µf

)

1− |µf |2
dAz

|z|2

is finite3 for any two real numbers α = α1, α = α2, α1−α2 6= k π
2
, k any integer, then

(4.9) is finite for any α.

Proof. The proof follows from the properties of the Lebesgue integral and the
elementary identity <(ze−2iα) = a<(ze−2iα1) + b<(ze−2iα2), valid for any z. Here

a =
sin (2(α− α2))

sin (2(α1 − α2))
, b =

sin (2(α1 − α))

sin (2(α1 − α2))
. ¤

Theorem 4.8. Let arg z = θ. First, the limit

(4.10) lim
r→0

∫∫

r<|z|<1

(Df,θ+α − 1)
dAz

|z|2

is finite for α = 0, π/2 if and only if (4.6) holds and

(4.11)
∫∫

U

<(e−2iθµf )

1− |µf |2
dAz

|z|2

exists in the sense of principal value.
Second, the limit (4.10) is finite for α = 0, π/2 and α0, α0 6= k π

2
, k an integer, if

and only if (4.6) holds and

(4.12)
∫∫

U

µf

1− |µf |2
dAz

z2

exists in the sense of principal value.

Proof. The first sufficient and necessary part of Theorem 4.8 follows immediately
from (3.4).

Now we prove the necessity in the second part of the theorem. Since (4.10) is
finite for α = 0, π/2 and α0, α0 6= k π

2
, k an integer, then (4.6) holds and

(4.13)
∫∫

U

< (
e−2i(θ+α)µf

)

1− |µf |2
dAz

|z|2

exists in the sense of principal value for α = 0, α0, α0 6= k π
2
, k any integer. By

Lemma 4.7, ∫∫

U

< (
e−2i(θ+α)µf

)

1− |µf |2
dAz

|z|2

exists in the sense of principal value for any α, in particular α = π
4
, and this implies

that (4.12) exists in the sense of principal value. The necessity follows. The sufficient
part can be proven in a similar manner. ¤

The above considerations yield that the following sufficient condition for confor-
mality is equivalent to Theorem 4.5.

3i.e.
∫∫
U

< (
e−2i(θ+α)µf

)

1− |µf |2
dAz

|z|2 exists in the sense of principal value.
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Theorem 4.9. If (4.6) holds and (4.13) exists in the sense of principal value for
α = α1, α2, α1 − α2 6= k π

2
, k an integer, then f is conformal at z = 0.

5. Some comments on the history of the study of conformality at a point

In this section we give an account of previously known results on conformality
at a point and how we extend these results. First we state the Teichmüller–Wittich–
Belinskii theorem.

Theorem 5.1. [3, 32, 33] Let f be a quasiconformal mapping in U such that
f(0) = 0. If

(5.1)
∫∫

U

(Df − 1)
dAz

|z|2 < ∞,

then f is conformal at 0.

Remark 5.2. (5.1) can be rewritten in the equivalent form

(5.2)
∫∫

U

|µf |dAz

|z|2 < ∞.

The proof of Theorem 5.1 was accomplished in several stages. First, in 1938,
Teichmüller [32] showed that

(5.3) lim
z→0

|f(z)|
|z| = A0 6= 0,∞

under the assumption that f is a diffeomorphism and satisfies a condition slightly
stronger than (5.1). In [32] he also obtained sufficient and necessary results on
circle-like behavior involving modules of ring domains. Later, Wittich [33] showed
that (5.3) holds for quasiconformal maps satisfying (5.1). This result is sometimes
referred to as Teichmüller–Wittich theorem. In 1954 Belinskii [3] proved that for a
general quasiconformal mapping f with real dilatation Df , (5.1) implies (5.3) and
for an appropriate choice of the argument

(5.4) lim
z→0

arg
f(z)

z
= a,

as well, thus proving conformality at a point when (5.1) holds.
Reich and Walczak [29] studied conformality at a point as well. Among other

interesting results they showed the following theorem.

Theorem 5.3. [29] Let f be a quasiconformal mapping and θ = arg z. If

(5.5)
∫∫

U

|Df,θ − 1| dθ dr

r
< ∞ and

∫∫

U

∣∣Df,θ+π
2
− 1

∣∣ dθ dr

r
< ∞,

then (5.3) holds.

Theorem 5.3 extends Teichmüller–Wittich theorem. The authors [29] show that
(5.5) is not sufficient to claim convergence of the argument (5.4), as arg f(reiθ) may go
to∞ as r → 0 at a rate as big as o(

√
log(1/r)), where the estimate is sharp. It seems

that one could easily extend this result to the weaker case of µ-homeomorphisms when
(1.4) is finite for α = 0, π/2.
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Regularity conditions for K-quasiconformal mappings were also studied by Lehto
[23, 25].

Circle-like behavior and regularity properties were studied in 1988 by the author
[6, 7]. An equivalent version of a generalization of the Teichmüller–Wittich theorem,
from these works, in the notations of this paper is stated below.

Theorem 5.4. [7] Let f be a continuously differentiable µ-homeomorphism. If

(5.6)
∫∫

U

|µf |2
1− |µf |2

dAz

|z|2 < ∞,

then f is circle-like, i.e. (1.7) holds. In addition, there exists a constant A > 0 such
that

|f(reiθ)| ∼ A exp


−

∫∫

r<|z|<1

Df,θ
dAz

|z|2


 as r → 0,

where Df,θ is the radial dilatation at z = reiθ.

As shown in [6, 7], if (5.1) holds then there exist a constant A0 such that

exp


−

∫∫

r<|z|<1

Df,θ
dAz

|z|2


 ∼ A0r as r → 0,

and the Teichmüller–Wittich theorem follows in the case of continuously differen-

tiable µ-homeomorphisms. Consider the radial stretching f(reiθ) =
reiθ

1 + log r
with

µf (re
iθ) =

−e2iθ

1 + 2 log r
. For this map the integral in (5.2) diverges, while (5.6) holds.

Sufficient conditions for asymptotic rotation on circles for µ-homeomorphisms,
were first obtained by the author and Jenkins in 1994 [9].

Theorem 5.5. [9]. Assume that f is an a.e. regular µ-homeomorphism in U ,
f(0) = 0. Let θ = arg z. Assume that Df,θ+α ∈ L1(A(r2, r1)) for α = 0, π/2. If

(5.7)
∫∫

U

|µf |2 + |<e−2iθµf |
1− |µf |2

dAz

|z|2 < ∞,

then (5.3) holds and f is asymptotically a rotation on circles at z = 0.

A strip version of Theorem 5.1 that applies to a general class of µ-homeomorph-
isms is proven in [9] as Lemma 6.1. From that result follows the extension of the
Teichmüller–Wittich–Belinskii Theorem to the class of µ-homeomorphisms, asserting
conformality under the condition

(5.8)
∫∫

U

|µ|
1− |µ|

dAz

|z|2 < ∞.

A recent breakthrough (2003) in relaxing the analytic conditions for conformality
at a point, in the case of a K-quasiconformal mapping, was obtained in a paper of
Gutlyanskii and Martio [18].
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Theorem 5.6. [18] Let f be a K-quasiconformal homeomorphism in U such
that f(0) = 0. If

(5.9)
∫∫

U

|µf |2
|z|2 dAz < ∞

and if the singular integral

(5.10)
∫∫

U

µf

z2
dAz

exists in the sense of principal value, then f is conformal at z = 0.

The proof of Theorem 5.6 follows a somewhat unusual path. First, the authors
show that (5.9) implies weak conformality at the origin (see Section 1). If, in addition,
(5.10) holds, then one has convergence of the argument (5.4). In the proof of The-
orem 5.6 one uses deep results from the theory of K-quasiconformal mappings that
do not necessarily extend to the class of µ-homeomorphisms considered here. The
following remark, based on [18, Theorem 1.7], shows to what extent Theorem 5.6
extends Theorem 5.1 within the class of K-quasiconformal mappings.

Remark 5.7. [18] For each K-quasiconformal mapping f whose complex dilata-
tion µf satisfies (5.9) and does not satisfy (5.2) one can construct a K-quasiconformal
mapping g such that |µf | = |µg| a.e. in U such that g satisfies (5.9) and (5.10) (and
thus is conformal at the origin).

Using any of the existence theorems for the degenerate complex Beltrami equation
in the planar case, e.g. [8, 11, 19, 20, 31], and others, one can modify the proof of
Remark 5.7 so that it holds for the general class of µ-homeomorphisms for which the
existence theorems apply.

Note that Theorem 5.6 is the quasiconformal version of Theorem 4.5 (Theo-
rem 1.3, respectively), since if f is K-quasiconformal, (4.6) and (4.8) are equivalent
to (5.9) and (5.10), respectively. The quasiconformal counterpart of Theorem 4.4,
and thus Theorem 1.2, implying (5.3), was also first proven in [18]. An “uniform”
version of this result is given in [17]. Properties like asymptotic rotation on circles,
which is stronger than weak conformality, (1.9), and the quasiconformal counter-
part of Theorem 1.4 and Theorem 4.6, respectively, seem to have not been directly
addressed in [18].

Below we give a couple of examples of µ-homeomorphisms, conformal at the
origin, such that lim sup

r→0
|µf (re

iθ)| → 1 and thus ||µf ||∞ = 1 in any neighborhood of

the origin.

Example 5.8. Let G =
∞⋃

n=1

Gn, where Gn = 1
n
≤ |z| < 1

n
e1/n3 . We consider the

radial stretching f(z) = ρ(r) eiθ, where ρ(r) = r if z ∈ U \G, and

ρ(r) =
e

1
n3 − 1

n

{[
n

n + 2

(
nr − 1

(e1/n3 − 1)
+

1

n

)2

+
n2 + 2n− 1

n2 + 2n

]
− 1

}
+

1

n

if z ∈ Gn.
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Observe that ρ(r) simplifies to
(nr − 1)2 + (e1/n3 − 1)(2r + 1)

(e1/n3 − 1)(n + 2)
, µf (re

iθ) = 0 in

U \ G and µf (re
iθ) =

rρ′ − ρ

rρ′ + ρ
e2iθ in G. In each Gn, |µf | attains its maximum value

of |µf | =
n

4 + n
at |z| = 1/n. Thus lim sup

r→0
|µf (re

iθ)| → 1 and therefore f is not

K-quasiconformal. Since (5.8) holds,
∫∫

U

|µf |
1− |µf |2

dAz

|z|2 ≤ 2π
∞∑

n=1

1

1− |µf |
1

n3
≤ 2π

∞∑
n=1

1 + n/4

n3
< ∞,

it follows that f is conformal at the origin. The conformality of this radial stretching
follows directly from the construction as well.

Example 5.9. Define a decreasing sequence {rn}∞n=1 as follows: r1 = 1, r2 =
1
e
, r2n+1 = (r2n)

n√e, r2n+2 = r2n+1e
−1/n3 for n = 1, 2, . . .. Define a Beltrami coefficient

µ in U such that µ = 0 in (1
e
, 1), µ(reiθ) =

(−1)n+1e2iθ

ln r
in (r2n+1, r2n], µ(reiθ) =

n− 1

n
e2iθ in (r2n+2, r2n+1], and µ(0) = 0. Since µ is subexponentially integrable [20],

there exists a µ-homeomorphism f, f(0) = 0, [14, 8, 20], such that µf = µ a.e.

Clearly, in the above example, lim sup
r→0

|µf (re
iθ)| → 1. After some computations

one can verify that µf satisfies the conditions of Theorems 4.4–4.5, Theorems 1.2–1.3,
respectively, and therefore f is conformal at 0. Also f does not satisfy any of the
conditions (5.1), (5.5), (5.7) and since, in addition, f is not K-quasiconformal, one
can not apply Theorem 5.1, Theorem 5.3, Theorem 5.5 and Theorem 5.6. Observe
that (5.8) does not hold either, while (5.6) holds. Thus we have extended most of
the results on conformality and related notions discussed in this section within the
class of K-quasiconformal maps and to a general class of µ-homeomorphisms.
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