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Abstract. We show that it is possible to extend, in a homomorphic fashion, each quasisym-
metric homeomorphism of the real line to a quasi-isometry of the upper-half plane. Epstein and
Markovic have recently shown that a homomorphic extension to quasiconformal homeomorphisms
of the upper-half plane is not possible.

1. Introduction

The quasisymmetric mappings of the real line R were first considered in the
work of Beurling and Ahlfors [3], where they appeared as the boundary mappings
induced by the quasiconformal self-mappings of the upper-half plane H2. In partic-
ular, Beurling and Ahlfors constructed an extension operator, which extends each
quasisymmetric mapping of R to a quasiconformal self-mapping of H2. In general, it
is desirable to have an extension operator with some additional properties. Tukia [14]
has constructed an extension operator compatible with a Möbius group while Douady
and Earle [5] have constructed a continuous, conformally natural extension operator
which extends each quasisymmetric self-mapping of the circle S1 to a quasiconformal
diffeomorphism of the disk D2. Because of its potential applications in geometric
function theory as well as in low dimensional geometry and topology, an extension
operator compatible with a composition is one of the most desirable ones. Both the
Beurling–Ahlfors and the Douady–Earle extensions lack the compatibility property.
The Dream Problem of Sullivan asks if there exists an operator compatible with a
composition, which extends each quasisymmetric homeomorphism of the circle S1 to
a quasiconformal homeomorphism of the disk D2. Recently, Epstein and Markovic
have shown that no such operator exists [8].

Although the Dream Problem has been solved, there are other (weaker) versions
of it that are still open. Recall that the quasiconformal homeomorphisms of H2 onto
itself are quasi-isometries of H2 in the hyperbolic metric (see, for instance, [7, Theo-
rem 13.6]). Also, each quasi-isometry of H2 induces a quasisymmetric self-mapping
of R = R ∪ {∞}. The origin of this result goes back to the work of Efremovich
and Tihomirova [6]. Here the set R is considered as the boundary at infinity of
the hyperbolic space H2 endowed with the chordal metric, which is a visual metric,
and the induced map need not fix∞. Conversely, each quasisymmetric self-mapping
of R can be extended to a quasi-isometry of H2. (In fact, all the quasiconformal
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extension operators mentioned above yield extensions that are biLipschitz in the hy-
perbolic metric). Hence it is natural to ask if there exists a quasi-isometric extension
operator compatible with a composition. We call it the quasi-isometric version of
the Dream Problem. One can also pose a convergence group version of the Dream
Problem: find an extension operator which extends each convergence group on S1

to a convergence group on D2. A positive solution of this problem in combination
with a result of Martin and Tukia that convergence groups on D2 are topologically
conjugate to Fuchsian groups (see, [12, Theorem 4.4]) would give another solution of
the Fuchsian Group Conjecture. Recall that the Fuchsian Group Conjecture contains
the Nielsen Realization Problem as well as the Seifert Fibered Space Conjecture and
was completely solved in the early 1990’s independently by Gabai [9] and Casson
and Jungreis [4]. (See also [15] and [11]). Norton and Sullivan have considered other
versions of the Dream Problem (see [13, p. 59–61]). We remark that the Dream
Problem as well as the two versions of it mentioned above are still open in higher
dimensions (see also [8, p. 522]) .

It appears that the extension problem for the quasisymmetric mappings is more
natural if one considers the quasisymmetric mappings as the induced boundary map-
pings of the quasi-isometries rather than those of the quasiconformal mappings. In
this paper we show that the quasi-isometric version of the Dream Problem has a
positive solution. More precisely, we show that the operator H : Homeo(R) →
Homeo(H2), defined in Section 3, satisfies the following properties: (A) H (φ1◦φ2) =
H (φ1) ◦ H (φ2) for all φ1, φ2 ∈ Homeo(R); (B) H (at + b) = az + b for all a > 0
and b ∈ R; (C) if φ is K-quasisymmetric, then H (φ) is (λ, k)-quasi-isometry, where
λ and k depend only on K (Theorem 3.1). The operator H was already known to
Beurling and Ahlfors, who considered a modified version of it in order to achieve
quasiconformal extensions at the cost of properties (A) and (B) (see [3, p. 135]). The
operator H was also considered by Norton and Sullivan, who observed that it solves
the Dream Problem in the restricted category of biLipschitz homeomorphisms of R
(see [13, p. 59]). One can easily see that the extension H (φ) of the quasisymmetric
map φ(t) = t3 is not quasiconformal and, in particular, it is not biLipschitz in the
hyperbolic metric. The reason why property (C) holds is the fact that H commutes
with all the affine Möbius transformations, i.e., H (aφ + b) = aH (φ) + b for all
φ ∈ Homeo(R), b ∈ R and a > 0. In addition, the operator H gives rise to a
new extension operator Ho : Homeo+(S1) → Homeo(D2) (suggested to us by Vlad
Markovic), which is compatible with composition (see (3.2)). It would be interesting
to study the operator Ho in connection with the convergence group version of the
Dream Problem. We thank Vlad Markovic for many valuable suggestions, which
have significantly improved the presentation.

Finally, Pekka Tukia has pointed out to us that our extension is slightly more
regular than just quasi-isometry, namely, if φ is K-quasisymmetric, then H (φ) has
a modulus of continuity with respect to the hyperbolic metric depending only on
K (Lemma 3.2). He also pointed out that the composition property of H implies
that the Beurling–Ahlfors extension is a “rough” homomorphism (Corollary 4.2). We
want to thank Pekka Tukia for his helpful suggestions and comments as well as for
encouraging us to write Section 4.
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2. Preliminaries

The real and complex numbers are denoted by R and C, respectively. Let S1 =
{z ∈ C : |z| = 1}, D2 = {z ∈ C : |z| < 1} and H2 = {z ∈ C : Im[z] > 0}. If
X is one of the sets R, S1, H2 or D2, we let Homeo(X) denote the family of self-
homeomorphisms of X. The set H2 is endowed with the hyperbolic metric h, given
by

h(z, w) = inf
γ

∫ b

a

|γ′(t)|
Im[γ(t)]

dt,

where the infimum is taken over all piecewise continuously differentiable curves
γ : [a, b] → H2 joining z and w. The boundary at infinity of the hyperbolic space
(H2, h) is identified with the one-point compactification R = R ∪ {∞} of R and is
denoted by ∂H2. The hyperbolic metric h can also be defined as

h(z, w) = log
|z − w?||w − z?|
|z − z?||w − w?| ,

where {z?, w?} = S(z, w) ∩ ∂H2 so that the points z?, z, w, w? lie on S(z, w) in this
order and S(z, w) is the unique circle in C = C∪ {∞} passing through z and w and
orthogonal to ∂H2 (see [2, p. 133]). Next, for each z, w ∈ H2 with z = x + iy and
w = u + iv, we put

(2.1) ρ(z, w) = max
s∈A, t∈B

|s− t|,

where A = {x−y, x+y} and B = {u−v, u+v}. The following observation as well as
the next lemma will be used in the proof of our main theorem: there exist s, s′ ∈ A
and t, t′ ∈ B such that

(2.2)
ρ(z, w)

2 Im[z]
=
|s− t|
|s− s′| ≥

1

2
and

ρ(z, w)

2 Im[w]
=
|t− s|
|t− t′| ≥

1

2
.

Lemma 2.1. For all z, w ∈ H2 we have

(2.3) 0 ≤ log
ρ2(z, w)

Im[z] Im[w]
− h(z, w) ≤ log 4.

The inequalities are sharp.

Proof. Let z = x + iy and w = u + iv. Assume first that x = u. Then ρ(z, w) =
y + v and (2.3) holds as it is equivalent to max{y, v} ≤ y + v ≤ 2 max{y, v}. The
latter also shows the sharpness of lower and upper bounds in (2.3) as min{y, v} → 0
and as y → v, respectively. Assume now that x 6= u. Let γ be the unique hyperbolic
geodesic joining z and w. Since (2.3) is invariant under a preliminary transformations
of the form z 7→ kz, z 7→ z+a, and z 7→ b− z̄, we can further assume that γ = H2∩S1

and x < u. Then

h(z, w) = log
( |z − 1|
|z + 1| ·

|w + 1|
|w − 1|

)
= log

(√1− x√
1 + x

·
√

1 + u√
1− u

)
.

On the other hand, the condition x < u implies that ρ(z, w) = |x − y − u − v| =
u + v − x + y. Hence
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log
ρ2(z, w)

Im[z] Im[w]
− h(z, w) = log

(u + v − x + y)2

√
1− x2

√
1− u2

√
1 + x√
1− x

√
1− u√
1 + u

= log
(u + v − x + y)2

(1− x)(1 + u)
.

We need to show that

1 ≤ f(x, u) ≤ 4, where f(x, u) =
(u + v − x + y)2

(1− x)(1 + u)
.

Since f(x, u) = f(−u,−x), we can assume that −1 < x ≤ 0. Then y − x ≥ 1 and
hence

f(x, u) =
(u + v − x + y)2

(1− x)(1 + u)
≥ (u + v + 1)2

(1− x)(1 + u)
=

2 + 2v

1− x
≥ 1.

To show the upper bound, we consider two cases. First, if 0 ≤ u ≤ 1, then one can
easily check that for each fixed x, the function f(x, u) is a decreasing function of u.
Hence

f(x, u) ≤ f(x, 0) =
(1− x + y)2

1− x
= 2 + 2y ≤ 4.

Second, if x ≤ u ≤ 0, then for each fixed u, the function f(x, u) is an increasing
function of x. Hence

f(x, u) ≤ f(u, u) =
4v2

1− u2
= 4.

The proof is complete. ¤
The notion of quasisymmetry is due to Beurling and Ahlfors ([3]). An increasing

homeomorphism φ of R onto itself is called K-quasisymmetric if

(2.4)
1

K
≤ φ(x + t)− φ(x)

φ(x)− φ(x− t)
≤ K

holds for all x, t ∈ R with t 6= 0. The quasisymmetric mappings in general metric
spaces have been introduced and studied by Tukia and Väisälä [17]. A homeomor-
phism f between the metric spaces (X, | − |) and (Y, | − |) is called quasisymmetric
if there exists a homeomorphism η : [0, +∞) → [0, +∞) such that

(2.5)
|f(a)− f(b)|
|f(a)− f(c)| ≤ η

( |a− b|
|a− c|

)

holds for all distinct a, b, x ∈ X. We also say that f is η-quasisymmetric. If f is
η-quasisymmetric with

η(t) =

{
λt1/α if 0 ≤ t ≤ 1,
λtα if t ≥ 1,

for some λ ≥ 1 and α ≥ 1, then we say that f is (λ, α)-quasisymmetric. If f is (λ, α)-
quasisymmetric, then one can easily observe that f−1 is (λα, α)-quasisymmetric. Re-
call that for homeomorphisms of R onto itself the conditions (2.4) and (2.5) are
equivalent and that each η-quasisymmetric map of R is (λ, α)-quasisymmetric for
some λ ≥ 1 and α ≥ 1 depending only on η (see [17, Theorem 10.3 and Corol-
lary 3.12]).



Quasi-isometric extensions of quasisymmetric mappings of R 225

A map f : X → Y is called a quasi-isometry if there exist constants λ ≥ 1 and
k ≥ 0 such that

λ−1|a− b| − k ≤ |f(a)− f(b)| ≤ λ|a− b|+ k

for all a, b ∈ X and if

inf
x∈X

|f(x)− y| ≤ k for all y ∈ Y.

We also say that f is (λ, k)-quasi-isometry (see [18]). Note that quasi-isometries need
not be continuous. A homeomorphism f : X → Y is said to be biuniform if there
exist two homeomorphisms η and η′ of [0,∞) such that

η′
(|x− y|) ≤ |f(x)− f(y)| ≤ η

(|x− y|)

for all x, y ∈ X (see [16]). We also say that f is (η, η′)-biuniform.
In this paper we only consider the homeomorphisms of H2 in connection with

quasi-isometries. Hence we say that a map f ∈ Homeo(H2) is quasi-isometry if there
exists k ≥ 0 and α ≥ 1 such that

1

α
h(z, w)− k ≤ h

(
f(z), f(w)

) ≤ αh(z, w) + k

for all z, w ∈ H2. If f is a (η, η′)-biuniform homeomorphism of the hyperbolic space
H2, then for each k > 0 the map f is (λ, k)-quasi-isometric, where λ depends only
on k, η and η′ (see, [16, Lemma 3C]).

The notion of convergence groups is due to Gehring and Martin ([10]). Tukia
[16] studied the convergence groups in the settings of compact metric spaces. Let
X = S1 or D2. A group G ⊂ Homeo(X) is called a convergence group if for each
sequence of distinct elements of G there exists s, t ∈ X and a subsequence {φk} such
that {φk} → s and {φ−1

k } → t uniformly on compact subsets of X \ {t} and X \ {s},
respectively. Examples of convergence groups are Möbius groups and their topological
conjugates. The convergence groups on R are, by definition, the convergence groups
on R whose elements fix ∞.

3. The extension operator H

We define an extension operator H on Homeo(R) as follows. Given φ ∈ Hom-
eo(R), let

(3.1) H (φ)(z) = H (φ)(x + iy) = α(x, y) + iβ(x, y),

where

α(x, y) =
φ(x + y) + φ(x− y)

2
and β(x, y) =

|φ(x + y)− φ(x− y)|
2

.

Clearly, H (φ) is an extension of φ, i.e., H (φ)(x+ i0) = φ(x). Given φ ∈ Homeo(R),
for each z = x+ iy we have |z|2 = x2 +y2 =

(
(x−y)2 +(x+y)2

)
/2 and, in particular,

1√
2

max{|x− y|, |x + y|} ≤ |z| ≤ max{|x− y|, |x + y|}.

Similarly,
∣∣H (φ)(z)

∣∣2 =
1

2

[(
φ(x− y)

)2
+

(
φ(x + y)

)2
]
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and
1√
2

max{|φ(x− y)|, |φ(x + y)|} ≤ |H (φ)(z)| ≤ max{|φ(x− y)|, |φ(x + y)|}.

Since |φ(t)| → ∞ for |t| → ∞, we have max{|φ(x − y)|, |φ(x + y)|} → ∞ for
max{|x− y|, |x + y|} → ∞. We conclude that H (φ)(z) →∞ for z →∞.

Theorem 3.1. The operator H has the following properties:
(1) H (φ1 ◦ φ2) = H (φ1) ◦H (φ2) for all φ1, φ2 ∈ Homeo(R);
(2) H (at + b) = az + b for all a > 0 and b ∈ R;
(3) H (φ) ∈ Homeo(H2) for each φ ∈ Homeo(R);
(4) H is continuous in the topology of uniform convergence on compact sets;
(5) If φ is quasisymmetric, then H (φ) is a quasi-isometry;
(6) If G is a convergence group, then so is H (G).

Proof. The proofs of properties (1)–(4) are straightforward. We provide them
here for completeness. We begin with Property (1). Given φ1, φ2 ∈ Homeo(R), let
φ = φ1 ◦φ2. Observe that every self-homeomorphism of R is either strictly increasing
or strictly decreasing. There are four possibilities.

Case 1: φ1 and φ2 are increasing. Then φ is increasing and

H (φ)(x + iy) =
φ(x + y) + φ(x− y)

2
+ i

φ(x + y)− φ(x− y)

2

=
φ1(φ2(x + y)) + φ1(φ2(x− y))

2
+ i

φ1(φ2(x + y))− φ1(φ2(x− y))

2
.

On the other hand, we have u + v = φ2(x + y) and u− v = φ2(x− y), where

u =
φ2(x + y) + φ2(x− y)

2
and v =

φ2(x + y)− φ2(x− y)

2
.

Hence
H (φ1)

(
H (φ2)(x + iy)

)
= H (φ1)(u + iv)

=
φ1(φ2(x + y)) + φ1(φ2(x− y))

2
+ i

φ1(φ2(x + y))− φ1(φ2(x− y))

2
.

Case 2: φ1 is increasing and φ2 is decreasing. Then φ is decreasing and

H (φ)(x + iy) =
φ(x + y) + φ(x− y)

2
+ i

|φ(x + y)− φ(x− y)|
2

=
φ1(φ2(x + y)) + φ1(φ2(x− y))

2
+ i

φ1(φ2(x− y))− φ1(φ2(x + y))

2
.

On the other hand, we have u + v = φ2(x− y) and u− v = φ2(x + y), where

u =
φ2(x + y) + φ2(x− y)

2
and v =

φ2(x− y)− φ2(x + y)

2
.

Hence
H (φ1)

(
H (φ2)(x + iy)

)
= H (φ1)(u + iv)

=
φ1(φ2(x− y)) + φ1(φ2(x + y))

2
+ i

φ1(φ2(x− y))− φ1(φ2(x + y))

2
.

The cases when both φ1 and φ2 are decreasing or when φ1 is decreasing and φ2

is increasing are dealt with in a similar fashion. Hence in all four cases we have
H (φ) = H (φ1) ◦H (φ2).
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To prove Property (2), we observe that if φ(t) = at + b for some a, b ∈ R with
a > 0 and if z = x + iy, then

H (φ)(z) =
a(x + y) + b + a(x− y) + b

2
+ i

|a(x + y) + b− (a(x− y) + b)|
2

= az + b.

To prove property (3), we first show that H (φ) is bijective. Without loss of
generality we can assume that φ is increasing. Let H (φ)(x + iy) = H (φ)(u + iv).
Then φ(x+y)+φ(x−y) = φ(u+v)+φ(u−v) and φ(x+y)−φ(x−y) = φ(u+v)−φ(u−v),
which implies φ(x + y) = φ(u + v) and φ(x− y) = φ(u− v). Hence x + iy = u + iv,
i.e., H (φ) is one-to-one. To show that H (φ) is onto, let u + iv ∈ H2 be arbitrary
point. Put

x =
φ−1(u + v) + φ−1(u− v)

2
and y =

φ−1(u + v)− φ−1(u− v)

2
.

Then φ(x + y) = u + v and φ(x− y) = u− v and, consequently

u =
φ(x + y) + φ(x− y)

2
and v =

φ(x + y)− φ(x− y)

2
.

Hence H (φ)(x+ iy) = u+ iv, i.e., H (φ) is onto. Next, for each φ ∈ Homeo(R), the
continuity of H (φ) follows from the construction and since H (φ−1) = H (φ)−1 we
also obtain the continuity of H (φ)−1. Thus, H (φ) ∈ Homeo(H2).

Next, we prove property (4). Suppose that a sequence {φk} converges to φ
uniformly on compact sets. Without loss of generality we may assume that φ as well
as all φk’s are increasing homeomorphisms. Let C ⊂ C be any compact set. We
want to show that H (φk) converges to H (φ) uniformly on C. Set

E = {t ∈ R : t = x− y or t = x + y for some x + iy ∈ C}.
Clearly, E is compact. Let ε > 0 be given. Since {φk} converges to φ uniformly on
E, there exists N such that |φn(t)− φ(t)| < ε/2 for all t ∈ E and all n ≥ N . Since

|H (φk)(z)−H (φ)(z)| ≤ |φk(x + y)− φ(x + y)|+ |φk(x− y)− φ(x− y)|,
we have |H (φn)(z)−H (φ)(z)| < ε whenever n ≥ N and z = x+iy ∈ C, as required.

We prove property (5). Suppose φ is η-quasisymmetric. Then φ is (λ, α)-
quasisymmetric for some λ ≥ 1 and α ≥ 1 depending only on η. Let z = x + iy
and w = u + iv be arbitrary points in H2. Put H (φ)(z) = z′ = x′ + iy′ and
H (φ)(w) = w′ = u′ + iv′. Without loss of generality we can assume that φ is
increasing. Then x′ − y′ = φ(x − y), x′ + y′ = φ(x + y), u′ − v′ = φ(u − v) and
u′ + v′ = φ(u + v). In particular,

ρ(z′, w′)
2 Im[z′]

=
|s− t|

φ(x + y)− φ(x− y)
and

ρ(z′, w′)
2 Im[w′]

=
|s̃− t̃|

φ(u + v)− φ(u− v)

for some s, s̃ ∈ {φ(x− y), φ(x + y)} and t, t̃ ∈ {φ(u− v), φ(u + v)}. Then using (2.2)
and (2.3) we obtain

h(z′, w′) ≤ log
ρ2(z′, w′)

Im[z′] Im[w′]
= log

(ρ(z′, w′)
2 Im[z′]

ρ(z′, w′)
2 Im[w′]

)
+ log 4

≤ log
( ρ2(z, w)

Im[z] Im[w]

)α

+ log 4λ2 ≤ αh(z, w) + log(4α+1λ2).
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Conversely, using the facts that φ−1 is (λα, α)-quasisymmetric and H (φ−1) = H (φ)−1

we obtain

h(z, w) = h
(
H (φ−1)(z′),H (φ−1)(w′)

)
≤ αh(z′, w′) + log(4α+1λ2α).

Hence

h(z′, w′) ≥ 1

α
h(z, w)− log(4(α+1)/αλ2) ≥ 1

α
h(z, w)− log(4α+1λ2).

Thus, H (φ) is
(
α, log(4α+1λ2)

)
-quasi-isometry.

Finally, we prove (6). Let G ⊂ Homeo(R) be a convergence group. Then G is
conjugate in Homeo(R) to a Fuchsian group, say G = f ◦ H̃ ◦ f−1, by a well-known
result due to Casson and Jungreis [4] and Gabai [9]. Recall that Fuchsian groups are
convergence groups. If f−1(∞) = ∞, we let µf be the identity map. Otherwise, we
let µf be an inversion about the point f−1(∞). That is, µf (t) = 1/(t− a) + a, where
a = f−1(∞). Then G = φ ◦ H ◦ φ−1, where φ = f ◦ µf , H = µf ◦ H̃ ◦ µf . Note
that φ ∈ Homeo(R) and that H is a Fuchsian group whose elements fix ∞. Thus,
H (G) = H (φ) ◦H ◦H (φ)−1 and hence it is a convergence group. ¤

Next, we will show that the extensions H (φ) of quasisymmetric mappings φ
are, in fact, stronger than quasi-isometry. Namely, they are biuniform. This would
provide an alternative proof of Theorem 3.1(5), but here one has no control of the
constants of quasiisometry since the proof is based on a compactness argument.

Lemma 3.2. If φ : R → R is K-quasisymmetric, then H (φ) is (η, η′)-biuniform,
where η and η′ depend only on K.

Proof. Let FK be the family of K-quasisymmetric mappings of R normalized at
0 and 1. That is, φ(0) = 0 and φ(1) = 1 for each φ ∈ FK . This family is compact,
i.e., every sequence has a subsequence converging uniformly on compact subsets (see,
[3, Theorem 2] or [1, p. 41]). Let GK = {H (φ) : φ ∈ Fk}. Using continuity of H
one easily shows that GK is equicontinuous at any point of the hyperbolic space H2,
say at i. In particular, the function ζ : [0,∞) → [0,∞), defined by

ζ(r) = sup
Φ∈GK

max
h(z,i)=r

h
(
Φ(z), Φ(i)

)
,

is bounded on bounded sets, ζ(r) → 0 as r → 0 and

h
(
Φ(z), Φ(i)

) ≤ ζ
(
h(z, i)

)

for all Φ ∈ GK and for all z ∈ H2. Clearly, ζ depends only on K. Then there exists a
homeomorphism η : [0,∞) → [0,∞), which depends only on ζ, such that ζ(t) ≤ η(t)
for all t ≥ 0. Thus,

h
(
H (φ)(z),H (φ)(i)

) ≤ η
(
h(z, i)

)

for all φ ∈ FK and for all z ∈ H2.
Suppose now that φ is an arbitrary K-quasisymmetric mapping of R, not neces-

sarily normalized. Let z1, z2 ∈ H2 be arbitrary points. Without loss of generality we
can assume that φ is increasing. Let σ and τ be similarities of R such that σ ◦ φ ◦ τ
is in FK , H (τ)(i) = z1 and H (τ)(z) = z1 for some z ∈ H2. Then

h
(
H (φ)(z1), H (φ)(z2)

)
= h

(
H (σ ◦ φ ◦ τ)(z),H (σ ◦ φ ◦ τ)(i)

) ≤ η
(
h(z, i)

)
,

completing the proof of the second inequality.
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To prove the first inequality, we observe that the map φ−1 is K ′-quasisymmetric
with K ′ depending only on K. Hence there exists a homeomorphism ξ of [0,∞)
depending only on K such that

h
(
H (φ−1)(w1), H (φ−1)(w2)

) ≤ ξ
(
h(w1, w2)

)
for all w1, w2 ∈ H2.

By choosing w1 = H (φ)(z1), w2 = H (φ)(z2) and η′ = ξ−1, we see that

η′
(
h(z1, z2)

) ≤ h
(
H (φ)(z1), H (φ)(z2)

)

for all z1, z2 ∈ H2, completing the proof. ¤
We end this section with a construction of an extension operator Ho from the

group Homeo+(S1) of all orientation preserving homeomorphisms of S1 into the group
Homeo(D2) compatible with composition. The operator Ho will have a property that
Ho(f)(0) = 0 for each f ∈ Homeo+(S1). Let T : C → C be a translation given by
T (z) = z + 1. We also denote by T the restriction of T to H2 as well as to R. Note
that H commutes with T , i.e., H (f +1) = H (f)+1 for all f ∈ Homeo(R). Let M
be the quotient space of H2 by the cyclic group generated by T , i.e., M = H2/ < T >.
Then the map µ : M → D2 \ {0}, given by

µ(< z >) =
1

1 + Im[z]
ei2π Re[z],

is a homeomorphism. In particular, the map f 7→ µ ◦ f ◦ µ−1 establishes an isomor-
phism between the group Homeo(M) and a subgroup {f ∈ Homeo(D2) : f(0) = 0}
of the group Homeo(D2).

Next, let HomeoT(R) be the centralizer of T in Homeo(R), i.e., HomeoT(R) =
{f ∈ Homeo(R) : f ◦ T = T ◦ f}. Given f ∈ Homeo+(S1), we define

Θ(f) : [0, 1) →
[arg(f(1))

2π
,

arg(f(1))

2π
+ 1

)
.

by the relation ei2πΘ(f)(t) = f(ei2πt). We then extend Θ(f) to all R, also denoted by
Θ(f), in a unique manner using the relation Θ(f)(t+1) = Θ(f)(t)+1. Hence Θ(f) ∈
HomeoT(R). Observe that Θ: Homeo+(S1) → HomeoT(R) is a homomorphism.
Indeed, it is enough to show that Θ(f ◦ g)(t) =

(
θ(f) ◦ Θ(g)

)
(t) for all f, g ∈

Homeo+(S1) and for each t ∈ [0, 1). We have

ei2πΘ(f◦g)(t) = (f ◦ g)(ei2πt) = f(g(ei2πt)) = f(ei2πΘ(g)(t)) = ei2π
(
Θ(f)◦Θ(g)

)
(t).

Since

Θ(f ◦ g)(t),
(
Θ(f) ◦Θ(g)

)
(t) ∈

[arg(f(g(1)))

2π
,

arg(f(g(1)))

2π
+ 1

)
,

we obtain Θ(f ◦ g)(t) =
(
θ(f) ◦ Θ(g)

)
(t), as required. Observe that for each

f ∈ HomeoT(R) the extension H (f) acts on M as an orientation preserving home-
omorphism. We now define Ho : Homeo+(S1) → Homeo(D2) by

(3.2) Ho(f) = µ ◦H
(
Θ(f)

) ◦ µ−1.

More precisely, Ho(f)(z) = µ
(

< H
(
Θ(f)

)
(µ−1(z)) >

)
if z 6= 0 and we define

Ho(f)(0) = 0 by continuity since for each φ ∈ Homeo(R), we have H (φ)(z) →∞ as
z →∞. Note that the operator Ho can be extended to all of Homeo(S1) by setting
Ho(f) = Ho(f) for each orientation reversing homeomorphism f of S1.
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4. The Beurling–Ahlfors extension

In this section we show that the extension operator H lies within a bounded
hyperbolic distance of the Beurling–Ahlfors extension when restricted to quasisym-
metric mappings. Combining this result with the composition property of H we
then show that the Beurling–Ahlfors extension is a “rough” homomorphism.

To confirm with the original setting of Beurling and Ahlfors, we assume through-
out this section that all quasisymmetric mappings are strictly increasing. Recall that
given a K-quasisymmetric mapping φ : R → R, the extension B(φ) : H2 → H2 is
defined by

B(φ)(z) = B(φ)(x + iy) = u(x, y) + iv(x, y),

where

u(x, y) =
1

2

∫ 1

0

[
φ(x + ty) + φ(x− ty)

]
dt

and

v(x, y) =
1

2

∫ 1

0

[
φ(x + ty)− φ(x− ty)

]
dt.

The mapping B(φ) is 2K(K + 1)-quasiconformal. Moreover, it is 4K2(K + 1)-
biLipschitz in the hyperbolic metric ([1]). Note that in their original construction,
Beurling and Ahlfors multiplied the imaginary part v(x, y) by an appropriate constant
(depending only on K) in order to achieve K2-quasiconformality ([3]). One easily
verifies that B(σ ◦ φ ◦ τ) = σ ◦B(φ) ◦ τ , where σ(z) = az + b and τ(z) = cz + d are
conformal maps of the upper-half plane H2 onto itself. Notice that B(at+b) 6= az+b
for any a, b ∈ R, a > 0.

Theorem 4.1. For each strictly increasing K-quasisymmetric mapping φ we
have

(4.1) h
(
H (φ)(z),B(φ)(z)

) ≤ µ(K) for all z ∈ H2,

where

(4.2) µ(K) = 2 log
8K3 + 12K2 − 1

2K + 1
.

Proof. First, we assume that φ is normalized, i.e., φ(0) = 0 and φ(1) = 1, and
show that h

(
H (φ)(i), B(φ)(i)

) ≤ µ(K). We have

Re
[
H (φ)(i)

]
=

1

2

[
φ(−1) + φ(1)

]
=

1

2
(1 + φ(−1))

and

Im
[
H (φ)(i)

]
=

1

2

[
φ(1)− φ(−1)

]
=

1

2
(1− φ(−1)).

Similarly,

Re
[
B(φ)(i)

]
=

1

2

∫ 1

0

[
φ(t) + φ(−t)

]
dt =

1

2

[ ∫ 1

0

φ(t) dt +

∫ 0

−1

φ(t) dt
]

and

Im
[
B(φ)(i)

]
=

1

2

∫ 1

0

[
φ(t)− φ(−t)

]
dt =

1

2

[ ∫ 1

0

φ(t) dt−
∫ 0

−1

φ(t) dt
]
.
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An easy computation using (2.4) yields

−K ≤ φ(−1) ≤ −1

K
,

−K2

K + 1
≤ φ(−1/2) ≤ −1

K(K + 1)

and
1

K + 1
≤ φ(1/2) ≤ K

K + 1
.

According to Lemma 3 [1] (see, also [3, (19)]) we have

1

K + 1
≤

∫ 1

0

φ(t) dt ≤ K

K + 1
.

We also have

−K(2K + 1)

2(K + 1)
≤ φ(−1/2) + φ(−1)

2
≤

∫ 0

−1

φ(t) dt ≤ φ(−1/2)

2
≤ − 1

2K(K + 1)
.

Combining these estimates we obtain

a ≤ Re
[
H (φ)(i)

] ≤ a′ and b ≤ Im
[
H (φ)(i)

] ≤ b′,

where
a = −K − 1

2
, a′ =

K − 1

2K
, b =

K + 1

2K
, b′ =

K + 1

2
.

Similarly,
c ≤ Re

[
B(φ)(i)

] ≤ c′ and d ≤ Im
[
B(φ)(i)

] ≤ d′,

where

c = −2K2 + K − 2

2(K + 1)
, c′ =

2K2 − 1

4K(K + 1)
, d =

2K + 1

4K(K + 1)
, d′ =

2K2 + 3K

4(K + 1)
.

Observe that d ≤ b, d′ ≤ b′ and c ≤ a ≤ a′ ≤ c′. It follows that

ρ
(
H (φ)(i),B(φ)(i)

)
≤ c′ − c + 2b′ =

8K3 + 12K2 − 1

4K(K + 1)

and using Lemma 2.3 we obtain

h
(
H (φ)(i), B(φ)(i)

) ≤ log
ρ2

(
H (φ)(i),B(φ)(i)

)

Im
[
H (φ)(i)

]
Im

[
B(φ)(i)

] ≤ 2 log
8K3 + 12K2 − 1

2K + 1
,

as required.
Finally, for arbitrary φ and z we let σ and τ be similarities so that z = τ(i) and

that σ ◦ φ ◦ τ is normalized. Then

h
(
H (φ)(z),B(φ)(z)

)
= h

(
H (φ) ◦ τ(i), B(φ) ◦ τ(i)

)

= h
(
H (φ ◦ τ)(i), B(φ ◦ τ)(i)

)

= h
(
σ ◦H (φ ◦ τ)(i), σ ◦B(φ ◦ τ)(i)

)

= h
(
H (σ ◦ φ ◦ τ)(i),B(σ ◦ φ ◦ τ)(i)

) ≤ µ(K),

completing the proof. ¤
As both H (φ) and B(φ) are quasi-isometric extensions of φ, it follows from a

result of Tukia ([16, Theorem 3I]) that there exists a constant C depending only on
K such that h

(
H (φ)(z), B(φ)(z)

) ≤ C. However, since the proof of Theorem 3I is
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based on a compactness argument, it does not yield an explicit constant. Combining
Theorem 4.1 with the composition property of H we obtain the following corollary.

Corollary 4.2. There is a constant D depending only on K such that if φ and
ψ are K-quasisymmetric, then

h
(
B

(
ψ ◦ φ

)
(z),B(ψ) ◦B(φ)(z)

)
≤ D

for every z ∈ H2.

Proof. Let φ and ψ be K-quasisymmetric mappings and let z ∈ H2 be arbitrary
point. Note that the map ψ ◦ φ is K ′-quasisymmetric for K ′ depending only on K.
Using the composition property of H and the triangle inequality we have

h
(
B(ψ ◦ φ)(z),B(ψ) ◦B(φ)(z)

)
≤ h

(
H (ψ ◦ φ)(z), B(ψ ◦ φ)(z)

)

+ h
(
H (ψ) ◦H (φ)(z),B(ψ) ◦B(φ)(z)

)
.

Put z1 = H (φ)(z) and z2 = B(φ)(z). Then

h
(
H (ψ)(z1),B(ψ)(z2)

)
≤ h

(
H (ψ)(z1), B(ψ)(z1)

)
+ h

(
B(ψ)(z1), B(ψ)(z2)

)
.

Since B(ψ) is 4K2(K + 1)-biLipscitz in the hyperbolic metric, we obtain

h
(
B(ψ)(z1),B(ψ)(z2)

)
≤ 4K2(K + 1)h

(
H (φ)(z), B(φ)(z)

)
.

Using Theorem 4.1 we have

h
(
H (ψ ◦ φ)(z),B(ψ ◦ φ)(z)

)
≤ µ(K ′),

h
(
H (ψ)(z1),B(ψ)(z1)

)
≤ µ(K)

and
h
(
H (φ)(z),B(φ)(z)

)
≤ µ(K).

By combining all these estimates we obtain

h
(
B

(
ψ ◦ φ

)
(z),B(ψ) ◦B(φ)(z)

)
≤ D,

where D = µ(K ′) + µ(K)
(
4K3 + 4K2 + 1

)
. ¤
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