A SPACE OF PROJECTIONS ON THE BERGMAN SPACE

Oscar Blasco and Salvador Pérez-Esteva

Universidad de Valencia, Departamento de Matemáticas 46100-Burjassot (Valencia), Spain; Oscar.Blasco@uv.es

Universidad Nacional Autónoma de México, Instituto de Matemáticas Unidad Cuernavaca A.P. 273-3 ADMON 3, Cuernavaca, Mor., 62251, México; salvador@matcuer.unam.mx

Abstract. We define a set of projections on the Bergman space A^2 , which is parameterized by an affine subset of a Banach space of holomorphic functions in the disk and which includes the classical Forelli–Rudin projections.

1. Introduction

Recall that the Bergman projection of $L^2(\mathbf{D})$ onto the holomorphic Bergman space $A^2 = L^2(\mathbf{D}) \cap \mathcal{H}(\mathbf{D})$, where $\mathcal{H}(\mathbf{D})$ denotes the space of holomorphic functions in the unit disk, is given by

$$P\varphi(z) = \int_{\mathbf{D}} \frac{\varphi(w)}{(1 - z\overline{w})^2} dA(w),$$

where dA is the normalized Lebesgue measure in the disk. Recall also the family of Forelli–Rudin projections parameterized by $\alpha > -1$

$$P_{\alpha}\varphi(z) = \int_{\mathbf{D}} (\alpha + 1) \left(\frac{1 - |w|^2}{1 - z\overline{w}} \right)^{\alpha} \frac{\varphi(w)}{(1 - z\overline{w})^2} dA(w).$$

These are the orthogonal projections of the weighted $L^2(\mathbf{D},(1-|w|)^{\alpha}dA(w))$ onto $\mathscr{H}(\mathbf{D}) \cap L^2(\mathbf{D},(1-|w|)^{\alpha}dA(w))$. It is well known (see [6, Th. 7.1.4]) that P_{α} is a continuous projection of $L^2(\mathbf{D})$ onto A^2 , for each $\alpha > -1/2$.

Since

$$\left\{\frac{1-\left|w\right|^{2}}{1-z\overline{w}},z,w\in\mathbf{D}\right\}\subset\mathbf{D}_{1}$$

where $\mathbf{D}_1 = \{z : |z-1| < 1\}$, we may replace the function $g_{\alpha}(\zeta) = (\alpha+1)\zeta^{\alpha}$ in the definition of P_{α} by any holomorphic function g on \mathbf{D}_1 to obtain an operator T_g mapping the space $C_c(\mathbf{D})$ of compactly supported continuous functions defined on \mathbf{D} into A^2 . An equivalent formulation of the operators defined this way was given by Bonet, Engliš and Taskinen in [1] to construct continuous projections in weighted L^{∞} spaces of \mathbf{D} into $\mathcal{H}(\mathbf{D})$. The purpose of this paper is to study the space \mathscr{P} of all holomorphic functions $g \in \mathbf{D}_1$, for which the corresponding operator T_g can be extended continuously to $L^2(\mathbf{D})$. In particular we study the set \mathscr{P}_0 of those functions $g \in \mathscr{P}$ that define continuous projections on A^2 . For notational convenience we will translate the functions in \mathscr{P} to the unit disk \mathbf{D} .

 ${\rm doi:} 10.5186/aasfm.2010.3512$

2000 Mathematics Subject Classification: Primary 46E20.

Key words: Bergman spaces, projection.

First author partially supported by the spanish grant MTM2008-04594/MTM.

Second author partially supported by Conacyt-DAIC U48633-F.

We will prove that \mathscr{P} is a Banach space when we define the norm of $g \in \mathscr{P}$ as the operator norm of the operator T_g and that $\Phi(g) = \int_0^1 g(r) dr$ defines a bounded linear functional in \mathscr{P}^* . We give an analytic description of the elements of \mathscr{P} and show that if $g \in \mathscr{P}$ then either T_g is identically zero on A^2 or it is a multiple of a continuous projection onto A^2 , implying that $\mathscr{P}_0 = \Phi^{-1}(\{1\})$ is a closed affine subspace of \mathscr{P} .

As usual, for each $z \in \mathbf{D}$, ϕ_z will denote by ϕ_z the Möbius transform $\phi_z(w) = \frac{z-w}{1-\bar{z}w}$ which satisfies $(\phi_z)^{-1} = \phi_z$ and $\phi_z'(w) = -\frac{1-|z|^2}{(1-\bar{z}w)^2}$. Throughout this paper we will write

$$\psi_z(w) = \frac{1 - |w|^2}{1 - z\bar{w}}$$

and

$$\mathbf{H} = \{ z \in \mathbf{C} : \text{Re}(z) > 1/2 \}.$$

Clearly the mapping $z \to \frac{1}{1-z}$ is a bijection of **D** onto **H**, and

(1)
$$\psi_z(w) = 1 - \bar{w}\phi_w(z).$$

2. A space of projections on A^2

Let us start by presenting our new definitions and spaces of projections.

Definition 1. Let g be holomorphic in \mathbf{D} . We define

$$T_g \varphi(z) = \int_{\mathbf{D}} g(\bar{w}\phi_w(z))\varphi(w) \frac{dA(w)}{(1-z\overline{w})^2},$$

for any $\varphi \in C_c(\mathbf{D})$. We denote by \mathscr{P} (resp. \mathscr{P}_0) the space of holomorphic functions $g \in \mathscr{H}(\mathbf{D})$ such that T_g extends continuously to $L^2(\mathbf{D})$ (resp. T_g is a projection on the Bergman space A^2). We provide the space \mathscr{P} with the norm $\|g\|_{\mathscr{P}} = \|T_g\|_{L^2(\mathbf{D}) \to L^2(\mathbf{D})}$.

Remark 2. In [1] it was introduced, for each F holomorphic in \mathbf{H} the operator

$$S_F \varphi(z) = \int_D F\left(\frac{1 - z\overline{w}}{1 - |w|^2}\right) \varphi(w) \frac{dA(w)}{(1 - |w|^2)^2}.$$

We have $T_g = S_F$, with $F(\eta) = \frac{1}{\eta^2} g(1 - \frac{1}{\eta})$. We will say that such $F \in \mathscr{P}$ (resp. \mathscr{P}_0) if $g \in \mathscr{P}$ (resp. \mathscr{P}_0).

Example 3. Let $g_{\alpha}(z) = (\alpha + 1)(1 - z)^{\alpha}$ for every $\alpha > -1$. Then $g_{\alpha} \in \mathscr{P}_0$ for $\alpha > -1/2$. In fact by (1) we have $T_{g_{\alpha}} = P_{\alpha}$, which is a bounded projection from $L^2(\mathbf{D})$ into A^2 if and only if $\alpha > -1/2$.

Example 4. If $P(z) = \sum_{k=0}^{N} a_k z^k$ is a polynomial then $P \in \mathscr{P}$. Moreover, $P \in \mathscr{P}_0$ if and only if $\sum_{k=0}^{N} \frac{a_k}{(k+1)} = \int_0^1 P(r) dr = 1$.

Proof. Write $P(z) = \sum_{k=0}^{N} b_k (1-z)^k$ where $b_k = (-1)^k \frac{P^{(k)}(1)}{k!}$. Hence

$$T_P = \sum_{k=0}^{N} \frac{b_k}{(k+1)} P_k.$$

This shows that $T_P \in \mathscr{P}$ and $||P||_{\mathscr{P}} \leq \sum_{k=0}^N \frac{|b_k|}{(k+1)} ||P_k||$. On the other hand $T_P \in \mathscr{P}_0$ if and only if $\sum_{k=0}^N \frac{b_k}{(k+1)} = 1$. Notice now that $\sum_{k=0}^N \frac{b_k}{(k+1)} = \int_0^1 P(r) dr$ to conclude the proof.

Example 5. If $g \in \mathcal{H}(\mathbf{D})$ is such that $(1-z)^{-\alpha}g(z)$ is bounded for some $\alpha > -1/2$ then $g \in \mathcal{P}$ and $\|g\|_{\mathscr{P}} \leq C \sup_{|z|<1} |(1-z)^{-\alpha}g(z)|$. In particular the space of bounded holomorphic functions $H^{\infty}(\mathbf{D})$ is contained in \mathscr{P} and $\|f\|_{\mathscr{P}} \leq C\|f\|_{\infty}$.

Proof. Use the fact that $P_{\alpha}^*\varphi(z) = \int_D \frac{(1-|w|^2)^{\alpha}}{|1-\bar{w}z|^{2+\alpha}}\varphi(w) dA(w)$ also defines a bounded operator on $L^2(\mathbf{D})$ (see [5, Theorem 1.9]).

Proposition 6. Let $g: \{z: |z-1| < 2\} \to \mathbb{C}$ be holomorphic such that $g(z) = \sum_{n=1}^{\infty} a_n (1-z)^n$ for |z-1| < 2. If $\sum_{n=0}^{\infty} \frac{2^n |a_n|}{(n+1)^{5/4}} < \infty$, then $g \in \mathscr{P}$ and

$$||g||_{\mathscr{P}} \le C \sum_{n=0}^{\infty} \frac{2^n |a_n|}{(n+1)^{5/4}}.$$

Moreover, $g \in \mathscr{P}_0$ if and only if $\sum_{n=0}^{\infty} \frac{a_n}{n+1} = 1$.

Proof. Indeed, the norm $||P_n|| = \frac{\sqrt{(2n)!}}{n!}$ (see [2, 3]). Then for $\varphi \in C_c(\mathbf{D})$

$$T_g \varphi(z) = \sum_{n=1}^{\infty} \frac{a_n}{(n+1)} P_n \varphi(z),$$

and

$$||g||_{\mathscr{P}} \le \sum_{n=0}^{\infty} \frac{|a_n|\sqrt{(2n)!}}{(n+1)n!}.$$

Finally observe that, from Stirling's formula, $\frac{\sqrt{(2n)!}}{(n+1)n!} \sim \frac{2^n}{(n+1)^{5/4}}$. To conclude the result note that $\sum_{n=0}^{\infty} \frac{|a_n|}{n+1} < \infty$ and

$$T_g \varphi(z) = \left(\sum_{n=1}^{\infty} \frac{a_n}{(n+1)}\right) \varphi(z),$$

for $\varphi \in A^2$.

Example 7. Let $h_{\beta}(z) = A_{\beta}(1+z)^{-\beta}$ for $\beta > 0$ where $A_{\beta} = \frac{1-\beta}{2^{-\beta+1}-1}$ if $\beta \neq 1$ and $A_1 = (\log 2)^{-1}$. Then $h_{\beta} \in \mathscr{P}_0$ for $0 < \beta < 5/4$.

Proof. Since $\frac{1}{(1-w)^{\beta}} = \sum_{n=0}^{\infty} \beta_n w^n$ for $\beta > 0$, |w| < 1, where $\beta_n \sim (n+1)^{\beta-1}$, we have

$$h_{\beta}(z) = \frac{A_{\beta}}{2^{\beta}(1 - (1 - z)/2)^{\beta}} = \sum_{n=0}^{\infty} A_{\beta} 2^{-(n+\beta)} \beta_n (1 - z)^n.$$

Now Proposition 6 implies $h_{\beta} \in \mathscr{P}$.

Note that

$$1 = \int_{1}^{2} A_{\beta} s^{-\beta} ds = \int_{0}^{1} h_{\beta}(r) dr = \sum_{n=0}^{\infty} \frac{A_{\beta} 2^{-(n+1)} \beta_{n}}{n+1}.$$

Apply again Proposition 6 to finish the proof.

Let us now give some necessary conditions that functions g in \mathscr{P} should satisfy. **Theorem 8.** If $g \in \mathscr{P}$, then

(2)
$$\sup_{z \in \mathbf{D}} \left\{ \int_{\mathbf{D}} |g(\bar{w}\phi_w(z))|^2 dA(w) \right\}^{1/2} \le 2 \|g\|_{\mathscr{P}},$$

(3)
$$\left(\int_0^1 |g(r)|^2 dr \right)^{1/2} \le 2||g||_{\mathscr{P}},$$

(4)
$$\left(\int_0^1 \left(\int_{\mathbf{D}} \frac{|g(ru)|^2}{|1 - ru|^4} dA(u) \right) (1 - r^2)^2 r \, dr \right)^{1/2} \le 2 \|g\|_{\mathscr{P}}.$$

Proof. If $g \in \mathscr{P}$ and $\varphi \in C_c(\mathbf{D})$ one has $T_g \varphi \in A^2$. Hence for each $z \in \mathbf{D}$

$$|T_g \varphi(z)| \le \frac{\|T_g \varphi\|_2}{(1-|z|)} \le \frac{\|g\|_{\mathscr{P}} \|\varphi\|_2}{(1-|z|)}.$$

Therefore

$$\left| \int_{\mathbf{D}} g\left(\overline{w} \phi_w(z) \right) \varphi(w) \frac{dA(w)}{(1 - z\overline{w})^2} \right| \le \frac{\|g\|_{\mathscr{P}} \|\varphi\|_2}{(1 - |z|)}.$$

Then by duality.

(5)
$$\left\{ \int_{\mathbf{D}} |g(\bar{w}\phi_w(z))|^2 \frac{dA(w)}{|1 - z\overline{w}|^4} \right\}^{1/2} \le \frac{\|g\|_{\mathscr{P}}}{(1 - |z|)} \le 2 \frac{\|g\|_{\mathscr{P}}}{(1 - |z|^2)}.$$

Let us show the following formula:

(6)
$$\overline{\phi_z(u)}\phi_{\phi_z(u)}(z) = u\overline{\phi_u(z)}.$$

Indeed, since

$$1 - |\phi_z(u)|^2 = \frac{(1 - |z|^2)(1 - |u|^2)}{|1 - \bar{z}u|^2},$$

then

(7)
$$\psi_z(\phi_z(u)) = \frac{1 - |\phi_z(u)|^2}{1 - \overline{\phi_z(u)}z} = \frac{(1 - |u|^2)}{(1 - \overline{z}u)} = \overline{\psi_z(u)}.$$

Now (6) follows from (1) and (7)

(8)
$$\overline{\phi_z(u)}\phi_{\phi_z(u)}(z) = 1 - \psi_z(\phi_z(u)) = u\overline{\phi_u(z)}.$$

Changing the variable $u = \phi_z(w)$ in (5) and using (6) we obtain

$$\left\{ \int_{\mathbf{D}} \left| g\left(u \overline{\phi_u(z)} \right) \right|^2 dA(u) \right\}^{1/2} \le 2 \| f \|_{\mathscr{P}}.$$

Now replacing u and \bar{z} by \bar{w} and z respectively the inequality (2) is achieved. Part (3) follows selecting z = 0 in (2).

Part (4) follows from (2) replacing the supremum by an integral over **D** and changing the variable $u = \phi_w(z)$,

$$\int_{\mathbf{D}} \int_{\mathbf{D}} |g(\bar{w}\phi_{w}(z))|^{2} dA(w) dA(z) = \int_{\mathbf{D}} \left(\int_{\mathbf{D}} \frac{|g(\bar{w}u)|^{2}}{|1 - \bar{w}u|^{4}} dA(u) \right) (1 - |w|^{2})^{2} dA(w)
= \int_{\mathbf{D}} \left(\int_{\mathbf{D}} \frac{|g(|w|u)|^{2}}{|1 - |w|u|^{4}} dA(u) \right) (1 - |w|^{2})^{2} dA(w)
= \int_{0}^{1} \left(\int_{\mathbf{D}} \frac{|g(ru)|^{2}}{|1 - ru|^{4}} dA(u) \right) (1 - r^{2})^{2} r dr. \qquad \Box$$

Remark 9. $(\mathscr{P}, \|\cdot\|_{\mathscr{P}})$ is a normed space and $\Phi(g) = \int_0^1 g(r) dr \in \mathscr{P}^*$. Indeed, the only condition which needs a proof is the fact that $\|g\|_{\mathscr{P}} = 0$ implies g = 0. It follows from (3) that if $||g||_{\mathscr{P}} = 0$, then g(r) = 0 for 0 < r < 1. Hence by analytic continuation, g(z) = 0 for $z \in \mathbf{D}$. Notice also that (3) implies $\|\Phi\| \leq 2$.

Remark 10. The space \mathscr{P} is not invariant under under rotations. Given $\theta \in$ $[0,2\pi)$ denote $R_{\theta}(f)(z) = f(e^{i\theta}z)$ for $f \in \mathcal{H}(\mathbf{D})$. Observe that $R_{\theta}T_{q}(\varphi) = T_{q}(R_{\theta}\varphi)$. However, " T_g is bounded in $L^2(\mathbf{D})$ does not imply $T_{R_{\theta}g}$ is bounded in $L^2(\mathbf{D})$ ". For instance, the function $g(z) = (1+z)^{-1/2}$ belongs to \mathscr{P} , but by (3), its reflection $g(z) = (1-z)^{-1/2} \notin \mathscr{P}.$

Let us now also give some necessary conditions to belong to the class \mathscr{P}_0 .

Theorem 11. If $g \in \mathscr{P}_0$ then

(9)
$$\int_{\mathbf{D}} g(u\overline{\phi_u(z)})\psi(u) dA(u) = \psi(0)$$

for all $\psi \in A_2$ and $z \in \mathbf{D}$. In particular,

- (i) If $g \in \mathscr{P}_0$ then $\int_0^1 g(r) dr = 1$. (ii) Let $S_2 = \{\bar{z}(1-|z|^2)\varphi(\bar{z}) : \varphi \in A^2\}$. If $g \in \mathscr{P}_0$ and $g' \in \mathscr{P}$ then $S_2 \subset A$ $Ker(T_{a'}).$

Proof. Assume

$$\int_{\mathbf{D}} g(\bar{w}\phi_w(z)) \frac{\varphi(w)}{(1-\bar{w}z)^2} dA(w) = \varphi(z)$$

for all $\varphi \in A^2$. Given $\psi \in A^2$ and $z \in D$, consider $\varphi(w) = \psi(\phi_z(w)) \frac{(1-|z|^2)^2}{(1-\bar{z}w)^2}$. Clearly $\varphi \in A_2$ and $\|\varphi\|_2 = (1-|z|^2)\|\psi\|_2$. From the assumption,

$$\int_{\mathbf{D}} g(\bar{w}\phi_w(z))\psi(\phi_z(w)) \frac{(1-|z|^2)^2}{|1-\bar{w}z|^4} dA(w) = \psi(0).$$

for all $\psi \in A^2$ and $z \in \mathbf{D}$.

Now changing the variable $u = \phi_z(w)$, and using (6), one gets

$$\int_{\mathbf{D}} g(u\overline{\phi_u(z)})\psi(u) dA(u) = \psi(0)$$

for all $\psi \in A_2$ and $z \in \mathbf{D}$. Finally changing u by \bar{w} one obtains

(10)
$$\int_{\mathbf{D}} g(\bar{w}\phi_w(z))\psi(\bar{w}) dA(w) = \psi(0)$$

for all $\psi \in A_2$ and $z \in \mathbf{D}$. (i) follows selecting $\psi = 1$ and z = 0 in (10).

Differentiating in (10) with respect to z one obtains

$$\int_{\mathbf{D}} g'(\bar{w}\phi_w(z)) \frac{-\bar{w}(1-|w|^2)}{(1-\bar{w}z)^2} \psi(\bar{w}) dA(w) = T_{g'}(\psi_1) = 0$$

where $\varphi_1(u) = -\bar{u}(1-|u|^2)\varphi(\bar{u})$. Hence (ii) is finished.

Let us now show that $(\mathscr{P}, \|\cdot\|_{\mathscr{P}})$ is complete. For such a purpose, let us define $h_z \colon \mathbf{D} \to \mathbf{H}$ by

$$h_z(w) = \frac{1}{\psi_z(w)} = \frac{1 - z\overline{w}}{1 - |w|^2},$$

and let us mention that

$$\mathbf{D}_1 = \{ \frac{1 - |w|^2}{1 - z\overline{w}} : z, w \in \mathbf{D} \} = \{ \psi_z(w) : z, w \in \mathbf{D} \}.$$

Lemma 12. For every $\xi \in \mathbf{H}$, there exist $0 \le \alpha < 1$ and $w \in \mathbf{D}$ such that $\xi = h_{\alpha}(w)$ and h_{α} is an diffeomorfism of a neighborhood U of w onto an open neighborhood of ξ .

Proof. For $0 \le r, \alpha < 1$ fixed,

(11)
$$h_{\alpha}(re^{i\theta}) = \frac{1}{1 - r^2} - \frac{r\alpha}{1 - r^2}e^{-i\theta}$$

describes the circle $C_{r,\alpha}$ centered at the complex number $\frac{1}{1-r^2}$ with radius $\frac{r\alpha}{1-r^2}$. Let $\xi \in \mathbf{H}$. To prove that $\xi \in h_{\alpha}(\mathbf{D})$ it is enough to see that $\xi \in C_{r,\alpha}$ for some $0 \le r, \alpha < 1$. Let

(12)
$$\beta = \frac{1}{r^2} \left[(1 - r^2)^2 |\xi|^2 + 1 - 2(1 - r^2) \operatorname{Re} \xi \right] = \frac{|(1 - r^2)\xi - 1|^2}{r^2}.$$

It is clear that $\beta \geq 0$ and

$$\beta < 1 \Leftrightarrow (1 - r^2)|\xi|^2 + 1 < 2\operatorname{Re}\xi$$
.

Also, since $\xi \in \mathbf{H}$, we have for some $\varepsilon > 0$ that $2 \operatorname{Re} \xi > 1 + \varepsilon$. Hence if $|\xi|^2 < \frac{\varepsilon}{(1-r^2)}$ then $\beta < 1$. We conclude that there exists r_0 for which $0 \le \beta < 1$ provided $r_0 < r < 1$. Then if $r_0 < r < 1$ and $\alpha = \sqrt{\beta}$ we have $0 \le \alpha < 1$ and

$$\left|\xi - \frac{1}{1 - r^2}\right| = \frac{r\alpha}{1 - r^2},$$

that is $\xi \in C_{r,\alpha}$. Hence there exists θ_r and $0 \le \alpha_r < 1$ such that $h_{\alpha_r}(re^{i\theta_r}) = \xi$. To find θ_r explicitly, we let $\varphi_r = \pi - \theta_r$. From (11) we can write

$$\xi = \frac{1}{1 - r^2} + \frac{r\alpha_r}{1 - r^2}e^{i\varphi_r}.$$

Hence φ_r is the argument of ξ in polar coordinates centered at the complex number $\frac{1}{1-r^2}$. Then if $\frac{1}{1-r^2} \ge \text{Re}(\xi)$,

(13)
$$\sin \theta_r = \sin \varphi_r = \frac{\operatorname{Im}(\xi)}{r\alpha_r} (1 - r^2) \\ \cos \theta_r = -\cos \varphi_r = \frac{(1 - r^2)}{r\alpha_r} \left(\frac{1}{1 - r^2} - \operatorname{Re}(\xi) \right) = \frac{1 - (1 - r^2) \operatorname{Re}(\xi)}{r\alpha_r}.$$

Now we will prove that possibly except for a finite number of values of $r \geq r_0$, the jacobian matrix $Dh_{\alpha_r}(re^{i\theta_r})$ is not singular, where α_r and θ_r are chosen so that

 $h_{\alpha_r}(re^{i\theta_r})=\xi$ as before. To this end, it is enough to see that the set of values of r for which the vectors

(14)
$$\frac{\partial h_{a_r}}{\partial \rho} (\rho e^{i\theta_r})_{|\rho=r} \text{ and } \frac{1}{r} \frac{\partial h_{a_r}}{\partial \theta} (re^{i\theta})_{|\theta=\theta_r}$$

are linearly dependent is finite.

We have

$$\frac{\partial h_a}{\partial \rho}(\rho e^{i\theta}) = \left(\frac{2\rho}{(1-\rho^2)^2} - \frac{\alpha(1+\rho^2)}{(1-\rho^2)^2}\cos\theta, \frac{\alpha(1+\rho^2)}{(1-\rho^2)^2}\sin\theta\right),$$

$$\frac{1}{\rho}\frac{\partial h_a}{\partial \theta}(\rho e^{i\theta}) = \left(\frac{\alpha}{(1-\rho^2)}\sin\theta, \frac{\alpha}{(1-\rho^2)}\cos\theta\right),$$

and the jacobian of h_{α}

(15)
$$Jh_{\alpha}(\rho e^{i\theta}) = \det \left[\frac{\partial h_{a}}{\partial \rho} (\rho e^{i\theta}) \middle| \frac{1}{\rho} \frac{\partial h_{a}}{\partial \theta} (\rho e^{i\theta}) \right]$$

$$= \det \left[\frac{\frac{2\rho}{(1-\rho^{2})^{2}} - \frac{\alpha(1+\rho^{2})}{(1-\rho^{2})^{2}} \cos \theta}{\frac{\alpha}{(1-\rho^{2})^{2}} \sin \theta} \right]$$

$$= \frac{\alpha}{(1-\rho^{2})^{3}} \left(2\rho \cos \theta - \alpha(1+\rho^{2}) \right).$$

If $2r\cos\theta_r - \alpha_r(1+r^2) = 0$, then multiplying this equation by $\alpha_r r^2$ we obtain

(16)
$$2r^{2}\alpha_{r}r\cos\theta_{r} - \alpha_{r}^{2}r^{2}(1+r^{2}) = 0.$$

However, from (12) and (13) we see that $2r^2\alpha_r r\cos\theta_r - \alpha_r^2 r^2(1+r^2)$ is a polynomial of degree 6 in the variable r. We conclude that the vectors in (14) are linearly dependent for six values of r at the most and the proof of the lemma is complete. \square

Theorem 13. \mathscr{P} is a Banach space.

Proof. Let $g \in \mathcal{P}$. We have by Theorem 8 that

(17)
$$\sup_{z \in \mathbf{D}} \left\{ \int_{\mathbf{D}} |g(\bar{w}\phi_w(z))|^2 dA(w) \right\}^{1/2} \le 2 \|g\|_{\mathscr{P}}.$$

Fix $\xi \in \mathbf{D}$. Since $\psi_z = 1/h_z$, the local invertibility statement of Lemma 12 holds for the family of functions $1 - \psi_z$ taking $\xi \in \mathbf{D}$, namely, there exist $\alpha \in (0,1)$, $w_{\xi} \in \mathbf{D}$ and open neighborhoods U and V of ξ and w_{ξ} respectively, such that $1 - \psi_z$ is a diffeomorphism of V into U.

Hence

$$\left\{ \int_{U} |g(u)|^{2} dA(u) \right\}^{1/2} = \left\{ \int_{V} |g(1 - \psi_{\alpha}(w))|^{2} |J\psi_{\alpha}(w)| dA(w) \right\}^{1/2} \\
\leq C(\xi) \left\{ \int_{V} |g(\bar{w}\phi_{w}(\alpha))|^{2} dA(w) \right\}^{1/2} \\
\leq C(\xi) ||g||_{\mathscr{P}}.$$

It follows that

$$\left\{ \int_{K} |g(u)|^{2} dA(u) \right\}^{1/2} \leq C_{K} \|g\|_{\mathscr{P}},$$

for every compact set $K \subset \mathbf{D}$. This implies that

(18)
$$\sup_{u \in K} |g(u)| \le ||g||_{\mathscr{P}} C'_K.$$

If $\{g_n\}$ is a Cauchy sequence in \mathscr{P} , we have by (18) that $\{g_n\}$ converges uniformly on compact sets of **D** to a holomorphic function g.

Let us show that $g \in \mathscr{P}$ and $||g_n - g||_{\mathscr{P}} \to 0$. Note first that for each $\varphi \in C_c(\mathbf{D})$ we have

$$T_{q_n}\varphi(z) \to T_q\varphi(z), \quad z \in \mathbf{D}.$$

Using the fact $\sup_{n\in\mathbb{N}} \|g_n\|_{\mathscr{P}} = M < \infty$ and Fatou's lemma one gets

$$||T_g \varphi||_2^2 \le \liminf_{n \to \infty} ||T_{g_n} \varphi||_2^2 \le M ||\varphi||_2^2.$$

Hence $g \in \mathscr{P}$. On the other hand, given $\varepsilon > 0$ there exists n_0 such that

$$||T_{g_n}\varphi - T_{g_m}\varphi||_2 \le ||g_n - g_m||_{\mathscr{P}} < \varepsilon$$

for $m, n \ge n_0$ and $\|\varphi\|_2 = 1$. Applying Fatou's lemma again we conclude that

$$||T_{g_n}\varphi - T_g\varphi||_2 \le \varepsilon$$

for $n \geq n_0$. Therefore $g_n \to g$ in \mathscr{P} .

3. Main results

Let us now describe the norm in \mathcal{P} in a more explicit way. We shall use the formulation of the space given in [1].

Theorem 14. Let $g \in \mathcal{H}(\mathbf{D})$ and put $F(\xi) = \frac{1}{\xi^2}g(1-\frac{1}{\xi})$. Then $g \in \mathcal{P}$ if and only if

$$\sup_{j} \frac{1}{j!\sqrt{j+1}} \left(\int_{1}^{\infty} \left[(x-1)x \right]^{j} \left| xF^{(j)}(x) \right|^{2} dx \right)^{1/2} < \infty.$$

Proof. We use the expression

$$T_g \varphi(z) = \int_{\mathbf{D}} F\left(\frac{1 - z\overline{w}}{1 - |w|^2}\right) \varphi(w) \frac{dA(w)}{(1 - |w|^2)^2}.$$

Consider the space M of functions of the form

$$\varphi = \sum_{\text{finite}} \varphi_j(r) e^{ij\theta},$$

with $\varphi_i \in L^2((0,1), r dr)$. Then M is a dense subspace of $L^2(\mathbf{D})$.

For $z \in \mathbf{D}$ and $0 \le r < 1$ fixed, let $f(\zeta) = F\left(\frac{1-rz\zeta}{1-r^2}\right)$, which is holomorphic on $\overline{\mathbf{D}}$. We have

$$f(\zeta) = F\left(\frac{1 - rz\zeta}{1 - r^2}\right) = \sum_{j \ge 0} \frac{1}{j!} \left(\frac{-rz}{1 - r^2}\right)^j F^{(j)}(\frac{1}{1 - r^2})\zeta^j, \quad |\zeta| \le 1.$$

Then for $g \in M$,

$$\int_0^{2\pi} f(re^{-i\theta}) \varphi(re^{i\theta}) \frac{d\theta}{2\pi} = \sum_{j>0} \varphi_j(r) \frac{(-1)^j}{j!} \left(\frac{r}{1-r^2}\right)^j F^{(j)}(\frac{1}{1-r^2}) z^j,$$

Hence

(19)
$$T_g(\varphi)(z) = \sum_{j \ge 0} \gamma_j(\varphi_j) \sqrt{j+1} z^j,$$

where γ_i is the functional in $L^2((0,1), r dr)$ defined by

$$\gamma_j(\varphi) = \frac{(-1)^j}{\sqrt{j+1}j!} \int_0^1 \varphi(r) \left(\frac{r}{1-r^2}\right)^j F^{(j)}(\frac{1}{1-r^2}) \frac{r}{(1-r^2)^2} dr.$$

Using the normalized Lebesgue measure dA, the set $\{\sqrt{j+1}z^j\}$ is an orthonormal basis for A^2 , so we conclude that T_g is bounded in $L^2(\mathbf{D})$ if and only if

$$\left\| \left(\gamma_j(\varphi_j) \right)_{j \ge 0} \right\|_{\ell^2} \le C \left\| \varphi \right\|_{L^2(\mathbf{D})} = C \left(\sum_j \int |\varphi_j(r)|^2 r \, dr \right)^{1/2}.$$

Using duality, this will hold if and only if

(20)
$$\sup_{j\geq 0} \frac{1}{\sqrt{j+1}j!} \left(\int_0^1 \left(\frac{r}{1-r^2} \right)^{2j} \left| F^{(j)} \left(\frac{1}{1-r^2} \right) \right|^2 \frac{r \, dr}{(1-r^2)^4} \right)^{1/2} < \infty.$$

Making the change of variables $x = \frac{1}{1-r^2}$, the integrals above equal

$$\frac{1}{2} \int_{1}^{\infty} [(x-1)x]^{j} \left| xF^{(j)}(x) \right|^{2} dx$$

and the proof is complete.

We can now give an alternative proof of a well know result.

Corollary 15. P_{α} is bounded on $L^{2}(\mathbf{D})$ if and only if $\alpha > -1/2$.

Proof. Consider $g_{\alpha}(z) = (1-z)^{\alpha}$. Assume first that $g_{\alpha} \in \mathscr{P}$. Then (3) in Theorem 8 implies that $\int_0^1 (1-r)^{2\alpha} dr < \infty$ and therefore $\alpha > -1/2$.

Assume now that $\alpha > -1/2$. Since $F_{\alpha}(\xi) = \xi^{-m}$ with $m = 2 + \alpha$ and 2m - 3 > 0, one has for $j \geq 0$ that

$$F_{\alpha}^{(j)}(x) = (-1)^{j} m(m+1) \cdots (m+j-1) x^{-(m+j)} = (-1)^{j} \frac{\Gamma(m+j)}{\Gamma(m)} x^{-(m+j)}.$$

Therefore

$$\begin{split} \int_{1}^{\infty} \left[(x-1)x \right]^{j} \left| x F_{\alpha}^{(j)}(x) \right|^{2} dx &= \int_{1}^{\infty} \left(1 - \frac{1}{x} \right)^{j} \left(x^{j+1} F_{\alpha}^{(j)}(x) \right)^{2} dx \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} \int_{1}^{\infty} \left(1 - \frac{1}{x} \right)^{j} x^{-2m+4} \frac{d}{x^{2}} \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} \int_{0}^{1} (1-r)^{j} r^{2m-4} dr \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} B(2m-3, j+1). \end{split}$$

Using $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ one concludes that

$$\frac{1}{(j!)^2(j+1)} \int_1^\infty \left[(x-1)x \right]^j \left| x F_\alpha^{(j)}(x) \right|^2 dx = \frac{B(2m-3,j+1)}{B(m,j)^2 j^2 (j+1)}.$$

Finally since for p fixed, $B(p, j) \sim j^{-p}$ one obtains

$$\frac{B(2m-3,j+1)}{B(m,j)^2j^2(j+1)} \sim 1.$$

Example 16. In Example 7 it was shown that, for $0 < \beta < 5/4$, $g(z) = (1 + z)^{-\beta} \in \mathscr{P}$ (which corresponds to $F(\xi) = \frac{\xi^{\beta-2}}{(2\xi-1)^2}$). Let us show, for instance, that $g(z) = (1+z)^{-2} \notin \mathscr{P}$. In this case $F(\xi) = \frac{1}{(2\xi-1)^2}$ and

$$F^{(j)}(\xi) = \frac{(-1)^j (j+1)! 2^j}{(2\xi - 1)^{2+j}}.$$

Since $\frac{x}{2} \le x - 1 \le x$ for $x \ge 2$ we have

$$\left(\int_{2}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx\right)^{1/2} \sim 2^{j} (j+1)! \left(\int_{2}^{\infty} \frac{x^{2j+2}}{(2x-1)^{4+2j}} dx\right)^{1/2} \sim 2^{j} (j+1)!.$$

Hence the condition in Theorem 14 does not hold.

The conditions

(21)
$$\sup_{j>0} \frac{1}{j!} \int_{1}^{\infty} \left| (x-1)^{j} F^{(j)}(x) \right| dx < \infty,$$

(22)
$$\lim_{x \to \infty} x^{j+1} F^{(j)}(x) = 0$$

were introduced in [1]. These conditions imply that on the space of all the holomorphic functions φ such that $S_F \varphi$ is well defined, the operator S_F is a constant multiple of the identity. Now we will see that (21) and (22) hold for every $g \in \mathscr{P}$ which allows to show the following result.

Theorem 17. Let $g \in \mathscr{P}$ and $c_0 = \int_0^1 g(r) dr$. Then

$$T_g(\varphi) = c_0 \varphi, \quad \varphi \in A^2.$$

Proof. Let us notice first that $(x-1)^j F^{(j)}(x) \in L^1([1,\infty), dx)$ for $j \geq 0$. Indeed,

$$\int_{1}^{\infty} |x-1|^{j} |F^{(j)}(x)| dx = \int_{1}^{\infty} |x(x-1)|^{j} |xF^{(j)}(x)| \frac{dx}{x^{j+1}}$$

$$\leq \left(\int_{1}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx \right)^{1/2} \left(\int_{1}^{\infty} \frac{(x(x-1))^{j}}{x^{2j+2}} dx \right)^{1/2}$$

$$= \left(\int_{1}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx \right)^{1/2} \left(\int_{0}^{1} (1-r)^{j} dr \right)^{1/2}$$

$$= \frac{1}{\sqrt{j+1}} \left(\int_{1}^{\infty} |x(x-1)|^{j} |xF^{(j)}(x)|^{2} dx \right)^{1/2} \leq Cj! ||g||_{\mathscr{P}}.$$

Applying (19) in Theorem 14 to $\varphi(z) = \sum_{j=0}^{N} a_j z^j$ one obtains

(23)
$$T_g \varphi = \sum_{j=0}^{N} c_j a_j z^j,$$

and

$$c_j = \frac{(-1)^j}{j!} \int_1^\infty (x-1)^j F^{(j)}(x) dx,$$

where c_i is well defined. As in [1, Th. 1] we have by integration by parts

$$c_j - c_{j+1} = \frac{(-1)^j}{(j+1)!} \lim_{x \to \infty} (1-x)^{j+1} F^{(j)}(x).$$

Let us now show that $\lim_{x\to\infty}(1-x)^{j+1}F^{(j)}(x)=0$. Note first that $(x-1)^{j+1}F^{(j)}(x)\in L^2([1,\infty),dx)$ for $j\geq 0$. Indeed

(24)
$$\int_{1}^{\infty} |(x-1)^{j+1} F^{(j)}(x)|^2 dx \le \int_{1}^{\infty} |x(x-1)|^j |xF^{(j)}(x)|^2 dx \le C(j+1)(j!)^2.$$

In particular $(x-1)^j F^{(j)}(x) \in L^2([1,\infty), dx)$ for $j \geq 1$. From Cauchy–Schwarz and the previous estimates one has that if $f_j(x) = [(x-1)^{j+1} F^{(j)}(x)]^2$, then $(f_j)' \in L^1([1,\infty))$ for every $j \geq 0$. Therefore writing

$$[(x-1)^{j+1}F^{(j)}(x)]^2 = \int_1^x (f_j)'(y) \, dy$$

we see that the $\lim_{x\to\infty}((x-1)^{j+1}F^{(j)}(x))^2$ exists and by (24) it vanishes for all j. Hence (23) becomes $T_g(\varphi)=c_0\varphi$ where

$$c_0 = \int_1^\infty F(x) \, dx = \int_1^\infty g(1 - \frac{1}{x}) \frac{dx}{x^2} = \int_0^1 g(r) \, dr.$$

Corollary 18. Let $g \in \mathscr{P}$. Then $A^2 \subset \operatorname{Ker} T_g$ if and only if $\int_0^1 g(r) dr = 0$.

Corollary 19. Let $\Phi(g) = \int_0^1 g(r) dr$ for $g \in \mathscr{P}$. Then $\mathscr{P}_0 = \Phi^{-1}(\{1\})$.

Corollary 20. Let $g \in \mathscr{P}$. If T_g is not identically zero in A^2 then there exists $\lambda \neq 0$ and $g_0 \in \mathscr{P}_0$ such that $g = \lambda g_0$.

References

- [1] Bonet, J., M. Engliš, and J. Taskinen: Weighted L^{∞} -estimates for Bergman projections. Studia Math. 171:1, 2005, 67–92.
- [2] Dostanić, M.: Norm estimate of the Cauchy transform on $L^p(\Omega)$. Integral Equations Operator Theory 52:4, 2005, 465–475.
- [3] Dostanić, M.: Norm of Berezin transform on L^p space. J. Anal. Math. 104:1, 2008, 13–23.
- [4] FORELLI, F., and W. Rudin: Projections on spaces of holomorphic functions on balls. Indiana Univ. Math. J. 24, 1974, 593–602.
- [5] HEDENMALM, H., B. KORENBLUM, and K. Zhu: Theory of Bergman spaces. Grad. Texts in Math. 199, Springer-Verlag, 2000.
- [6] RUDIN, W.: Function theory in the unit ball of \mathbb{C}^n . Springer, New York, 1980.
- [7] Zhu, K.: Operator theory in function spaces. Marcel Dekker, New York, 1990.

Received 30 January 2009