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PLANAR MAPS OF SUB-EXPONENTIAL DISTORTION
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Abstract. Here we answer in the affirmative a conjecture of Iwaniec and Martin from [11]
on solutions to the Beltrami equation whose distortion function is sub-exponentially integrable.
Namely, we find the sharp Sobolev classes which these maps belong to, as well their area distortion
estimates. These methods imply all further integrability results in this logarithmic scale.

1. Introduction

A quasiregular mapping is a function f , chosen to be the continuous representative
of an element of W 1,n

loc (Ω), Ω a domain of Rn which has uniformly bounded linear
distortion:

|Df(x)|n ≤ KJf (x) for almost every x ∈ Ω,

where |Df | is the operator norm of the differential matrix, Jf the Jacobian determi-
nant, and K ∈ [1,∞) a constant. In the past 20 years an extensive program (begun
essentially by [5], and collected in [10] for n dimensional maps and [3] which focuses
only in the plane) has extended the theory of these maps to include an unbounded
function K(x) which bounds the linear distortion in place of the uniform bound K.
These maps have come to be called maps of finite distortion. One is led to consider
possible controls for the function K(x) which will still allow the development of a
rich theory, for example, one robust enough to include existence theorems.

Definition 1. A map f : Ω → Rn, Ω a domain in Rn, is a map of finite distortion
if
(FD-1) f ∈ W 1,1

loc (Ω).
(FD-2) The Jacobian determinant of f , denoted Jf (x), is locally integrable.
(FD-3) With Df denoting the matrix of partial derivatives, and |Df | its operator

norm, there is a measurable function K : Ω → [1,∞), finite a.e., such that
|Df(x)|n ≤ K(x)Jf (x) almost everywhere in Ω.

One can choose the function K so that equality holds in (FD-3). When we choose
this K, we will call it Kf , the distortion function of f .

In the plane C, to which we will confine ourselves for the remainder of this note,
injective quasiregular mappings are called quasiconformal. They satisfy the Beltrami
equation:

(1) ∂f(z) = µ(z)∂f(z) for a.e. z ∈ Ω

with µ a measurable, complex valued function called the dilatation, ||µ||∞ < 1. We
say a solution f is principal if f(z) = z + o(1) at ∞. We point out that |Df | =
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|∂f | + |∂f |, Jf = |∂f |2 − |∂f |2, and Kf = |Df |2/Jf . The relationship between the
dilatation µ and the distortion function K in the plane is

(2) Kf (z) =
1 + |µ(z)|
1− |µ(z)| .

We will often switch between referring to µ and Kf for ease of exposition.
If we let the distortion function become unbounded, then ||µ||∞ = 1 (see [11]

chapter 4) and (1) becomes a differential equation without uniform elliptic bounds.
The first author to treat such degenerate maps in this modern setting was David [5],
who proved an existence and uniqueness result for solutions of (1) when the distortion
function Kf (z) is exponentially integrable, i.e. epK ∈ L1

loc(Ω) for some p > 0. More
generally, as shown in Chapter 20 of [3], if A satisfies:

(1) A : [1,∞) → [0,∞) is a smooth increasing function with A (1) = 0,
(2) ∫ ∞

1

A (t)

t2
dt = ∞,

(3) tA ′(t) ≥ 5 for large values of t,
then any Beltrami equation (1) with compactly supported µ(z), and |µ(z)| < 1 almost
everywhere with

eA (K(z)) ∈ L1
loc(C)

admits a unique principal solution f , with f in the Orlicz–Sobolev space W 1,P
loc (C)

where

P (t) =

{
t2, 0 ≤ t ≤ 1,

t2

A −1(log t2)
, t ≥ 1.

Moreover, any solution h ∈ W 1,P
loc (Ω) to this Beltrami equation in a domain Ω ⊂ C

admits a factorization h = φ ◦f where φ is holomorphic in f(Ω). This result comprises
the most general solution of the Beltrami equation known to the author. It is,
however, not fine enough to determine the sharp degrees of regularity these solutions
provide. For example, in the exponential case, where A (t) = pt− p for some p > 0,
this result only tells us that solutions f are in W 1,P

loc (C) with P (t) = t2/ log(e+t). It is
shown in [2], however, that solutions f are in W 1,Q

loc (C) with Q(t) = t2/ (log(e + t))1−β

for all β < p. The purpose of this note is to give the fine degree of regularity when

(3) Ap(t) = p
t

1 + log(t)
− p

for some p > 0. Maps solving (1) with eAp(K) ∈ L1
loc are called maps of sub-exponential

distortion. This method will also allow us to find the sharp regularity when

Ap,n(t) =
pt

1 + log(t) log(log(e− 1 + t)) · · · log(· · · (log(ee··
·e − 1 + t)) · · · )

− p

where the n denotes that the last logarithmic expression is an n-th iterated logarithm.
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comments.
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2. An example

We begin our discussion with an example from [11] which is extremal and suggests
the right conditions for our theorem.

Let f : D → D, where D is the unit disc in C, be defined by

f(reiθ) =

(
log log

(
ee

r

))− q
2

eiθ

for q > 0. Using the formulas found in Chapter 11 of [10] we compute:

|Df(reiθ)| = 1

r
(
log log

(
ee

r

))− q
2

,

Jf (re
iθ) =

q

2r2 log
(

ee

r

) (
log log

(
ee

r

))1+q ,

and

Kf (re
iθ) =

2

q
log

(
ee

r

)
log log

(
ee

r

)
.

Hence
Kf

1 + log Kf

=
2

q
[1 + o(1)] log

(
ee

r

)
as r → 0+.

Hence exp
(

Kf

1+log Kf

)
is in Lp

loc(C) for any p < q. Also, if q > 1 then
∫

D

|Df |2
log(e + |Df |) dz < ∞

and ∫

D

Jf log log(ee + Jf ) dz < ∞.

This example suggests the correct integrability scales for our solutions, we state these
in Theorem 1.

3. Main theorem and proof

We will now prove a general theorem which shows the example above is extremal.

Theorem 1. Suppose the distortion function K of a Beltrami equation satisfies

(4) e
K

1+log K ∈ Lp(D)

for some p > 0 and is equal to 1 outside D. Then, for all 0 < β < p, the unique
principal solution of the Beltrami equation, f , has the following regularity properties:

Jf (log log (ee + Jf ))
β ∈ L1(D)

and
|Df |2

log (e + |Df |) (log log (ee + |Df |))1−β
∈ L1(D).

This result is sharp in the sense that there exist functions f as above for which β
cannot be taken to be equal to p.
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We note that because of the factorization implied in the discussion in the intro-
duction: all W 1,P

loc (Ω) solutions of the Beltrami equation (1) with

P (t) =
t2

log (e + t) log log (ee + t)

can be factored into the principal solution followed by a conformal map, the inte-
grability of the differential and the Jacobian in Theorem 1 apply to all W 1,P

loc (Ω)
solutions. Before we are able to prove this theorem, we will need to use two prelim-
inary results. The first is the sharp regularity of maps of exponentially integrable
distortion found in [2]:

Theorem A. Let Ω ⊆ C be a domain. Suppose the distortion function Kf (z)

of a mapping of finite distortion f ∈ W 1,1
loc (Ω) satisfies

(5) eKf ∈ Lp
loc for some p > 0.

Then we have for every 0 < β < p,

Jf (log (e + Jf ))
β ∈ L1

loc

and
|Df |2

(log (e + |Df |))1−β
∈ L1

loc.

In addition, if f is a principle solution to the Beltrami equation (1) with associated
distortion function Kf satisfying (5) and Kf = 1 outside D, then for any 0 < β < p
we have

|f(E)| ≤ C

(
log

(
e +

1

|E|
))−β

, for measurable E ⊂ D.

With the constant C depending on β, p and ‖eKf‖Lp(D).

We will also use the following result on the inverses of homeomorphisms of the
type in Theorem A found in [8]:

Theorem B. Suppose f : Ω → C is a homeomorphism of finite distortion sat-
isfying the Beltrami equation (1) with associated Kf satisfying (5). Then f−1 is
also a map of finite distortion with associated distortion Kf−1 ∈ Lβ

loc(f(Ω)) for all
0 < β < p.

We briefly discuss the method of proof of Theorem 1. We first solve the Beltrami
equation in a specific manner via a factorization that depends on Theorem B. Then
the results in [3] discussed in Section 1 show that any solution has the same properties
of a principle solution, modulo a conformal mapping, and so Theorem 1 applies to
the solutions, not just the ones we make. This specific manner in which we factorize
and solve will allow us to conduct an analysis of the area distortion using Theorem A.
Then we use the general relationship between area distortion and the integrability of
the Jacobian found in Lemma C below.

Proof of Theorem 1. Let µ and K be given as in Theorem 1 and choose 0 < β < p.
Let

K1 :=
K

1 + log K
,
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so K1 ≥ 1 and enjoys the property epK1 ∈ L1(D). Let h(z) = w be the principal
Beltrami solution with distortion K1 and dilatation given by

µh(z) :=

(
K1(z)− 1

K1(z) + 1

)
ei arg(µ)

Now set

(6) µg(w) :=
µ(z)− µh(z)

1− µ(z)µh(z)

(
∂h

|∂h|
)2

.

Let K2(w) = 1 + log K(z). One can show that

|µg(w)| = K2(w)− 1

K2(w) + 1
.

If we can find a principal solution g to the Beltrami equation

∂g(w) = µg(w)∂g(w) for a.e. w ∈ C

then the composition g ◦ h has dilitation µ by (6) and the composition formula for
complex dilatations. And the distortion function of g ◦ h is K as K(z) = K2(h(z)) ·
K1(z). This change of variables and composition formula is somewhat non-trivial.
The fact that µg is well defined everywhere is the consequence of h and h−1 obeying
Lusin’s condition N , which is confirmed in [2].

We must show such a g exists and find what class of distortion it has, which is
non-trivial because the distortion by the homeomorphism h makes the integrability
class for K2 in the w-plane non-obvious. We must examine this. Let N ≥ 1 be given.
Then

|{w : K2 ≥ 1 + log N}| = |{w : Kh−1(w) ≥ N

1 + log N
}| ≤ C(

N
1+log N

)β1

for any β < β1 < p. This follows from the way that K1 and K2 depend on K, from
the fact that the distortion of the inverse is pointwise the same as the distortion at the
preimage, and using Chebyshev’s inequality on the distortion of h−1 with Theorem
B applied for β1 < p. The constant here depends on β, p and ‖eK1‖Lp(D), but we
may change it from line to line in what follows as it will prove insignificant for our
analysis. Setting n = 1 + log N we have

|{w : K2 ≥ n}| ≤ C(
en

en

)β1
= Ce−β1n+log n ≤ Ce−(β1−ε)n ≤ Ce−β2n.

Where ε > 0 is chosen so that β < β2 ≤ β1 − ε < β1 < p. This inequality says
precisely that eK2(w) ∈ Lβ3(h(D)) for β < β3 < β2. Hence the distortion in the
w-plane is in the exponential class. So both g and h exist as Beltrami solution
homeomorphisms of exponentially integrable distortion.

It now remains to show that the composition g ◦h lies in an appropriate Sobolev
space. We start with approximate solutions for g. Take the principal solutions to
µg,n := µg ∧

(
1− 1

n

)
and note that g is the locally uniformly convergent limit of a

subsequence of solutions gn in the Sobolev space W 1,1
loc (C) (see [2] for an example of

this construction). Then we may now see the desired f = g◦h as the localy uniformly
convergent limit of gn ◦ h in the space W 1,P

loc (C): we use the distortion inequality,
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inequality (9), and then the Bieberbach area theorem [6] to have a uniform bound on
the P -sum of the differentials of gn ◦ h and assure convergence to g ◦ h in W 1,P

loc (C).
We now use Theorem A in the composition g ◦ h. The part of Theorem A we

wish to apply now is the area distortion. We will ignore the specific value of our
multiplicative constant in the area distortion. We apply Theorem A directly to h
and g to describe their area distortion. As the image of the closed unit disk under
h is compact, and the sharp modulus of continuity result presented in Chapter 7 of
[10], the image of the unit disk under h is contained in a disk of radius R about the
origin where R depends on ‖eK‖Lp(D). As there is nothing special about the unit
disk in Theorem A, we use a version of it for the function g on the disk of radius R.
So now g and h both distort area as (log(e + 1/|E|))−β4 for any β4 < β3, we choose
β4 > β and find that for f := g ◦ h

|f(E)| ≤ C(
log log

(
ee + 1

|E|

))β4
, for measurable E ⊆ D

Note that our example in Section 2 implies that this result may only be improved
upon by getting the exponent in the log log term to be p. In general, area distortion
results imply higher Jacobian integrability. One way to see this connection lies in the
following lemma, due to Hardy and Littlewood (the approach taken here is inspired
by Theorem 9.2 in [9]):

Lemma C. Let (X, µ) be a finite measure space without atoms. Suppose for a
nonnegative function g ∈ L1(X) we have∫

E

g dµ ≤ φ(µ(E))

for all measurable E ⊆ X, where φ is concave, increasing, and φ(0) = 0. Then for
all increasing convex ψ, with ψ(0) = 0 we have

(7)
∫

X

ψ(g) dµ ≤
∫ µ(X)

0

ψ(φ′(t)) dt.

Proof. We prove the lemma in three steps. First, let t ∈ (0, µ(X)). There exists
a set E ⊂ X such that µ(E) = t and

∫
E

gdµ =
∫ t

0
g∗(s)ds, where g∗ is the right

continuous decreasing function on (0, µ(X)) with the same distribution as g (this is
Lemma 2.5 on page 46 of [4], where g∗ and the distribution function’s properties are
described in detail).

Second, we note from the hypothesis of the Lemma that
∫ t

0

g∗(s) ds =

∫

E

g dµ ≤ φ(t) =

∫ t

0

φ′(s) ds

holds for all t ∈ (0, µ(X)).
Third, we let 0 < a < ∞ be given. Choose t > 0 such that g∗(t−) ≥ a ≥ g∗(t),

where t− denotes the left limit. Then, with [g − a]+ = max{g − a, 0}, we have
∫ µ(X)

0

[g∗ − a]+ ds =

∫ t

0

(g∗(s)− a) ds =

∫ t

0

g∗(s) ds− at ≤
∫ t

0

φ′(s) ds− at

=

∫ t

0

(φ′(s)− a) ds ≤
∫ t

0

[φ′ − a]+ ≤
∫ µ(X)

0

[φ′ − a]+ ds,
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where the first inequality comes from the relation between g∗ and φ′ above. So∫ µ(X)

0
[g∗ − a]+ ds ≤ ∫ µ(X)

0
[φ′ − a]+ ds for all a ∈ R. Now assume that ψ′(0) = 0 as

the linear case of the lemma is evident. So as ψ(0) = 0, is increasing, and ψ′(0) = 0,
we can write

ψ(s) =

∫ s

0

ψ′(y) dy =

∫ s

0

(s− y) dψ′(y) =

∫ ∞

0

[s− y]+ dψ′(y).

Using Fubini’s theorem
∫

X

ψ(g) dµ =

∫ µ(X)

0

ψ(g∗(s)) ds =

∫ µ(X)

0

ds

∫ ∞

0

[g∗(s)− y]+ dψ′(y)

=

∫ ∞

0

dψ′(y)

∫ µ(X)

0

[g∗(s)− y]+ ds ≤
∫ ∞

0

dψ′(y)

∫ µ(X)

0

[φ′(s)− y]+ ds

=

∫ µ(X)

0

ψ(φ′(s)) ds.

And the lemma is proved. ¤
With φ = (log log (ee + 1/t))−β4 , we must find a “maximal” ψ so that

∫ π

0

ψ(φ′(t)) dt < ∞.

This integral will be finite when

ψ(t) = t (log log (ee + t))β

as long as β4 > β as we have chosen it to be. Hence

Jf (log log (ee + Jf ))
β ∈ L1(D).

We turn our attention to the differential |Df |. The general theory for functions A
satisfying assumptions (1), (2), and (3) discussed in Section 1 above will show that
any map f : Ω → C with distortion Ap for any p > 0 (see (3)) will have

(8)
|Df |2

log (e + |Df |) log log (ee + |Df |) ∈ L1(Ω).

We will present a direct proof of this which will be adaptable towards finding the
correct integrability exponents for the differential for specific p. As |Df |2 ≤ JfKf

almost everywhere, (8) will be immediate if for a, b > 0

(9)
ab

log(e + ab) log log (ee + ab)
≤ 3a + e

b
1+log b ,

by setting a = 1
p
Jf and b = pK.

We now set to prove (9). If b ≤ 1, then the left hand side is less than a, so (9)
holds. Now set b > 1. Using

ab

log(e + ab) log log (ee + ab)
≤ ab,

as long as
ab ≤ a + e

b
1+log b



204 James T. Gill

the inequality will hold. So for

a ≤ e
b

1+log b

b− 1

our inequality (9) holds. For a > e
b

1+log b

b−1
we note that

ab

log(e + ab) log log (ee + ab)
≤ ab

log

(
e + b e

b
1+log b

b−1

)
log log

(
ee + b e

b
1+log b

b−1

) .

The quantity
b

log

(
e + b e

b
1+log b

b−1

)
log log

(
ee + b e

b
1+log b

b−1

)

is bounded, by say 3, for all b > 1. Hence for a > e
b

1+log b

b−1

ab

log(e + ab) log log (ee + ab)
≤ 3a.

So (9) is true for all positive a and b. We now show a modified version of this
inequality which provides the degree of integrability of |Df | needed for Theorem 1.
We claim for β > 0

(10)
ab (log log (ee + ab))β

log(e + ab) log log (ee + ab)
≤ Cβa (log log (ee + a))β + e

b
1+log b .

We first note that
(log log (ee + x))β

log(e + x) log log (ee + x)

is not necessarily less than 1 for positive x, but is less than a constant C which
depends only on β. So, if b ≤ 1 the left hand side of (10) is less than Ca. So as long
as Cβ > C, (10) will hold. Now choose b > 1, as the left hand side of (10) is less
than a constant times ab, as long as

Cab ≤ Cβa + e
b

1+log b

holds then (10) will as well. So, if

a ≤ e
b

1+log b

Cb− Cβ

then (10) holds, even if Cb − Cβ is negative. We now wish to show (10) for a >

e
b

1+log b

Cb−Cβ
:= B. Again, the left hand side of (10) is less than

C · a
[

b (log log (ee + Bb))β

log (e + Bb) log log (ee + Bb)

]
.

Examining the brackets above, and plugging in the value for B for large b the term
in the brackets is essentially

(log b)β.
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But as a > e
b

1+log b

Cb−Cβ
,

(log log (ee + a))β ≥ (log b)β.

So the left hand side of (10) is less than or equal to

Ca (log log (ee + a))β

and so (10) holds. So for large enough fixed b, (10) is true for all a > 0 and we
have shown (10). For smaller b the inequality is trivial as we allow a multiplicative
constant. This inequality, together with the distortion inequality |Df |2 ≤ JfKf , the
local L(log log L)β integrability of Jf , and the sub-exponential integrability of the
distortion Kf will provide the regularity of the differential required in Theorem 1.

The examples f which show the sharpness of the result are similar to the example
of Kovalev which is discussed in the introduction of [2]. Let

(11) fp(z) =
z

|z|
[
log log

(
ee +

1

|z|
)]−p/2 [

log log log

(
eee

+
1

|z|
)]−1/2

,

then one can show using the formulas in chapter 11 of [10] that this example has
distortion Kf with (4), but whose Jacobian determinant and differential only lie in
the spaces presented in the conclusion of Theorem 1, but not in those spaces with
β = p. ¤

4. More properties and more distortion

We first note that according to the work in Chapter 7 of [10], knowledge of the
regularity of |Df | immediately gives us a modulus of continuity result for maps of
sub-exponential distortion.

Corollary 2. Suppose f is a principal solution to a Beltrami equation (1) sat-
isfying the assumptions of Theorem 1. Then for all points a, b ∈ D and 0 < β < p

|f(a)− f(b)| ≤ C (log log (ee + |a− b|))β/2

where C = C

(
β, p,

∥∥∥exp
(

pK
1+log K

)∥∥∥
L1(D)

)
.

We also note the degree of integrability of the distortion of inverses of these maps.

Corollary 3. Let f be a homeomorphic solution to the Beltrami equation (1)
as in Theorem 1. Then the distortion function of the inverse homeomorphism, Kf−1 ,
satisfies

log Kf−1 ∈ Lβ(D)

for all 0 < β < p.

Proof. If f(z) = w, then f−1(w) has the same distortion as f(z). Using this fact
and a change of variables, which remains valid by the Lusin property, it remains to
show that ∫

D

Jf (z) (log Kf (z))β dz
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is finite. This is immediate from the sub-exponential integrability of K, the integra-
bility of the Jacobian from Theorem 1, and the inequality

ab ≤ Cβ · a [log log (ee + a)]β + exp

(
eb1/β

1 + b1/β

)
.

This inequality may be proved in precisely the same fashion as (10). ¤
Perhaps the most general consequence of the method of proof of Theorem 1 is

that the same method will apply to distortions in the Ap,n(t) class described at the
end of section 1:

Ap,n(t) =
pt

1 + log(t) log(log(e− 1 + t)) · · · log(· · · (log(ee··
·e − 1 + t)) · · · )

− p.

Theorem 4. Suppose the distortion function K of a Beltrami equation satisfies

eAp,n−1(K) ∈ Lp(D).

Then, for all 0 < β < p, the unique principal solution of the Beltrami equation, f ,
has the following regularity properties:

Jf

(
log

(
· · ·

(
log

(
ee·

··e

+ Jf

))
· · ·

))β

∈ L1(D)

where there are n-iterated logarithms above. And

|Df |2

log (e + |Df |) log log (ee + |Df |) · · ·
(
log

(
· · ·

(
log

(
ee··

·e
+ |Df |

))
· · ·

))1−β

lies in L1(D), where the last factor in the denominator is an n-iterated logarithm.
This result is sharp in the sense that there exist functions f as above for which β
cannot be taken to be equal to p.

Sketch of proof. As in the proof of Theorem 1 we first set

K1 :=
K

1 + log(K) log(log(e− 1 + K)) · · · log(· · · (log(ee··
·e − 1 + K)) · · · )

,

and so K1 enjoys the property that epK1 ∈ L1(D). Let w = h(z) be the principal
solution with distortion K1. The “left-over” distortion

K2(w) =: 1 + log K(z) log(log(e− 1 + K(z)) · · · log(· · · (log(ee·
··e

− 1 + K(z)) · · · )
will, by Theorem B and an analysis analogous to that in the proof of Theorem 1,
will be in the Ap,n−2 class in the w-plane. Let g be the principal solution with
distortion K2(w). Then f = g ◦ h will be our desired solution. The respective area
distortions of h and g together give a C1 (log · · · log(C2 + 1/|E|))−β area distortion
result for f , where the logarithm is iterated n = 1 + (n − 1) times. This, through
Lemma C will give the integrability of the Jacobian desired in Theorem 4. Then an
inequality similar to (10) can be proved with the same method, which then gives the
integrability of the differential desired in Theorem 4. A Kovalev-type example like
(11) with an (n + 1)-iterated logarithm multiplied by the n-iterated logarithm shows
the sharpness of the integrability classes. ¤
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Together, Theorems 1 and 4 tell the complete regularity story for Beltrami so-
lutions with distortion in iterated logarithm scale sub-exponential classes. For other
more general A satisfying properties 1,2, and 3 in Section 1, one may have to begin
afresh.
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