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Abstract. Let ϕ, f0 belong to the algebra W of absolutely convergent complex Fourier series
on T = {|z| = 1}. We define fn ∈ W by

(∗) f1(z) = ϕ(z)f0(z) and fn+1(z) = ϕ(z)fn(z)+ for n ∈ N,

where (. . .)+ denotes the analytic part of the Laurent series. We derive a number of generating
functions all of which contain

p(z, w) = exp
([

log
(
1− wϕ(z)

)]−)
(|z| ≥ 1, |w| < 1).

The Laurent separation is a discrete equivalent to the Wiener–Hopf factorization of probability
theory and allows us to obtain rather concrete results.

The recursion (∗) comes from the study of the random walk on Z defined by

Sn+1 = S0 + X1 + . . . + Xn,

where S0 is a random variable with generating function f0 specifying the initial distribution, the
Xν are i.i.d. with generating function ϕ and the random walk stops if it hits (−∞,−1], which is a
version of the ruin problem. We also consider the technical problems which arise if X is replaced
by −X. The results will also be applied to the minimum problem for random walks.

1. Introduction

1.1. Let X be a random variable with values in Z and generating function

(1.1) ϕ(z) =
∑

k∈Z

akz
k, ak = P(X = k)

and Xn (n ∈ N) independent random variables that are distributed like X. Let S0

be another random variable with values in Z that is independent of the Xn and has
the generating function

(1.2) f0(z) =
∑

k∈Z

b0,kz
k, b0,k = P(S0 = k).

We do not make any assumptions about expectations or other moments. The random
variables

(1.3) Sn := S0 + X1 + . . . + Xn (n ∈ N)
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have the generating functions Fn(z) := f0(z)ϕ(z)n, (n ∈ N), and we have the recur-
sion F1 = ϕf0, Fn+1 = ϕFn for n ∈ N.

The stochastic process (Sn)n≥0 defines a random walk in Z, and the coefficient
of zk in Fn(z) is the probability P(Sn = k) of being at k at time n. Note that P
depends on S0 and X. The ruin problem deals with the random variable R defined
by

R = n ⇐⇒ Sν ≥ 0 (ν > 0, ν < n), Sn < 0 (n ∈ N),(1.4a)
R = ∞⇐⇒ Sν ≥ 0 for all ν ∈ N.(1.4b)

Then P(Sn = k, R ≥ n) is the probability of being at k at time n under the restriction
that (−∞,−1] was not hit before, except possibly in the initial state. It is easily seen
that this is the coefficient of zk in fn(z) where the fn are determined recursively by

f1 = ϕf0,(1.5a)

fn+1 = ϕf+
n for n ∈ N,(1.5b)

and f+
n is the result of discarding the terms with negative exponents from the Laurent

series fn, see (1.8) below.
More generally, one could remove all terms with exponents ≥ d by means of the

operation f(z) → z−d
(
f(z)z−d

)+ instead of f(z) → f(z)+. We will only have to deal
with d = 1 and use the hat sign, such as in f̂n, for quantities related to this case. It
arises if the ruin problem is considered on the basis of the modified random variable

R̂ = n ⇐⇒ Sν > 0 (ν > 0, ν < n) , Sn ≤ 0 (n ∈ N),(1.6a)

R̂ = ∞⇐⇒ Sν > 0 for all ν ∈ N.(1.6b)

The generating functions f̂n(z) of the probabilities P(Sn = k, R̂ ≥ n) of being at k
at time n under the restriction that (−∞, 0] was not hit before, except possibly in
the initial state, satisfy (1.5) with fn(z) = f̂n(z)/z.

The anomalous form of the first step in (1.5) could be avoided by starting the
recursion after the first step with the initial function f1 and substituting f1 = ϕf0 in
the results. This, however, would be less transparent, for in important applications
the initial distribution is deterministic whereas even the state after the first step
depends on ϕ and can be complicated.

1.2. The question when and where a random walk on Z first hits a half-line like
(−∞, 0] or (−∞, 0) is extensively discussed in [Spi76, Chap. IV]. Our Section 2 can
be considered as a streamlined version of these probabilistic results put into a general
complex-analytic context. We define a sequence of functions fn by the recursion (1.5)
which is considered for complex coefficients. For our purposes, the natural function
space for the generating functions is the Wiener algebra W of absolutely convergent
complex Fourier series on T = {|z| = 1}, that is
(1.7) h(z) =

∑

k∈Z

ckz
k, ‖h‖ =

∑

k∈Z

|ck| < ∞.

See e.g. [Kat04] and [CC74] for information about the Wiener algebra. We shall use
the beautiful Wiener–Levy theorem [Zyg68, p. 245][Kat04, p. 247]: Let ψ be analytic
in a domain U ⊂ C. If h ∈ W and h(T) ⊂ U then ψ ◦ h ∈ W .
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Our main tool is the Laurent separation h = h+ + h− defined by

(1.8) h+(z) =
∑

k≥0

ckz
k, h−(z) =

∑

k<0

ckz
k.

The subsets of all functions in W of these forms are subalgebras W ±. They are
projections of W onto W ±. If convenient we write h(z)± instead of h±, and when
these operators are applied to functions of several variables then, by convention, they
refer to the variable z. Let W ± denote the subalgebras of functions of this form. The
functions in W + are analytic in D = {|z| < 1} and continuous in D = {|z| ≤ 1}
whereas the functions in W − are analytic in {|z| > 1} and continuous in {|z| ≥ 1}
with h−(∞) = 0. The results hold for the most general ϕ ∈ W with |ϕ(z)| ≤ 1 on T.

In Section 3 the coefficients of f+
0 and f−0 in (2.24) and (2.25) are investigated

more closely. In particular, this section contains recursion formulas which can be used
for numerical computations. In Theorem 3.2 we give a structural characterization of
the function

p(z, w) = exp
([

log
(
1− wϕ(z)

)]−)
(|z| ≥ 1, |w| < 1).

Moreover, in Theorem 3.3 a result is obtained by function-theoretic methods which
connects the results of this paper with the special case that was considered in detail
in [JP07].

In Section 4 these results are applied to probability theory. We consider two
versions of the ruin problems and the minimum problem. We are interested in the
size of the minimum and the time when it is first attained in a finite section of the
random walk. Contrary to [JP07], the situation is now symmetric with respect to the
sign of X, so the results can be applied to more general ruin problems, as presented,
e.g., in the book of Asmussen [Asm00].

2. The function-theoretic problem

2.1. Throughout the paper we assume that ϕ is a fixed function in the Wiener
algebra W that is bounded by 1 on T. We always write

(2.1) ϕ(z) =
∑

k∈Z

akz
k (z ∈ T)

with ak ∈ C. Thus we assume

(2.2) ‖ϕ‖ =
∑

k∈Z

|ak| < ∞,

(2.3) |ϕ(z)| ≤ 1 for |z| = 1.

Let f0 ∈ W be given. We recursively define f1, f2, . . . by (1.5). We see that

‖f1‖ ≤ ‖ϕ‖‖f0‖ and ‖fn+1‖ ≤ ‖ϕ‖‖f+
n ‖ ≤ ‖ϕ‖‖fn‖ for n ≥ 1.

It follows that
‖fn‖ ≤ ‖f0‖‖ϕ‖n < ∞

and therefore fn ∈ W .
The generating function of (fn) is defined by

(2.4) g(z, w) =
∞∑

n=0

fn(z)wn (z ∈ T).
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This series converges for |w| < 1/‖ϕ‖ and we shall show later (Theorem 2.1) that it
actually converges for |w| < 1. The Laurent separation is

(2.5) g±(z, w) =
∞∑

n=0

f±n (z)wn for |z| ≤ 1 or |z| ≥ 1.

It follows from (2.5) and (1.5) that

g+(z, w) + g−(z, w)− f0(z) =
∞∑

n=0

fn+1(z)wn+1 = wϕ(z)
(
f−0 (z) +

∞∑
n=0

f+
n (z)wn

)

= wϕ(z)
(
f−0 (z) + g+(z, w)

)
.

This implies the Wiener–Hopf type functional equation

(2.6)
(
1− wϕ(z)

)
g+(z, w) + g−(z, w) = f+

0 (z) +
(
1 + wϕ(z)

)
f−0 (z) (z ∈ T).

2.2. We write ϕ(z)n =
∑

k∈Z an,kz
k. Then

(2.7) log
(
1− wϕ(z)

)
= −

∞∑
n=1

ϕ(z)n wn

n
= −

∑

k∈Z

( ∞∑
n=1

an,k
wn

n

)
zk.

This function is continuous in z ∈ T and analytic in w ∈ D because of (2.3). Hence
the same is true for the function

p(z, w) := exp

(
−

∑

k<0

( ∞∑
n=1

an,k
wn

n

)
zk

)
(2.8)

which satisfies

1− wϕ(z)

p(z, w)
= exp

(
−

∑

k≥0

( ∞∑
n=1

an,k
wn

n

)
zk

)
.(2.9)

This is related to the Wiener factorization theorem [CC74, p. 494], see also [Spi76,
p. 180]. With

r(w) :=
1− wϕ(z)

p(z, w)

∣∣∣∣
z=0

= exp
(
−

∞∑
n=1

an,0
wn

n

)
(2.10)

we have, in view of (2.8) and (2.9),

p(z, w) =
∑

k≤0

pk(w)zk,
1

p(z, w)
=

∑

k≤0

qk(w)zk for |z| ≥ 1,(2.11)

1− wϕ(z)

r(w)p(z, w)
=

∑

k≥0

pk(w)zk,
r(w)p(z, w)

1− wϕ(z)
=

∑

k≥0

qk(w)zk for |z| ≤ 1,(2.12)

with coefficients

(2.13) pk(w) =
∞∑

n=0

pn,kw
n, qk(w) =

∞∑
n=0

qn,kw
n (k ∈ Z)

which are analytic in |w| < 1 and satisfy

(2.14) p0(w) = q0(w) = 1 for w ∈ D
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and

(2.15) pk(0) = qk(0) = 0 for k 6= 0.

2.3. Let ϕ̃(z) = ϕ(1/z). The quantities derived from ϕ̃ are labeled by a tilde,
like p̃ or p̃k. In the probabilistic interpretation, ϕ̃ is the generating function for
the transition probabilities of the reversed random walk, see [Spi76, p. 111]. From
ϕ̃n(z) = ϕ̃(z)n = ϕ(1/z)n = ϕn(1/z) = ϕ̃n(z) follows that

(2.16) ãn,k = an,−k.

In particular, ãn,0 = an,0, so (2.10) shows that

(2.17) r̃(w) = r(w).

We obtain from (2.9) and (2.10) that

(2.18) p̃(z, w) =
1− wϕ(1/z)

r(w)p(1/z, w)
.

From (2.12), (2.17), (2.18) and (2.11) follows that
∑

k≥0

p̃k(w)zk =
1− wϕ̃(z)

r(w)p̃(z, w)
= p(1/z, w) =

∑

k≤0

pk(w)z−k =
∑

k≥0

p−k(w)zk,

hence p̃k(w) = p−k(w) for k ≥ 0. Because of ˜̃pk = pk this holds for all k, hence

p̃k(w) = p−k(w) (k ∈ Z),(2.19)

Similarly it follows from (2.12), (2.17), (2.18) and (2.11) that

q̃k(w) = q−k(w) (k ∈ Z).(2.20)

2.4. We derive explicit expressions for the generating function g as well as for
g+ and g− in terms of f0, ϕ and p.

Theorem 2.1. Let w ∈ D. Then p(·, w), 1/p(·, w) and g(·, w) belong to W and
we have

g+(z, w) =
p(z, w)

1− wϕ(z)

(
f+

0 (z) + wϕ(z)f−0 (z)

p(z, w)

)+

,(2.21)

g−(z, w) = f−0 (z) + p(z, w)

(
f+

0 (z) + wϕ(z)f−0 (z)

p(z, w)

)−
.(2.22)

Proof. The function ψ(s) = log(1 − ws) is analytic in {|s| < 1/|w|}. Since
ϕ ∈ W by (2.2) and furthermore |ϕ(z)| ≤ 1 for z ∈ T by (2.3), we conclude from the
Wiener-Levy theorem that log(1−wϕ) ∈ W . Hence

(
log(1−wϕ)

)± ∈ W and, by the
Wiener-Levy theorem with h(s) = exp(∓s), we obtain from (2.8) that p(·, w)± ∈ W .
Finally it will follow from (2.21) and (2.22) that g+(·, w), g−(·, w) ∈ W , hence
g(·, w) ∈ W .

The functional equation (2.6) implies that

(2.23)
f+

0 (z) + wϕ(z)f−0 (z)

p(z, w)
=

1− wϕ(z)

p(z, w)
g+(z, w) +

g−(z, w)− f−0 (z)

p(z, w)
.

The first term on the right is in W + by (2.9) whereas the second belongs to W − by
(2.8). Hence (2.23) is a Laurent separation, which implies (2.21) and (2.22). ¤
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An alternative form for (2.21) and (2.22) is

g+(z, w) =
p(z, w)

1− wϕ(z)

[
f+

0 (z)
1

p(z, w)
− f−0 (z)

1− wϕ(z)

p(z, w)

]+

,(2.24)

g−(z, w) = 2f−0 (z) + p(z, w)

[
f+

0 (z)
1

p(z, w)
− f−0 (z)

1− wϕ(z)

p(z, w)

]−
.(2.25)

2.5. Now we consider the special cases where f0(z) = zm, m ∈ Z. We write gm

instead of g to indicate the dependence on m. The cases m ≥ 0 and m < 0 have to
be treated separately. If we set f0(z) = zm in (2.6) then it follows that for z ∈ T

(
1− wϕ(z)

)
g+

m(z, w) + g−m(z, w) = zm if m ≥ 0,(2.26) (
1− wϕ(z)

)
g+

m(z, w) + g−m(z, w) =
(
1 + wϕ(z)

)
zm if m < 0.(2.27)

Theorem 2.2. Let f0(z) = zm with m ≥ 0. Then

g+
m(z, w) =

p(z, w)

1− wϕ(z)

m∑

k=0

qk−m(w)zk,(2.28)

g−m(z, w) = p(z, w)
∑

k<0

qk−m(w)zk.(2.29)

Furthermore the threefold generating function satisfies

(2.30)
∞∑

m=0

gm(z, w)ζ−m =
1

1− zζ−1

(
1 +

wϕ(z)p(z, w)

1− wϕ(z)

1

p(ζ, w)

)
for |z| = 1 < |ζ|.

Proof. We see from (2.11) that

zm

p(z, w)
=

∑
j≤0

qj(w)zm+j =
∑

k≤m

qk−m(w)zk.

Hence (2.28) and (2.29) follow from (2.24) and (2.25) respectively.
To prove (2.30), we use (2.28). Changing the order of summation and writing

j = k −m we obtain
∞∑

m=0

g+
m(z, w)ζ−m =

p(z, w)

1− wϕ(z)

∞∑

k=0

(zζ−1)k
∑
j≤0

qj(w)ζ−j

=
p(z, w)

1− wϕ(z)

1

1− zζ−1

1

p(ζ, w)

(2.31)

because of (2.11). Now it follows from (2.26) that

∞∑
m=0

g−m(z, w)ζ−m =
∞∑

m=0

(zζ−1)m − p(z, w)

(1− zζ−1)p(ζ, w)
.

Adding up we obtain (2.30). ¤
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For m = 0 and f0(z) = 1 we get

g+
0 (z, w) =

p(z, w)

1− wϕ(z)
,(2.32)

g−0 (z, w) = 1− p(z, w),(2.33)

g0(z, w) = 1 +
wϕ(z)p(z, w)

1− wϕ(z)
.(2.34)

Theorem 2.3. If f0(z) = zm with m < 0 then

g+
m(z, w) = −r(w)p(z, w)

1− wϕ(z)

∞∑

k=0

pk−m(w)zk,(2.35)

g−m(z, w) = 2zm − r(w)p(z, w)
−1∑

k=m

pk−m(w)zk.(2.36)

Furthermore, the threefold generating function satisfies
(2.37)
∑
m<0

gm(z, w)ζ−m =
1

zζ−1 − 1

(
1 +

wϕ(z)p(z, w)

1− wϕ(z)

1− wϕ(ζ−1)

p(ζ−1, w)

)
for |z| = 1 > |ζ|.

Proof. By (2.12) we have
(

zm 1− wϕ(z)

p(z, w)

)−
= zmp(w)

|m|−1∑

k=0

pk(w)zk = r(w)
−1∑

j=m

pj−m(w)zj,

and (2.36) follows immediately if this is substituted into (2.25). To prove (2.35), we
apply the relation a+ = a− a− to (2.24), make the same substitution and obtain

g+
m(z, w) = −zm + zm r(w)p(z, w)

1− wϕ(z)

|m|−1∑

k=0

pk(w)zk

= −zm + zm r(w)p(z, w)

1− wϕ(z)




∞∑

k=0

pk(w)zk −
∞∑

k=|m|
pk(w)zk


 .

Now (2.35) follows with (2.12). The relation (2.37) is proved in a similar manner as
(2.30). ¤

For m = −1, f0(z) = 1/z it follows that

zg+
−1(z, w) = −1 +

p(z, w)

1− wϕ(z)
r(w),(2.38)

zg−−1(z, w) = 2− p(z, w) r(w),(2.39)

zg−1(z, w) = 1 +
wϕ(z)p(z, w)

1− wϕ(z)
r(w).(2.40)

This case has a particular importance because of its relation to the alternative ruin
definition in terms of (1.6). If the recursion starts with f̂0(z) = 1 then

(2.41) ĝ0(z, w) =
∑
n≥0

f̂n(z)wn = zg−1(z, w).
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From (2.40) and (2.34) follows that ĝ0(z, w)− 1 = r(w)(g0(z, w)− 1) or

b̂n,k = r(w)bn,k for n ≥ 1 and k ∈ Z.

Formula (2.39) implies that

z

(
ĝ0(z, w)

z

)−
= 2− p(z, w)r(w).

For z →∞ the right hand side tends to 2−r(w) and the left hand side to
∑∞

n=0 b̂n,0w
n.

Because of b̂0,0 = 1 it follows that

(2.42)
∞∑

n=1

b̂n,0w
n = 1− r(w) = 1− exp

(
−

∞∑
n=1

1

n
an,0w

n

)
.

For w → 1 one obtains

(2.43)
∞∑

n=1

b̂n,0 = 1− exp

(
−

∞∑
n=1

1

n
an,0

)
.

In the probabilistic interpretation b̂n,0 is the probability that a random walk, start-
ing in 0 and restricted to N0, returns to 0 the first time at n, whereas an,0 is the
probability that an arbitrary random walk starting in 0 returns to 0 at n.

By means of (2.18), the quantities g̃0, ˆ̃g0 etc. based on ϕ̃ instead of ϕ, as intro-
duced in Section 2.3, can be expressed through ϕ(1/z) and p(1/z, w). We derive one
of these relations which will be used later. It follows from (2.41), (2.40), (2.18) and
(2.17) that

ˆ̃g0(ζ, w) = 1 +
wϕ̃(ζ)p̃(ζ, w)

1− wϕ̃(ζ)
r(w) = 1 +

wϕ(1/ζ)

p(1/ζ, w)

= 1− r(w) +
1

p(1/ζ, w)
+ r(w)− 1− wϕ(1/ζ)

p(1/ζ, w)
.

Since this is a Laurent separation, we obtain

(2.44) ˆ̃g+
0 (ζ, w) = 1− r(w) +

1

p(1/ζ, w)
.

3. The Structure of p(z, w) and the coefficients

3.1. Now we study the function p(z, w) in more detail. Its definition (2.8) is
rather formal and computationally very complicated. We first note a relation which
follows from (2.33) and (2.32).

(3.1) p(z, w) = 1− g−0 (z, w) =
(
1− wϕ(z)

)
g+
0 (z, w) for w ∈ D.

Theorem 3.1. If G is the domain where ϕ is analytic and w 6= 0, then p(·, w)
is analytic precisely in G ∪ {|z| > 1} and its zeros are the zeros of 1−wϕ in G ∩D.

Proof. The definition (2.8) shows that p(z, w) is analytic in {|z| > 1} and 6= 0 in
{|z| ≥ 1}. For z ∈ D we use (2.9) to conclude that 1 − wϕ(z) and p(z, w) have the
same singularities and zeros. ¤

3.2. Now we turn to the coefficients. We write

(3.2) fn(z) =
∑

k∈Z

bn,kz
k for |z| = 1
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so that, by (2.4),

(3.3) g(z, w) =
∞∑

n=0

∑

k∈Z

bn,kz
kwn for |z| = 1, |w| < 1.

In particular, the given function is

(3.4) f0(z) =
∑

k∈Z

b0,kz
k.

The recursive definition (1.5) and (2.1) lead to the recursion formula

b1,k =
∑
j∈Z

ak−jb0,j for k ∈ Z,(3.5a)

bn+1,k =
∑
j≥0

ak−jbn,j for n ∈ N, k ∈ Z.(3.5b)

By (2.10)–(2.13) we have for w ∈ D

p(z, w) =
∞∑

n=0

∑

k≤0

pn,kz
kwn,

1

p(z, w)
=

∞∑
n=0

∑

k≤0

qn,kz
kwn (|z| ≥ 1),(3.6)

1− wϕ(z)

r(w)p(z, w)
=

∞∑
n=0

∑

k≥0

pn,kz
kwn,

r(w)p(z, w)

1− wϕ(z)
=

∞∑
n=0

∑

k≥0

qn,kz
kwn (|z| ≤ 1),(3.7)

(3.8) r(w) =
∞∑

n=0

rnwn.

From (2.14) and (2.15) follows that p0,0 = 1, p0,k = 0 (k < 0), pn,0 = 0 (n > 0)
and from (3.1) that

(3.9) pn,k = −b0;n,k for n ≥ 1, k < 0,

where b0;n,k denote the coefficients belonging to f0 = 1, see Section 2.5.
Multiplication of the second equations in (2.12) and (2.11) with (1−wϕ(z)) and

comparison with the respective first equations in (2.11) and (2.12) gives

r(w)
∑

k≤0

pk(w)zk =
∑

k≥0

qk(w)zk − w
∑

k∈Z

( ∑
j≥0

ak−jqj(w)

)
zk,

r(w)
∑

k≥0

pk(w)zk =
∑

k≤0

qk(w)zk − w
∑

k∈Z

( ∑
j≤0

ak−jqj(w)

)
zk.

Comparing coefficients we obtain

r(w)pk(w) =





−w
∑
j≥0

ak−jqj(w) for k < 0,

−w
∑
j≤0

ak−jqj(w) for k > 0,
(3.10)

r(w) = 1− w
∑
j≥0

a−jqj(w) = 1− w
∑
j≤0

a−jqj(w),(3.11)
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qk(w) =





w
∑
j≤0

ak−jqj(w) for k < 0,

w
∑
j≥0

ak−jqj(w) for k > 0.
(3.12)

It is easy to derive from these formulas that

p1,k = −ak, q1,k = ak for k 6= 0.

For n > 1 there are no explicit expressions for the pn,k and qn,k. However, the
numerical calculation of the pn,k, k < 0, is possible via (3.9), for the b0;n,k can be
calculated recursively by means of (3.5). Another way, which allows to calculate all
the pn,k and qn,k, is based on the formulas (3.10)–(3.12). Substitution of the second
series in (2.13) into (3.12) gives the recursion formulas

qn+1,k =
∑
j≤0

ak−jqn,j for n ∈ N0, k < 0,(3.13)

qn+1,k =
∑
j≥0

ak−jqn,j for n ∈ N0, k > 0.(3.14)

Starting with q0,k, which is = 1 for k = 0 and = 0 for k 6= 0 by (2.14) and (2.15),
this allows the recursive computation of the qn,k, see the proof of Theorem 3.2 below.
Thereafter, the rn can be calculated from (3.11) by the recursion

r0 = 1, rn+1 =
∑
j≤0

a−jqn,j =
∑
j≥0

a−jqn,j for n ∈ N0.

Finally, the pn,k can be calculated from the qn,k and the rn using (3.10).
The recursion formulas (3.5), (3.9) and (3.13) imply that −pn,k and qn,k for n ≥ 1,

k < 0 has the form

(3.15)
∑

j1+...+jn=k

ν(j1, . . . , jn)aj1 · · · ajn , ν ∈ N0.

The same is true of the coefficients bm;n,k of gm for n ≥ 1, k ∈ Z.
Now we derive a characterization of p(z, w) that is more structural than (2.8).

Theorem 3.2. For each w ∈ D, the function p(z, w) is uniquely characterized
by the conditions

(i)
1

p(·, w)
− 1 ∈ W −,

(ii)
1− wϕ

p(·, w)
∈ W +.

Proof. It is easy to show that the functions in (2.8) and (2.9) satisfy (i) and (ii).
Now we assume that p satisfies the conditions (i) and (ii). Using (i), we define

qk(w), k ≤ 0, for this p by (2.11) and multiply this relation with (1 − ϕ(z)). Then
(ii) implies that the first case of (3.12) holds. Next we write this in matrix form,
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observing that (i) implies that q0(w) = 1:

(3.16)




q−1(w)
q−2(w)
q−3(w)

...


 = w




a−1

a−2

a−3
...


 + w




a0 a1 a2 . . .
a−1 a0 a1 . . .
a−2 a−1 a0 . . .
...

...
... . . .







q−1(w)
q−2(w)
q−3(w)

...


 ,

or, shorter,

(3.17) q(w) = wa + wAq(w).

If we define the norm of complex infinite vectors ω = (ωi)i=1,2,... and matrices
(Ωij)i,j=1,2,... by

‖ω‖ =
∞∑
i=1

|ωi| and ‖Ω‖ = sup
i≥1

∞∑
j=1

|Ωi,j|,

the vector space becomes a Banach space and the matrix algebra a Banach algebra.
Then

‖q(w)‖ =
∑

k<0

|qk(w)| =
∥∥∥ 1

p(·, w)

∥∥∥− 1,

‖a‖ =
∑

k<0

|ak| ≤ ‖ϕ‖, ‖A‖ = sup
i≥1

∞∑
j=1

|aj−i| = ‖ϕ‖,

the norms one the right hand sides being those in W . Therefore the series

(1− wA)−1 = 1 + wA + w2A2 + . . .

converges absolutely for |w| < ‖ϕ‖−1 and is an analytic function of w. It follows that

q(w) = w(1− wA)−1a = wa + w2Aa + w3A2a + . . . (|w| < ‖ϕ‖−1),

so every component q−k(w) (k < 0) can be expanded into a power series as in (2.13)
which converges absolutely at least for |w| < ‖ϕ‖−1. Then the recursion formula
(3.13) holds which together with the initial condition q0,0 = 1, q0,k = 0 for k < 0
uniquely determines the coefficients qn,k of 1/p. ¤

3.3. Using Theorem 3.2 we determine p(z, w) for an important special case;
compare Theorem 3.1.

Theorem 3.3. Suppose that ϕ− has a meromorphic continuation to D with the
poles ζ1, . . . , ζd counting multiplicity. Then

(3.18) p(z, w) =
d∏

k=1

z − zk(w)

z − ζk

,

where the zk are the zeros of 1− wϕ in D.

If ak = 0 for k < −d and a−d 6= 0 then ζ1 = . . . = ζd = 0 and thus p(z, w) =∏d
k=1

(
1− z−1zk(w)

)
. Only this case was considered in [JP07].

Proof. We consider the Blaschke product

(3.19) ψ(z) =
d∏

k=1

z − ζk

1− ζkz
.
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Let ϕ be defined in D as the sum of ϕ+ and the analytic continuation of ϕ−. Then
ψ(1 − wϕ) is analytic in D and continuous in D. Let |w| ≤ ρ < 1. By (2.3) there
exists r with |ζk| < r < 1 such that |ϕ(z)| < 1/ρ for |z| = r. Hence

|wϕ(z)ψ(z)| < |ψ(z)| for |z| = r.

Hence it follows from Rouché’s theorem that ψ(1 − wϕ) and therefore 1 − wϕ has
precisely d zeros in |z| < r as has ψ. Thus the product (3.18) is well defined.

Now we apply Theorem 3.2. It is clear from (3.18) that (i) is satisfied, and (ii) is
true because the zk(w) are all the zeros of 1− wϕ. ¤

3.4. Finally we consider the symmetric case that ϕ(z) = ϕ(1/z). Then ak = a−k

for all k and it follows that the coefficients of ϕ(z)n satisfy an,k = an,−k. Hence we
obtain from (2.18) that

(3.20) 1− wϕ(z) = r(w)p(z−1, w)p(z, w) for |z| = 1, |w| < 1.

For z = 1 we obtain

(3.21) p(1, w) =
√

(1− ϕ(1)w)/r(w) for |w| < 1.

Example 3.1. Let Re α ≥ 0 and

ϕ(z) = exp
[
− α +

α

2

(
z +

1

z

)]
= e−αI0(α) +

∞∑

k=1

e−αIk(α)
(
zk +

1

zk

)

where Ik are the modified Bessel functions. Then
∣∣ϕ(eit)

∣∣ = exp
[
− 2(Re α) sin2 t

2

]
≤ 1 .

It follows from (3.21) that

p(1, w) =
√

1− w exp
[
e−α

∞∑
n=1

I0(αn)
wn

n

]
.

Example 3.2. Now suppose that

ϕ(z) = a0 +
d∑

k=1

ak(z
k + z−k).

The Chebychev polynomials Tk satisfy Tk

(
1
2
(z+z−1)

)
= 1

2
(zk +z−k) [MOS66, p. 257].

With ζ = 1
2
(z + z−1) we there fore can write

χ(z) = a0 + 2
d∑

k=1

akTk(ζ) =
d∑

k=1

ckζ
k.

The polynomial 1−wχ(z) has d zeros ζk(w) and each of these zeros gives rise to two
zeros z±k = ζk ±

√
ζ2
k − 1 of 1 − wϕ(z), which satisfy |z−k | < 1 < |z+

k |. Using (3.18)
we can compute p(z, w) and we can obtain r0(w) by (3.21). This leads to an explicit
formula if d = 2, which corresponds to the symmetric pentanomial distribution.
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4. Application to random walks

In this section we consider the probabilistic setting described in the introduction.
It is characterized by ak ≥ 0 for k ∈ Z and the property

(4.1) ϕ(1) =
∑

k∈Z

ak = 1

which sharpens (2.2) and (2.3) and has not been used in the preceding sections.

4.1. First we consider the ruin problem. For the sake of a simpler notation we
now assume that S0 = m ∈ Z0, so f0(z) = zm. The probability measure P considered
in the introduction and the stopping times R and R̂ according to (1.4) and (1.6) will
be denoted by Pm, Rm and R̂m. In the classical language, Rm is the moment when
a player with initial capital m is ruined; we allow m to be negative.

For m ∈ Z, k ∈ Z and n ∈ N0 we set

bm;n,k = Pm

(
Sn = k, Sν ≥ 0 (ν ≥ 1, ν < n)

)
for n ≥ 1.(4.2)

For n = 0 and n = 1 the conditions on ν are not satisfied by any ν. Clearly

bm;0,k = 1 for m = k, = 0 else,
bm;1,k = Pm(S1 = k) = Pm(m + X1 = k) = ak−m.

An alternative notation, valid for all n ≥ 0, is

(4.3) bm;n,k = Pm(Sn = k, Rm ≥ n).

As in (3.3) with f0(z) = zm, we consider the generating function

(4.4) gm(z, w) = zm +
∞∑

n=1

∑

k∈Z

bm;n,kz
kwn for |z| = 1, |w| = 1.

Let n ≥ 1. Since Sn+1 = Sn + Xn+1 by (1.3), it follows from (4.2) and the
independence that

bm;n+1,k =
∑
j≥0

Pm(Sn = j, Sν ≥ 0 (ν < n), Xn+1 = k − j) =
∞∑

j=0

ak−jbm;n,j.

This is the recursion formula (3.5b) which is equivalent to our basic relation (1.5b).
Moreover, we also have

bm;1,k = ak−m =
∞∑

j∈Z

ak−jbm;0,j,

which is the same as (3.5a) and therefore equivalent to (1.5a). Hence we can apply
all our previous results with ϕ(1) = 1 and ‖ϕ‖ = 1, see (2.2) and (2.3).

Theorem 4.1. Let S0 = m and Sn be defined by (1.3). If m ≥ 0, then
∞∑

n=0

∑

k≥0

Pm(Sn = k, Rm > n)zkwn =
p(z, w)

1− wϕ(z)

m∑

k=0

qk−m(w)zk,(4.5)

∞∑
n=1

∑

k<0

Pm(Sn = k, Rm = n)zkwn = p(z, w)
∑

k<0

qk−m(w)zk.(4.6)
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If m < 0, then
∞∑

n=0

∑

k≥0

Pm(Sn = k, Rm > n)zkwn = −r(w)p(z, w)

1− wϕ(z)

∞∑

k=0

pk−m(w)zk,(4.7)

∞∑
n=1

∑

k<0

Pm(Sn = k, Rm = n)zkwn = zm − r(w)p(z, w)
−1∑

k=m

pk−m(w)zk.(4.8)

Proof. We apply the Laurent separation to (4.4) and use (4.3). Then the assertion
follows from Theorem 2.2 and Theorem 2.3. ¤

The functions qk(w) were defined in (2.11) and can be computed from the recur-
sion formula (3.13). The function p(z, w) was formally introduced in (2.8) and was
discussed throughout Section 3. Since p = 1− g−0 by (3.1), we obtain from (4.4) the
probabilistic interpretation

(4.9) p(z, w) = 1−
∞∑

n=1

∑

k<0

P0(Sn = k, R0 = n)zkwn.

If X is bounded below or if, more generally, the generating function ϕ is meromorphic
in D then p(z, w) is given by the analytic formula (3.18).

Now we put z = 1 in (4.6) and (4.8). Since Rm = n implies Sn < 0 we obtain
with (2.11)

∞∑
n=1

Pm(Rm = n)wn = p(1, w)
∑

j<−m

qj(w) = 1− p(1, w)
m∑

j=0

q−j(w) for m ≥ 0,

∞∑
n=1

Pm(Rm = n)wn = 1− r(w)p(1, w)

|m|−1∑
j=0

pj(w) for m < 0.

If we let w → 1−, we obtain

Pm(Rm = ∞) = p(1, 1)
m∑

j=0

q−j(1) for m ≥ 0,(4.10)

Pm(Rm = ∞) = r(1)p(1, 1)

|m|−1∑
j=0

pj(1) for m < 0.(4.11)

4.2. We now consider the modified ruin problem on the basis of (1.6). Then R̂m

is equivalent to Rm−1 in (1.4), and is related to the generating function ĝm(z, w) in
an analogous way as Rm is related to gm(z, w). Obviously ĝm(z, w) = zgm−1(z, w) .
For simplicity we restrict ourselves to S0 = 0 and obtain from (2.38), (2.39) that

ĝ+
0 (z, w) = zg+

−1(z, w) = −1 +
p(z, w)

1− wϕ(z)
r(w),(4.12)

ĝ−0 (z, w) = zg−−1(z, w) = 2− p(z, w) r(w),(4.13)

ĝ0(z, w) = zg−1(z, w) = 1 +
wϕ(z)p(z, w)

1− wϕ(z)
r(w) .(4.14)

4.3. Now we turn to the minimum problem. We start with S0 = 0 and define

(4.15) Mn = min{Sν : 0 ≤ ν ≤ n} (n ∈ N0).
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Theorem 4.2. For |ζ| ≥ 1 and w ∈ D we have

(4.16)
∞∑

n=0

∑
µ≤0

P0(Mn = µ)ζµwn =
p(1, w)

(1− w)p(ζ, w)
.

Proof. For µ ≥ 0 we consider Sµ;n := µ + Sn. Then we have for µ ≥ 0, n ≥ 0

(4.17) P0(Mn = −µ) = P0

(
Sµ;ν ≥ 0 (ν ≤ n)

)−P0

(
Sµ−1;ν ≥ 0 (ν ≤ n)

)
.

This is obvious for µ ≥ 1, n ≥ 1. In the other cases, (4.17) can be read off from the
following table:

µ n P0(Mn = −µ) P0

(
Sµ;ν ≥ 0 (ν ≤ n)

)
P0

(
Sµ−1;ν ≥ 0 (ν ≤ n)

)

≥ 1 0 P0(S0 = −µ) = 0 P0(µ ≥ 0) = 1 P0(µ ≥ 1) = 1

0 ≥ 1 P0

(
Sν ≥ 0 (ν ≤ n)

)
P0

(
Sν ≥ 0 (ν ≤ n)

)
P0

(
Sν ≥ 1 (ν ≤ n)

)
= 0

0 0 P0(S0 = 0) = 1 P0(0 ≥ 0) = 1 P0(−1 ≥ 0) = 0

Since Sµ;0 = µ it follows from (4.2) and (4.4) that for µ ∈ Z

g+
µ (1, w) =

∞∑
n=0

∑

k≥0

P0

(
Sµ;n = k, Sµ;ν ≥ 0 (ν ≥ 1, ν < n)

)
wn

=
∞∑

n=0

P0

(
Sµ;ν ≥ 0 (ν ≥ 1, ν ≤ n)

)
wn.

For µ ≥ 1 we can write (4.17) in the form

P0(Mn = −µ) = P0

(
Sµ;ν ≥ 0 (ν ≥ 1, ν ≤ n)

)−P0

(
Sµ−1;ν ≥ 0 (ν ≥ 1, ν ≤ n)

)

and obtain ∞∑
n=0

P0(Mn = −µ)wn = g+
µ (1, w)− g+

µ−1(1, w).

For µ = 0, (4.17) becomes

P0(Mn = 0) = P0

(
S0;ν ≥ 0 (ν ≥ 1, ν ≤ n)

)

and therefore ∞∑
n=0

P0(Mn = 0)wn = g+
0 (1, w).

This implies
∞∑

n=0

∞∑
µ=0

P0(Mn = −µ)ζ−µwn =
∞∑

µ=0

g+
µ (1, w)ζ−µ −

∞∑
µ=1

g+
µ−1(1, w)ζ−µ

= (1− ζ−1)
∞∑

µ=0

g+
µ (1, w)ζ−µ.

Hence (4.16) follows from (2.31) for z = 1 because ϕ(1) = 1. ¤
Multiplying (4.16) by 1− ζ−1 we obtain
∑
µ≤0

P0(M0 = µ)ζµ +
∞∑

n=1

∑
µ≤0

(
P0(Mn = µ)−P0(Mn−1 = µ)

)
ζµwn =

p(1, w)

p(ζ, w)
.
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The coefficients pn,k and qn,k were defined in (3.6) and (3.7). We write

p∗n =
∑

k≤0

pn,k = 1−
∑

k<0

|pn,k| (n ∈ N0),

see (3.15). Then p(1, w) =
∑∞

n=0 p∗nwn. Using (2.11) we obtain

(4.18) P0(Mn = µ)−P0(Mn−1 = µ) =
∞∑

ν=0

p∗n−νqν,µ.

4.4. Finally, we apply Laurent separation to another approach to the minimum
problem for random walks starting with S0 = 0, which supplies additional information
about the terminal position Sn and the first time Nn at which the minimum is
attained, cf. [Spi76, p. 205 ff]. It is defined by

(4.19) Nn = min{t ∈ [0, n] : St = Mn}.
Theorem 4.3. For |ζ| ≥ 1 and w ∈ D we have

∑
µ≤0

∞∑
n=0

n∑
ν=0

∞∑

h=0

P0(Mn = µ, Sn = µ + h, Nn = ν)zhsνwnζµ

=
p(z, w)

p(ζ, sw)(1− wϕ(z))
.

(4.20)

For z → 1 we obtain from (4.20) and (4.1) the threefold generating function

∞∑
µ≤0

∞∑
n=0

n∑
ν=0

P0(Mn = µ, Nn = ν)sνwnζµ =
p(1, w)

p(ζ, sw)(1− w)
,

and then (4.16) by letting s → 1.

Proof. From S0 = 0 follows that Mn ≤ 0 and Mn = 0 if and only if St ≥ 0 for
1 ≤ t ≤ n. Let Mn = −µ and Nn = ν. We first consider the case µ ≥ 1, n ≥ ν ≥ 1.

(i) Let S̃0 = 0 and S̃j = Sν−j−Sν = −Xν−Xν−1− . . .−Xν−j+1 for j = 1, . . . , ν.
Then S̃1 ≥ 1, . . ., S̃ν−1 ≥ 1, S̃ν = µ. This event depends only on X1, . . . , Xν

and is described by ˆ̃R0 ≥ ν, S̃ν = µ, therefore has the probability ˆ̃b0;ν,µ, see
Section 2.3 and Section 4.2. The tilde in ˆ̃g0,

ˆ̃b0;n,k,
ˆ̃P0 and ˆ̃R0 denotes terms

belonging to ϕ̃ and f0 = 1.
(ii) Let Š0 = 0 and Šj = Sν+j − Sν = Xν+1 + . . . + Xν+j for j = 1, . . . , n − ν.

Then Š1 ≥ 0, . . ., Šν−1 ≥ 0, Šν = h for some h ≥ 0. This event depends only
on Xν+1, . . . , Xn and is described by R0 ≥ n− ν, Sn−ν = h, therefore has the
probability b0;n−ν,h.

With these variables, the event (Mn = −µ, Sn = −µ + h,Nn = ν) can be described
as ( ˆ̃R0 ≥ ν, S̃ν = µ, R0 ≥ n − ν, Sn−ν = h), and it follows from the independence
that its probability is P̃0(

ˆ̃R0 ≥ ν, S̃ν = µ)P0(R0 ≥ n− ν, Sn−ν = h), hence

P0(Mn = −µ, Sn = −µ + h, Nn = ν) = ˆ̃b0;ν,µb0;n−ν,h .(4.21)
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Moreover, P0(Mn = −µ, Sn = −µ + h,Nn = 0) = 0 = ˆ̃b0;0,µ for µ ≥ 1 and all n ≥ 0,
so (4.21) holds for µ ≥ 1, n ≥ ν ≥ 0. Furthermore,

(4.22) P0(Mn = 0, Sn = h,Nn = ν) =

{
b0;n,h for ν = 0,

0 for ν ≥ 1.

For µ ≥ 0, |s| ≤ 1, |w| ≤ 1, |z| ≤ 1, let

γµ(w, s, z) =
∞∑

n=0

n∑
ν=0

∞∑

h=0

P0(Mn = −µ, Sn = −µ + h,Nn = ν)zhsνwn.(4.23)

By exchanging the order of summation over n and ν one obtains from (4.21)

γµ(w, s, z) =
∞∑

ν=0

ˆ̃b0;ν,µ(sw)ν

∞∑

n=ν

∞∑

h=0

b0;n−ν,hw
n−νzh =

∞∑
ν=0

ˆ̃b0;ν,µ(sw)νg+
0 (z, w)

for µ ≥ 1. From (4.22) follows that γ0(w, s, z) = g+
0 (z, w). Hence for |ζ| ≤ 1

∞∑
µ=0

γµ(w, s, z)ζµ =

(
1 +

∞∑
µ=1

∞∑
ν=0

ˆ̃b0;ν,µ(sw)νζµ

)
g+
0 (z, w)

=

(
1−

∞∑
ν=1

ˆ̃b0;ν,0(sw)ν − ˆ̃b0;0,0 +
∞∑

µ=0

∞∑
ν=0

ˆ̃b0;ν,µ(sw)νζµ

)
g+
0 (z, w)

=

(
r(sw)− 1 + ˆ̃g+

0 (ζ, sw)

)
g+
0 (z, w),

where we have used (2.42) and (2.17). With (2.44) follows that
∞∑

µ=0

γµ(w, s, z)ζµ =
1

p(1/ζ, sw)
g+
0 (z, w) =

1

p(1/ζ, sw)

p(z, w)

1− wϕ(z)
,

the latter by (3.1). Finally, (4.20) follows if we replace µ by −µ and ζ by 1/ζ. ¤
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