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Abstract. We establish some bounds for the natural distance function on the boundary of
such a conformal deformation of the unit ball Bn, n ≥ 2, that satisfies a Harnack inequality and the
condition of the Gehring–Hayman theorem. The construction is useful especially for those points
for which the radial limit exists.

1. Introduction

A conformal deformation of the unit ball Bn, n ≥ 2, is a mapping of type
f := Id: (Bn, g0) → (Bn, dρ) where g0 is the canonical metric of the Euclidean unit
ball Bn and dρ is the conformal metric derived from a continuous density ρ : Bn → R+

in the usual way:

lengthρ(γ) =

∫

γ

ρ(z)|dz|
for a curve γ in Bn, and

dρ(x, y) = inf
γ

lengthρ(γ) for x, y ∈ Bn,

where the infimum is taken over all rectifiable curves joining x and y in Bn. This
metric extends also to the boundary of the unit ball via the usual limit process, see
Section 6 in [2].

It is also possible to define a natural measure µρ by setting

µρ(E) = Volρ(E) =

∫

E

ρndmn for a Borel set E ⊂ Bn,

where mn denotes the n-dimensional Lebesgue measure. Deformations of this kind
are originally motivated by the theory of (quasi)conformal mappings. We refer the
reader to [1], [2] and [3] for more information and concrete examples of conformal
metrics.

In our setting we assume that the density ρ satisfies a Harnack inequality, i.e.,
there exists a constant A ≥ 1 so that

(1.1)
1

A
≤ ρ(x)

ρ(y)
≤ A
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whenever y ∈ B(x, 1
2
(1 − |x|)) for some x ∈ Bn. This is equivalent to assuming

that the identity mapping f above is uniformly quasi-symmetric in each Whitney
ball B(x, 1

2
(1− |x|)).

Following [3], we also define the isodiametric profile of (Bn, dρ) as a function
ηρ : [0, diamρ(B

n)] → [0,∞],

ηρ(r) = sup{µρ(D) : D ⊂ Bn and diamρ(D) ≤ r}.
In [2] it is shown that a large variety of conformal deformations satisfies, in

addition to (1.1), also the condition ηρ(r) ≤ Crn for all r > 0, which is equivalent to
so-called volume growth condition, i.e., there exists a constant B ≥ 1 so that

(1.2) µρ(Bρ(x, r)) ≤ Brn for all x ∈ Bn and r > 0.

Here Bρ(x, r) denotes an open ball with center x and radius r in the metric dρ.
Further, in [2, Theorem 3.1] it is also shown that under assumptions (1.1) and (1.2)
the following version of the Gehring–Hayman theorem is valid.

Theorem 1.1. (Gehring–Hayman Theorem) If γ is hyperbolic geodesic in Bn,
then ∫

γ

ρ ds ≤ Cdρ(x, y),

where C = C(A,B, n) > 0 is a constant depending only on the constant A, B and n
in (1.1) and (1.2).

For the moment, it is not precisely known how much one can relax the vol-
ume growth condition from (1.2) and still gain the Gehring–Hayman theorem. It
is noticed in [6] that, for small r, the condition (1.2) is essentially optimal for the
only known method to verify the Gehring–Hayman theorem in this kind of setting
but, on the other hand, known examples of densities that satisfy (1.1) and not the
Gehring–Hayman property, i.e., the condition of the Gehring–Hayman theorem, as-
sume volume growth remarkably more extensive than (1.2).

Another point of view to the topic follows from that the conditions (1.1) and
(1.2)—and hence the Gehring–Hayman property, too—admit that, at least, a set of
Hausdorff dimension zero may blow up, cf. [2, Theorem 4.4]. (We say that the defor-
mation mapping f blows up at a point z ∈ ∂Bn if limx→z dρ(0, x) = ∞.) However,
the examples of densities for which (1.1) holds but the Gehring–Hayman property
does not seem to be related to points at which the deformation function blows up.
For example, in the plane such an example is the ρ for which ρ(x) = 1/(1−|x|) along
a fixed ray and elsewhere as small as (1.1) allows for some A > 2.

In [1], [3] and [5] the size of the boundary of the unit ball under different conformal
deformations is studied. Especially, it is shown in [5] that the boundary will not blow
up in large parts if we assume (1.1) and loosen the condition (1.2) to some extent.
For example, if A > 2 and ηρ(r) = o(rn(log r)p) as r → ∞ for some p > 0, then f
cannot blow up on a subset E ⊂ ∂Bn of positive h-measure of gauge

h(t) =
1

log(1
t
)p+n−1

.

Further, if A = 2, a much weaker growth condition on the isodiametric profile is
sufficient for the previous conclusion: it is enough to assume that ηρ(r) = o(rn+p) as
r →∞. Unfortunately, also the relationship between the Gehring–Hayman property
and the blowing-up-phenomenon is not yet completely clear.
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In this paper we shall establish bounds for geodesic lengths and distances on
the boundary of the deformed unit ball using a simple cone construction. A similar
construction has been applied, e.g., in [4]. The first result assumes only a Harnack
inequality, the second one also the Gehring–Hayman property and hence it extends
Lemma 1.7 in [7].

Theorem 1.2. Let ρ : Bn → R+ be a continuous density satisfying (1.1). Then
there exist constants C ′ = C ′(A) ∈ (0, 1) and C ′′ = C ′′(A) ≥ 1 so that for every
x, y ∈ ∂Bn we have

C ′ lengthρ(γ) ≤ δ ≤ C ′′ lengthρ(γ)

where γ is the hyperbolic geodesic joining x and y in Bn,

δ = max{diamρ([(1− h)x, x)), diamρ([(1− h)y, y))}
in which h = 1

2
|x− y| and [(1− h)x, x) is a ray from (1− h)x to x.

Theorem 1.3. Let δ and ρ be such as in Theorem 1.2 and suppose also that∫
γ
ρ ds ≤ Cdρ(x, y) for some constant C > 0. Then there exist constants C ′ =

C ′(A) ∈ (0, 1) and C ′′ = C ′′(A,C) ≥ 1 so that for every x, y ∈ ∂Bn we have

C ′dρ(x, y) ≤ δ ≤ C ′′dρ(x, y).

Theorems 1.2 and 1.3. are useful especially for those points for which the radial
limit exists. For example, for a quasiconformal mapping f , the integrability of

ρ(x) =
( 1

mn(Bx)

∫

Bx

Jf dmn

)1/n

on a radius implies the existence of the radial limit and thus the existence of radial
limits capacity-a.e. on the boundary, cf. [2, p. 649] and [8].

2. The proofs of Theorem 1.2 and 1.3

In [7, Lemma 1.3], it is given a proof for that the ρ-diameter of a Stolz cone is
bounded by a constant depending only on A of the Harnack inequality, the thick-
ness of the cone, and the ρ-diameter of axis of the cone (The result was originally
mentioned in [2]) . More precisely, for x ∈ ∂Bn and the union

Cone(x, λ, h) =
⋃
{B(tx, λ(1− t)) : 1− h ≤ t < 1},

where λ ∈ (0, 1) and h ∈ (0, 1], there exists a constant C = C(A, λ) > 0 such that

(2.1) diamρ(Cone(x, λ, h)) ≤ C diamρ([(1− h)x, x)) for h ∈ (0, 1].

Choose now λ = 0.5 and set the Stolz cones of height h = |x − y|/2 at both x
and y. Then

(2.2) length(γ ∩ Cone(x,
1

2
, h)) = length(γ ∩ Cone(y,

1

2
, h)) ≥ 1

4
length(γ)

and the part of γ that is not in either of the cones can be covered with the chain of,
at most, three carefully chosen Whitney balls that also join the cones to each others.

Suppose next that δ is given by the cone F at, say, x. From (2.2) it follows that
there are Whitney balls Bz in F for which

(2.3) length(γ ∩Bz) ≥ 1

2
diam(Bz).
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Let F ′ denote the largest union of the Whitney balls in F for which (2.3) holds. Then
clearly tx ∈ F ′ for t → 1.

The Harnack inequality (1.1) implies that for every curve γ̃ in any Whitney ball
Bz, we have

1

A
ρ(z) length(γ̃) ≤ lengthρ(γ̃) ≤ Aρ(z) length(γ̃)

and, moreover, for Bz ⊂ F ′,
1

A
ρ(z) length(γ ∩Bz) ≤ diamρ(Bz) ≤ 2Aρ(z) length(γ ∩Bz).

Thus
1

A2
lengthρ(γ ∩Bz) ≤ diamρ(Bz) ≤ 2A2 lengthρ(γ ∩Bz).

The existence of C ′ = C ′(A) ∈ (0, 1) follows now from (2.1) and (2.2). Further,
the triangle inequality implies now that there is a constant C ′′ = C ′′(A) such that
(2.4) diamρ(F

′) ≤ C ′′ lengthρ(γ)

Moreover, by (2.2), it takes a chain of at most three Whitney balls to join every
x ∈ F\F ′ to F ′. Therefore there is another constant C ′′ = C ′′(A) such that

diamρ(F ) ≤ C ′′ lengthρ(γ).

From this, (2.1) and (2.4) it follows that there exists a constant C ′′ = C ′′(A) such
that

δ ≤ C ′′ lengthρ(γ).

Theorem 1.2 is now proven. Theorem 1.3 follows directly from Theorem 1.2, the
definition of dρ and the Gehring–Hayman property.
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