Annales Academiĉ Scientiarum Fennicĉ
Mathematica
Volumen 35, 2010, 609-626
University of Cincinnati, Department of Mathematical Sciences
P.O. Box 210025, Cincinnati, OH 45221-0025, U.S.A.; tadamowi 'at' gmail.com
University of Cincinnati, Department of Mathematical Sciences
P.O. Box 210025, Cincinnati, OH 45221-0025, U.S.A.; nages 'at' math.uc.edu
Abstract. We develop various upper and lower estimates for p-modulus of curve families on ring domains in the setting of abstract metric measure spaces and derive p-Loewner type estimates for continua. These estimates are obtained for doubling metric measure spaces or Q-Ahlfors regular metric measure spaces supporting (1,p)-Poincaré inequality for the situations of 1 \leq p \leq Q and p > Q. We also study p-modulus estimates with respect to Riesz potentials.
2000 Mathematics Subject Classification: Primary 30C65, 28A75, 28A78, 31C15, 46E35.
Key words: p-modulus of curve family, Loewner type theorem, metric measure spaces, conformal mappings, p-capacity, p-harmonic functions.
Reference to this article: T. Adamowicz and N. Shanmugalingam: Non-conformal Loewner type estimates for modulus of curve families. Ann. Acad. Sci. Fenn. Math. 35 (2010), 609-626.
doi:10.5186/aasfm.2010.3538
Copyright © 2010 by Academia Scientiarum Fennica