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Abstract. We prove an asymptotically sharp dimension estimate for sets with large porosity

in a collection of metric spaces. This generalizes a dimension estimate first proven by Salli. From

the metric space we assume, among other properties, that it can be locally mapped into R
n in a

way that allows us to use Euclidean projections. We show that R
n with any norm satisfies these

conditions as well as every step two Carnot group. We also discuss the necessity of the conditions

by examining various metric spaces where the estimates fail.

1. Introduction

Lower-porous sets have holes of certain relative size in all small enough scales.
They differ from upper-porous sets, which have holes only in some sequences of
scales. The dimension of lower-porous sets in R

n can be bounded away from n with
a function depending only on the porosity. Such a function cannot be found for
upper-porous sets. This can be seen by constructing a maximally upper-porous set
in R

n that has dimension n (see [13, §4.12]). In this paper we will work only with
lower-porosity and therefore every time we speak of porosity we mean lower-porosity.

The fact that porous sets have dimension less than the dimension of the ambient
space is well known even for s-regular metric spaces (See [3] and Section 6). In many
applications information on the dimension of certain sets is obtained via porosity. See
the use of porosity for example in connection with free boundaries [11] and complex
dynamics [15]. Porosity is also a property which is (qualitatively) preserved, for
example, under quasisymmetric maps [17].

In this paper we study the upper bound on how much the dimension can drop
when porosity is close to its maximum. The first result in this direction was obtained
by Mattila in [12] where he proved that when a set in R

n has porosity close to its
maximum the dimension of the set cannot be much larger than n − 1. This result
was later improved by Salli in [16]. He proved the dimension estimate

(1) dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)

for ρ-porous sets A ⊂ R
n with a constant C depending only on n. Here dimp is the

packing dimension.
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Porosity has been generalized in many directions and dimension results similar
to (1) hold in many of these generalizations. Käenmäki and Suomala proved in [10]
that a k-porous set in R

n having k-porosity close to 1
2

must have dimension at most
close to n−k. By k-porosity we mean that there are holes in k orthogonal directions
in reference balls. This result was improved in [9].

For mean porous measures dimension estimate similar to (1) has been obtained
in [1]. In mean porosity we require holes to appear only in some percentage p of
(for example) dyadic scales. With mean porosity the term n − 1 in (1) is replaced
by n − p. For the definition of porosity of measures see [4] and for other results on
measures with large porosity see [2], [6] and [7].

In this paper we prove that the estimate of Salli holds in finite dimensional
normed vector spaces and step two Carnot groups equipped with certain metrics of
sub-Riemannian type. The idea in the proof is to use Euclidean projections to a set
of directions to move a cover of a porous set to hyperplanes of R

n.
In Section 2 we introduce the notion of porosity and state our theorem and some

of its corollaries. Section 3 will deal with porosity in normed vector spaces and
Section 4 in step two Carnot groups. In Section 5 we prove our main theorem and in
the last section, Section 6, we give examples illustrating that the dimension results for
large porosity do not generalize to geodesic regular metric spaces nor to bi-Lipschitz
images of R

n.

2. Porosity in metric spaces

We start by introducing notation and definitions used in this paper. Some of the
definitions are left to be introduced in the later sections of the paper where they are
used. Let (X, d) be a metric space. First we note that B(X,d)(x, r) is a closed ball
in X centred at x with radius r. If we are using only one metric d in our space, we
may also write BX(x, r). By Sn−1 we mean the unit sphere in R

n. Following the
convention introduced in [14], we define for a set A ⊂ X, a point x ∈ X and a radius
r > 0

por(A, x, r) = sup{ρ ≥ 0 : there is y ∈ X such that BX(y, ρr) ∩ A = ∅
and ρr + d(x, y) ≤ r}.(2)

The porosity of A at a point x is defined to be

(3) por(A, x) = lim inf
r↓0

por(A, x, r)

and the porosity of A is given by

(4) por(A) = inf
x∈A

por(A, x).

We call A ⊂ X porous if por(A) > 0, and more precisely, ρ-porous provided that
por(A) > ρ. From (2) we see that there can be only ρ-porous sets with ρ < 1

2
. We

call a set A maximally porous, if por(A) = 1
2
.

As in [13, §5.3], we define for a bounded set A ⊂ X, λ ≥ 0 and r > 0

Mλ(A, r) = inf{krλ : A ⊂
k

⋃

i=1

BX(xi, r) for some xi ∈ X and k ∈ N}
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with the interpretation inf ∅ = ∞. The (upper) Minkowski dimension of a bounded
set A is

dimM(A) = inf{λ : lim sup
r↓0

Mλ(A, r) < ∞}.

The packing dimension of A ⊂ X is given by

dimp(A) = inf
{

sup
i

dimM(Ai) : Ai is bounded and A ⊂
∞
⋃

i=1

Ai

}

.

We use the notation H d for the d-dimensional Hausdorff measure and dimH for
the Hausdorff dimension, see [13] for the definitions. Recall that for all sets A ⊂ X

we have

dimH(A) ≤ dimp(A).

Next we fix some notation in R
n. We denote the convex hull of E ⊂ R

n by
conv(E) and the boundary of E by ∂(E). Let x ∈ R

n, v ∈ Sn−1 and α ∈ ]0, π[. With
these parameters we define a cone

C(x, v, α) = {y ∈ R
n | dE(y, L(x, v)) ≤ sin(α)dE(x, y)},

where

L(x, v) = {x + tv ∈ R
n | t ∈ [0,∞[ }

and dE is the Euclidean metric. The orthogonal complement of E is denoted by E⊥

and the Euclidean inner product between vectors x, y ∈ R
n by (x|y).

Let (X, d) be a metric space. The following definition gives the maximum number
of disjoint balls of radius R in X such that the centres of the balls can be mapped
for fixed y ∈ R

n and R > 0 into BRn(y, R) with a map f : Y → R
n, where Y ⊂ X.

Define for every R > 0 and y ∈ R
n

N(R, y, f) = max
{

m | x1, . . . , xm ∈ Y such that f(xi) ∈ BRn(y, R)

and BX(xi, R) ∩ BX(xj , R) = ∅ for i 6= j
}

.

Next we state our main theorem. After that the assumptions of the theorem
are motivated by corollaries and the role of each assumption is clarified in a remark.
More examples satisfying the assumptions will be given in the last section of the
paper. There the dimension estimates derived from the Theorem 2.1 are not of the
type (1).

Theorem 2.1. Let (X, d) be a separable metric space. Assume that there are

constants r0, Ri, Ro, c, t > 0, 0 < s ≤ 1 and n ∈ N so that every x ∈ X and

0 < r < r0 have the following properties: If y, z ∈ BX(x, r0) and dX(y, z) = r, then

for every ε ∈]0, 1[

(5) BX(z, (1 − ε)r) ∩ BX(y, cεsr) 6= ∅.
There exists an injective map fx,r : BX(x, 4r) → R

n so that for all 0 < R < r and

y ∈ BX(x, 2r)

BRn(fx,r(y), Rir) ∩ fx,r(BX(x, 4r)) ⊂ fx,r(BX(y, r)),(6)

fx,r(BX(y, R)) ⊂ BRn(fx,r(y), RoR)(7)

and

(8) conv
(

fx,r(BX(y, r)) ∪ BRn(fx,r(y), Rir)
)

∩ fx,r(BX(x, 4r)) = fx,r(BX(y, r)).
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Assume for every y ∈ R
n and 0 < R < r

(9) N(R, y, fx,r) ≤ c
( r

R

)t−n

.

Then for any ρ-porous subset A ⊂ X we have

(10) dimp A ≤ t − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends on n, Ri, Ro, s, t and c.

Remark 2.2. Assuming separability is natural when we want to get dimen-
sion estimates. Assumption (5) guarantees that the porous set lives in a suitable
neighbourhood of the holes. Assumptions (6), (7) and (8) allow us to use Euclidean
projections when finding a cover for the porous set.

The first inclusion (6) says that there is a Euclidean ball with radius Rir inside
an image of a ball of radius r. We take the intersection with the whole image here
to allow the maps fx,r to have, for example, holes inside their images. To estimate
to the other direction we assume (7), which says that the images of small balls are
included in a slightly larger Euclidean balls.

According to the equality (8), the images of balls of radius r are relatively convex
with respect to the whole image. Moreover, taking the union with the Euclidean ball
of radius Rir guarantees the existence of large enough cones inside the images of the
balls, see inclusion (15). Here we again have the intersection with the whole image
for the same reason as in (6). Growth bound (9) gives an estimate on the relative
change of the number of balls needed for a cover when we move from R

n to X.

As the first corollary we have a generalization of the estimate (1) to normed
vector spaces.

Corollary 2.3. Let ‖ · ‖ be a norm in R
n. Then for every ρ-porous subset

A ⊂ R
n we have a dimension estimate

dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n.

The second corollary shows that with the functions fx,r in Theorem 2.1 we can
prove estimate (1) in R

n with modified group structures. In particular, we prove the
estimate in step two Carnot groups.

Corollary 2.4. Let G = R
n × R

m be a step two Carnot group with S as its

bilinear form. Then for every ρ-porous subset A ⊂ G we have

dimp A ≤ n + 2m − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n, m and S.

We will prove these corollaries in detail in the next two sections of the paper.
Note that in the first corollary the constant C depends only on the dimension of
the space and not on the norm ‖ · ‖. We prove the following third corollary of the
Theorem 2.1 here.
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Corollary 2.5. Let (X, d) be a geodesic metric space. Assume that X is bi-

Lipschitz equivalent to R
n and that the images of balls under the bi-Lipschitz map-

ping f are convex. Then for all ρ-porous subsets A ⊂ X we have

dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n and the bi-Lipschitz constant of f .

Proof. Let us check that the assumptions of the Theorem 2.1 are satisfied. The
space (X, d) is clearly separable and because of geodesity the condition (5) holds with
c = 1 and s = 1. As fx,r we can take the restrictions of the bi-Lipschitz map f . Let
L be the bi-Lipschitz constant of f . Then the assumption (6) is satisfied with Ri = 1

L

and the assumption (7) with Ro = L. Assuming convexity of the images of the balls
in X under f guarantees that the condition (8) holds. A simple volume comparison
argument gives condition (9) with t = n and c depending on n and L. �

3. Porosity in normed vector spaces

Before any investigation is done on porous sets with different norms it is natural
to ask if different norms give different porosity on sets. This is indeed the case as
easily seen for example by looking at ({0}×R)∪ (R×{0}) ⊂ R

2 which is maximally
porous in maximum norm, but not in the Euclidean one.

Because in this section we use different norms let us denote the Euclidean one
by ‖ · ‖E. Let then

B(x, r) = {y ∈ R
n : ‖y − x‖ ≤ r}

and

BE(x, r) = {y ∈ R
n : ‖y − x‖E ≤ r}

be the closed balls in R
n.

For a given norm ‖ · ‖ in R
n and a subspace V ⊂ R

n we define the outer radius

Ro,‖·‖(V ) = min{R > 0 : B(0, 1) ∩ V ⊂ BE(0, R)}
and the inner radius

Ri,‖·‖(V ) = max{R > 0 : BE(0, R) ∩ V ⊂ B(0, 1) ∩ V }.
Clearly 0 < Ri,‖·‖(V ) ≤ Ro,‖·‖(V ) < ∞ and

Ri,‖·‖(R
n)‖ · ‖ ≤ ‖ · ‖E ≤ Ro,‖·‖(R

n)‖ · ‖.
These radii have similar nature as the radii Ro and Ri in the assumptions of Theo-
rem 2.1.

Remark 3.1. With every norm ‖ · ‖ in R
n all the balls are convex: Let z, y ∈

B(x, r) and t ∈ [0, 1]. Then

‖ty + (1 − t)z − x‖ ≤ ‖ty − tx‖ + ‖(1 − t)z − (1 − t)x‖
= t‖y − x‖ + (1 − t)‖z − x‖ ≤ r.

Proving Corollary 2.3 with a constant depending also on the norm is very easy.
In fact, it would follow right away from Corollary 2.5 using the identity map from
R

n with the original norm to R
n with the Euclidean norm. The independence of the

norm comes from shrinking and stretching the space.
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Proof of Corollary 2.3. We construct the function fx,r, independently of x and
r, so that it shrinks the original norm ‖ · ‖ in n−1 orthogonal directions. Let us first
choose the directions u1, . . . , un−1. Let u1 be such a vector that ‖u1‖ = 1 and ‖u1‖E =
Ro,‖·‖(R

n). Next take u2 ∈ {u1}⊥ so that ‖u2‖ = 1 and ‖u2‖E = Ro,‖·‖({u1}⊥). We
continue choosing rest of the vectors inductively, that is, uk ∈ {u1, . . . , uk−1}⊥ so
that ‖uk‖ = 1 and ‖uk‖E = Ro,‖·‖({u1, . . . , uk−1}⊥) for all k = 2, . . . , n − 1.

Next we start modifying the norm in a reversed order. In the un−1-direction

shrink the norm first by
Ri,‖·‖({u1,...,un−1}⊥)

Ro,‖·‖({u1,...,un−2}⊥)
. The first shrinking gives a norm ‖ · ‖1. By

shrinking a norm ‖ · ‖ by a constant t in the direction of v we mean the following: as
the result of shrinking we get a norm ‖ · ‖1, defined as

‖x‖1 =
∥

∥

∥
y +

z

t

∥

∥

∥
,

where x = y + z with z ∈ {ηv : η ∈ R} and y ∈ {v}⊥. Next shrink the norm

‖ · ‖1 in un−2-direction by
Ri,‖·‖1

({u1,...,un−2}⊥)

Ro,‖·‖1
({u1,...,un−3}⊥)

. This gives a norm ‖ · ‖2. Continue the

procedure and finally shrink the norm ‖ · ‖n−2 in u1-direction by
Ri,‖·‖n−2

({u1}⊥)

Ro,‖·‖n−2
(Rn)

. Let

us now estimate the inner radius. Because the ball B‖·‖s
(0, 1) is convex the set

conv
({

± Ri,‖·‖s
({u1, ..., uk}⊥)

Ro,‖·‖({u1, ..., uk−1}⊥)
uk

}

∪
(

BE(0, Ri,‖·‖s
({u1, . . . , uk}⊥))∩{u1, . . . , uk}⊥

)

)

(the darker area in Figure 1) lies inside the ball for all k ∈ {1, . . . , n − 1} and we
have

(11) Ri,‖·‖s
({u1, . . . , uk−1}⊥) ≥ Ri,‖·‖s

({u1, . . . , uk}⊥)√
2

Ri,‖·‖s
({u1}⊥)

Ro,‖·‖s
({u1}⊥)

Ro,‖·‖(R
n)

u1

Figure 1. Shrinking in the direction of u1 (right). By convexity the darker area must be inside

the new ball and the original ball must be contained in the lighter area.
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for all k ∈ {1, . . . , n−1}. To get an estimate for the outer radius take k ∈ {1, . . . , n−
1} and x ∈ BE(0, Ro,‖·‖s

({u1, . . . , uk−1}⊥))∩{u1, . . . , uk−1}⊥ and write it as x = y+z

where y ∈ {u1, . . . , uk}⊥ and z ∈ {ηuk : η ∈ R}. From the shrinking we then have

‖z‖E ≤ Ri,‖·‖s
({u1, . . . , uk}⊥).

From convexity we get

‖y‖E ≤ 2Ro,‖·‖s
({u1, . . . , uk}⊥).

If this were not the case the set

conv
({

x,± Ri,‖·‖s
({u1, . . . , uk}⊥)

Ro,‖·‖({u1, . . . , uk−1}⊥)
uk

})

∩ {u1, . . . , uk}⊥

would not be contained in BE(0, Ro,‖·‖s
({u1, . . . , uk}⊥)). In the Figure 1 the light

gray area shows where the x can lie before shrinking. From the estimates for y and
z we get

(12) Ro,‖·‖s
({u1, . . . , uk−1}⊥) ≤

√
5Ro,‖·‖s

({u1, . . . , uk}⊥).

Note that the constants in the inequalities (11) and (12) are not sharp. These two
inequalities together yield

(13)
Ro,‖·‖s

({u1, . . . , uk−1}⊥)

Ri,‖·‖s
({u1, . . . , uk−1}⊥)

≤
√

10
Ro,‖·‖s

({u1, . . . , uk}⊥)

Ri,‖·‖s
({u1, . . . , uk}⊥)

for all k ∈ {1, . . . , n − 1}. Next observe that

Ri,‖·‖s
({u1, . . . , un−1}⊥) = Ro,‖·‖s

({u1, . . . , un−1}⊥),

since {u1, . . . , un−1}⊥ is a line. Finally combine this with (13) to get

(14)
Ro,‖·‖s

(Rn)

Ri,‖·‖s
(Rn)

≤ (10)
n−1

2 .

By shrinking the space the same way we shrank the norm we get an isometry between
the original normed space and the new one. In particular, porosity does not change
when moving from one space to the other nor does the dimensions of sets.

We choose fx,r to be the identity in the new normed space. Take Ri = Ri,‖·‖s
(Rn)

and Ro = Ro,‖·‖s
(Rn). The condition (5) is satisfied with constants c = s = 1 because

of the linear structure. By construction the assumptions (6) and (7) are satisfied. The
assumption (8) was proven to hold in Remark 3.1. The condition (9) is satisfied with
t = n and c depending on n, Ro and Ri as seen by a volume comparison principle. By
scaling the whole space so that Ri = 1 the inequality (14) gives an absolute estimate
for the constant Ro and hence the constant C depends only on n. �

4. Porosity in step two Carnot groups

We define a step two Carnot group to be

G = R
n ×R

m

with a group law

(x, y) ◦ (x′, y′) = (x + x′, y + y′ + S(x, x′)),
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where S(x, x′) is a skew-symmetric bilinear function from R
n×R

n to R
m with integer

coefficients when expressed in the standard bases of R
n and R

m. We will use one of
the natural sub-Riemannian type metrics on the group G which is given by

dG(a, b) = [a−1 ◦ b]

with

[c] = max{‖z‖E , ‖t‖
1

2

E} for c = (z, t) ∈ G.

With this metric balls are convex from the Euclidean perspective, and that is why
we use it instead of the Carnot–Carathéodory or any other natural metric defined
on Carnot groups. Clearly the Hausdorff dimension of the space G is n + 2m. The
(first) Heisenberg group is just H

1 = R
2 ×R

1 with the bilinear form

S((x1, x2), (x
′
1, x

′
2)) = 2(x′

1x2 − x1x
′
2).

Proof of Corollary 2.4. Recall that

dG((a1, a2), (y1, y2)) = max{‖y1 − a1‖E, ‖y2 − a2 − S(a1, y1)‖
1

2

E}
for all (a1, a2), (y1, y2) ∈ G. Hence a ball centred at (y1, y2) ∈ G looks like a diamond
with sides of Euclidean balls. Define a constant

C(S) = max{‖S(b, c)‖E : ‖b‖E = ‖c‖E = 1}
and a mapping f0,r : BG(0, 4r) → R

n+m by f0,r(y1, y2) = (y1,
y2

r
). This mapping

stretches the space in the direction where we use the square root metric so that balls
with radius r look almost Euclidean. By translating we define fx,r(y) = f0,r(x

−1 ◦ y)
for every x ∈ G. Let us now check the assumptions of Theorem 2.1.

For showing that (5) is satisfied with c =
√

2 and s = 1
2

we may assume that z = 0.
Let y = (y1, y2) ∈ G, dG(y, z) = r > 0 and ε ∈]0, 1[. Define w = ((1−ε)y1, (1−ε)2y2).
Now notice that because

dG(w, z) = max{‖(1 − ε)y1 − 0‖E, ‖(1 − ε)2y2 − 0 − S(0, (1 − ε)y1)‖
1

2

E}

= max{(1 − ε)‖y1‖E , (1 − ε)‖y2‖
1

2

E} = (1 − ε)r

and

dG(y, w) = max{‖y1 − (1 − ε)y1‖E, ‖(1 − ε)2y2 − y2 − S(y1, (1 − ε)y1)‖
1

2

E}

= max{ε‖y1‖E ,
√

2ε − ε2‖y2‖
1

2

E} ≤
√

2εr

we have

w ∈ BG(z, (1 − ε)r) ∩ BG(y,
√

2εr).

To prove that (6) holds with the constant Ri = min{1
2
, 1

4C(S)
}, take y ∈ BG(0, 2r)

and z ∈ BG(0, 4r) so that dRn+m(f0,r(y), f0,r(z)) ≤ Rir. Now

dG(y, z) = max{‖y1 − z1‖E, ‖y2 − z2 − S(y1, z1)‖
1

2

E}
≤ max

{r

2
, (‖y2 − z2‖E + ‖y1‖E‖z1 − y1‖EC(S))

1

2

}

≤ max
{r

2
,
(r2

2
+ 2r

r

4C(S)
C(S)

)
1

2
}

≤ r.



Large porosity and dimension of sets in metric spaces 573

Next we show that the assumption (7) holds with a constant Ro = 2(C(S) + 1).
Taking y ∈ BG(0, 2r) and z ∈ BG(0, 4r) so that dG(y, z) < R < r, we obtain

dRn+m(f0,r(y), f0,r(z)) ≤ ‖y1 − z1‖E +
1

r
‖y2 − z2‖E

≤ R +
1

r

(

R2 + ‖S(y1, z1)‖E

)

≤ R +
1

r

(

R2 + ‖y1‖E‖y1 − z1‖EC(S)
)

≤ R +
1

r

(

Rr + 2rRC(S)
)

= RoR.

Because of the shape of the balls assumption (8) clearly holds. Finally, we confirm
that the condition (9) holds with t = 2m + n and

c =
H n+m(BRn+m(0, 1))(Ro + 1)n+m

H n(BRn(0, 1))H m(BRm(0, 1))
.

Take y ∈ R
n+m, 0 < R < r and x1, . . . , xk ∈ G so that BG(xi, R) ∩ BG(xj, R) = ∅

when i 6= j and f0,r(xi) ∈ BRn+m(y, R). From the fact that the bilinear form S does
not change the Euclidean Hausdorff measure of the balls and from the definition of
the mapping f0,r we can calculate

H
n+m(f0,r(BG(xi, R))) = H

n+m(f0,r(BG(0, R)))

= H
n+m(BRn(0, R) × BRm(0, R2r−1))

= H
n(BRn(0, 1))H m(BRm(0, 1))

Rn+2m

rm
.

On the other hand, because (7) holds we have

f0,r(BG(xi, R)) ⊂ BRn+m(f0,r(xi), RoR) ⊂ BRn+m(y, (Ro + 1)R).

Comparing the volumes we get

k ≤ H n+m(BRn+m(0, 1))(Ro + 1)n+m

H n(BRn(0, 1))H m(BRm(0, 1))

Rn+mrm

Rn+2m
= c

( r

R

)m

and the proof is finished. �

5. Proof of the main theorem

Before we start proving Theorem 2.1 we introduce one more notation. From the
two relative radii Ri and Ro given in Theorem 2.1 we define an angle

α = tan−1
(Ri

Ro

)

.

From the convexity assumption for the images of the balls (8) we see that for every
z ∈ conv(fx,r(BX(y, r)) ∪ BRn(fx,r(y), Rir)) \ {fx,r(y)}

(15) C(z,
v

‖v‖E

, α) ∩ BRn(z, ‖v‖E) ∩ fx,r(BX(x, 4r)) ⊂ fx,r(BX(y, r)),

where v = fx,r(y) − z. See Figure 2 for this conclusion.
The next lemma will deal with the Euclidean projection part of our proof. For

similar conclusions, see for example [6, Theorem 2.2] and [1, Lemma 3.4].
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α

Ror

Rir

fx,r(y)z

Figure 2. A cone opening with an angle α to the direction of the image of centre of the ball is

included in the image of the ball. Here z is chosen to have the maximum distance to fx,r(y) which

is the extreme case.

Lemma 5.1. With the same assumptions as in Theorem 2.1 let r < r0, x ∈ X,

c > 0, 0 < s ≤ 1, 0 < ρ < 1
2

and R =
Ri tan α

4

Ro
r. Assume that {BX(xi, r) | i ∈ I} is a

collection of balls with {xi | i ∈ I} ⊂ BX(x, 2r). Let

D = ∂
(

conv(fx,r(BX(x, R))) \
⋃

j∈I

conv(fx,r(BX(xj , r)) ∪ BRn(fx,r(xj), Rir)
)

.

Then there are at most c′(1 − 2ρ)−s(n−1) disjoint Euclidean balls with centres in D

and radius c(1 − 2ρ)sr, where c′ depends only on Ri, Ro, n, c and s.

Proof. We may assume that I is finite. First we cover the space R
n with N cones

Cj = C(fx,r(x), vj ,
α
4
),

where v1, . . . , vN ∈ Sn−1 and N depends on α and n. Fix j = 1, . . . , N and select a
subcollection of balls

Ij = {i ∈ I | fx,r(xi) ∈ Cj}.
Take any point

y ∈ Dj = ∂
(

⋃

l∈Ij

conv(fx,r(BX(xl, r)) ∪ BRn(fx,r(xl), Rir))
)

∩ conv(fx,r(BX(x, R))).

Now as the set Ij is finite there exists an index i ∈ Ij so that

y ∈ ∂
(

conv(fx,r(BX(xi, r)) ∪ BRn(fx,r(xi), Rir))
)

.

Because dE(fx,r(xi), y) ≥ Rir the angle between vj and fx,r(xi) − y is at most α
2
.

This follows from the choice of r and R. (See Figure 3.) Let v = fx,r(xi)− y. By the
inclusion (15) we have

C(y,
v

‖v‖E

, α) ∩ BRn(y, ‖v‖E) ∩ fx,r(BX(x, 2r)) ⊂ fx,r(BX(xi, r)) \ {y}.
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α
4

α
4

α
2

α
2

RoR

Rir

fx,r(x)

y

vj

fx,r(xi)

Figure 3. The choice of r and R is based on the worst case scenario.

These geometric conclusions together give

C(y, vj,
α
2
) ∩ BRn(y, Rir) ∩ fx,r(BX(x, 2r)) ⊂ fx,r(BX(xi, r)) \ {y}.

Now that we have cones opening to a fixed direction vj the projection

projj : Dj → {vj}⊥ : x′ 7→ x′ − (x′|vj)vj

satisfies the following inequalities for every x1, x2 ∈ Dj

dE(projj(x1), projj(x2)) ≤ dE(x1, x2) ≤
(

sin(α
2
)
)−1

dE(projj(x1), projj(x2)),

see Figure 4. Hence it is a bi-Lipschitz map with Lipschitz constant
(

sin(α
2
)
)−1

.

α
2

α
2

projj(x1)

projj(x2)

x1

x2

vj

Figure 4. Cones opening to the direction vj from each point in Dj guarantee the bi-Lipschitzness

of the projection.

Take Mj disjoint Euclidean balls BRn(wi, c(1 − 2ρ)sr) with centres wi ∈ Dj .

Because projj is
(

sin(α
2
)
)−1

-bi-Lipschitz the balls

BRn−1(projj(wi), sin(α
2
)c(1 − 2ρ)sr)

are also disjoint. On the other hand, by (7) they are all centred in

BRn−1(projj(fx,r(x)), RoR).
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Hence

Mj ≤ c′
( RoR

sin(α
2
)c(1 − 2ρ)sr

)n−1

= c′′(1 − 2ρ)−s(n−1),

where c′ depends on n and c′′ depends on n, c, Ri and Ro. Multiplying this constant
by N gives the desired upper bound for the packing of

∂
(

⋃

l∈I

conv(fx,r(BX(xl, r)) ∪ BRn(fx,r(xl), Rir))
)

∩ conv(fx,r(BX(x, R))).

To finish the proof we cover the set

∂
(

conv(fx,r(BX(x, R)))
)

with c′′′(1−2ρ)−s(n−1) disjoint Euclidean balls with radius c(1−2ρ)sr. The existence
of such cover follows immediately from the assumption (7) and convexity. �

Proof of Theorem 2.1. Cover the set A with uniformly porous subsets

Ak =
{

x ∈ A | por(A, x, r) > ρ for all 0 < r <
1

k

}

,

where k ∈ N. Take a set Ak. Because X is separable the set Ak can be covered with
a countable collection of balls of radius R, where

R = min
{ 1

ηk
,

r0

2(1 + η)

}

and

η =
Ro

Ri tan α
4

.

It is sufficient to estimate the dimension of Ak in these balls separately as long as the
estimate does not depend on the ball. We may therefore assume that Ak ⊂ BX(x, R)
for some x ∈ X. We will estimate the Minkowski dimension of Ak. Define r = ηR

and form two collections of balls as follows. First define a collection that covers Ak

as

BC = {BX(y, c2s(1 − 2ρ)sr) | y ∈ Ak}
and then a collection of holes as

BH = {BX(zy, ρr) | BX(zy, ρr) ∩ Ak = ∅, y ∈ Ak and ρr + dX(zy, y) ≤ r}.
We may assume that c2s(1 − 2ρ)s < 1. To estimate the number of balls needed
to cover Ak take a maximum subcollection of pairwise disjoint balls from BC and
estimate from above the number of balls, denoted by K, in this subcollection.

Take a ball BX(y, c2s(1 − 2ρ)sr) ∈ BC . There exists a hole BX(zy, ρr) ∈ BH so
that BX(zy, ρr) ∩ Ak = ∅, y ∈ Ak and ρr + dX(zy, y) ≤ r, since A is porous in this
scale at point y. For the points y and zy we have

1 − ρr

dX(zy, y)
≤ 2(1 − 2ρ),

which yields together with the assumption (5) that

BX(y, c2s(1 − 2ρ)sr) ∩ BX(zy, ρr) 6= ∅.
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Therefore with the assumption (8) in mind we find for each BX(y, c2s(1−2ρ)sr) ∈ BC

a point

y′ ∈ ∂
(

conv(fx,r(BX(xi, R))) \
⋃

Bl∈BH

conv(fx,r(Bl) ∪ BRn(fx,r(zl), Riρr))
)

so that

y′ ∈ conv(fx,r(BX(y, c2s(1 − 2ρ)sr))) ⊂ BRn(fx,r(y), c2s(1 − 2ρ)srRo).

Assumption (9) tells us that

N(c2s(1 − 2ρ)sr, y′, fx,r) ≤ c1(1 − 2ρ)s(n−t),

which means that from a pairwise disjoint collection of balls from BC at most

c2(1 − 2ρ)s(n−t)

centres of balls get map to a ball BRn(y′, c2s(1 − 2ρ)srRo) with the mapping fx,r.
This means that at least

(16) Kc−1
2 (1 − 2ρ)s(t−n)

balls of the form

BRn(y′, c2s(1 − 2ρ)srRo)

are pairwise disjoint. By Lemma 5.1 the maximum number of these disjoint balls is

(17) c3(1 − 2ρ)−s(n−1).

Together (16) and (17) imply

K ≤ c4(1 − 2ρ)−s(t−1).

Now that we have an estimate for K we are ready to move to a cover of the set
Ak. This is done by tripling the radii of the balls in the disjoint collection. Next
take a ball from the new collection and continue covering Ak in it using the same
argument. This way we get for every m ∈ N

(c4(1 − 2ρ)−s(t−1))m

balls of radius

(3cRo2
sη(1 − 2ρ)s)mR

that cover the set Ak. Now with

λ = t − 1 +
c5

log( 1
1−2ρ

)

we have limr→0 Mλ(Ak, r) = 0 and hence dimM(Ak) ≤ λ. Because the constant c5

does not depend on k and x the proof is complete. �
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6. Examples where dimension estimates fail

Are there any groups with ’natural’ metrics in which the codimension of maxi-
mally porous sets is less than one? The groups introduced by Erdős and Volkmann
in [5] serve as a set of examples. They proved that for each 0 < s < 1 there is an
additive subgroup Gs ⊂ R with Hausdorff dimension s.

Example 6.1. The groups Gs constructed by Erdős and Volkmann are chosen
using the following representation of real numbers

x = a1(x) +
∞

∑

k=2

ak(x)

k!
,

where ai(x) ∈ Z for all i and 0 ≤ ai(x) < i for all i ≥ 2. Define

Gs = {x ∈ R : ak(x) ≤ c(x)ks or ak(x) ≥ k − c(x)ks for all k ≥ k0(x)}.
These groups are dense in R and hence for example {0} × G 1

2

is 1
2
-porous in

G 1

2

× G 1

2

, but

dimH({0} × G 1

2

) =
1

2
> 0 = dimH(G 1

2

× G 1

2

) − 1.

One immediately sees that the space G 1

2

× G 1

2

satisfies the assumptions of The-

orem 2.1 with fx,r being the identity mapping. The problem is that it satisfies the
condition (9) with a constant t ≥ 2 and so Theorem 2.1 only gives

dimp({0} × G 1

2

) ≤ 1.

In [8] we proved that the same asymptotic behaviour is true for the dimension of
lower-porous subsets of regular spaces as is true in the Euclidean space. The result
is that there exists a constant c that depends only on the regularity parameters so
that for every ρ-porous subset A of an s-regular space X the dimension is bounded
above by

dimp(A) ≤ s − cρs.

This gives naturally the asymptotic behaviour when porosity goes to zero. The
following example shows that an s − 1 estimate for large porosity can not be true in
general s-regular spaces.

Example 6.2. For all n ∈ N we define a metric space (Sn, dn). Here Sn is the
attractor of function system

fi : R
n → R

n : x 7→ 1
2
x + ai,

where
ai ∈ {0, (1

2
, 0, . . . , 0), (0, 1

2
, 0, . . . , 0), . . . , (0, . . . , 0, 1

2
)}.

We define the metric dn as the path-metric induced by the maximum-metric in R
n.

Next we make some observations. The metric space (Sn, dn) is s-regular, where s is
the dimension of the space

dimH(Sn) =
log(n + 1)

log 2
.

Secondly by leaving one coordinate out and hence restricting the space (Sn, dn) we
get (Sn−1, dn−1). Because of the definition of the metric we get also that

∂BSn
((1, 0, . . . , 0), 1) = {0} × Sn−1.
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It is easy to see that in a geodesic metric space the boundary of any ball is maximally
porous. Next we note that when n → ∞

dimH(Sn) − dimH(∂BSn
((1, 0, . . . , 0), 1)) =

log(n + 1) − log(n)

log 2
↘ 0.

Look at Figure 5 to see what S3 looks like. Notice that in the picture we have
a more symmetric Sierpinski gasket. This is the same space as in the case when we
use the path-metric induced by the Euclidean one.

Figure 5. An illustration of space S3 and S2 as ∂BS3
((1, 0, . . . , 0), 1).

Again by Theorem 2.1 we get trivial bounds for the porous subsets in Example
6.2 using the underlying Euclidean space R

n, but the problem is the same as in
Example 6.1. One direction in the Euclidean sense does not have to contribute by
one to the dimension of the space.

Väisälä has shown in [17] that porosity is qualitatively preserved by quasisymmet-
ric maps, in particular, by bi-Lipschitz maps. Naturally the porosity might decrease
when taking a quasisymmetric image of a porous set. Nevertheless we might ask if
our previous results can be generalized to quasisymmetric images of R

n. It turns
out that this is not true even for bi-Lipschitz images of R as is shown by the next
example.

Example 6.3. Take a λ ∈]0, 1
2
[ and a Cantor λ-set Cλ ⊂ R which is the attractor

of the function system {λx, λx + 1 − λ}. Look at the graph of a stretched distance
function from that set and define the space X ⊂ R

2 as

X =
{

(x, y) ∈ R
2 : y =

3 − 2λ

1 − 2λ
dE(x, Cλ)

}

.

The metric d in X is given by restricting the maximum metric of R
2 to X. The

space (X, d) is now bi-Lipschitz equivalent to R with bi-Lipschitz constant 3−2λ
1−2λ

and
the Cantor set in X, i.e.,

C =
{

(x, y) ∈ X : y = 0
}

is maximally porous, but still

dimH(C) = dimH(Cλ) =
log(1

2
)

log(λ)
> 0 = 1 − 1.

An example of space X with λ = 1
4

is given in Figure 6.
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Figure 6. An example of a bi-Lipschitz image of R where maximally porous sets can have

positive dimension.

The space of Example 6.3 clearly violates the condition (5) in Theorem 2.1.
The two previous examples have shown that alone the existence of geodesics in the
space or the existence of a bi-Lipschitz map from the space to R

n is not enough to
ensure a dimension result similar to (1). On the other hand, these two conditions
with an extra assumption on the convexity of balls is sufficient as we proved in the
Corollary 2.5. There is still a gap between positive results and negative examples
and it remains open, for example, whether or not one can drop the assumption on
convexity in Corollary 2.5.
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