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Abstract. We consider the Triebel–Lizorkin spaces F
s(·)
p(·),q(·)(R

n) of variable smoothness and
integrability as introduced recently by Diening, Hästö and Roudenko in [9]. Under certain regularity
conditions on the function parameters involved we show that

F
s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n)

if
s0(x) ≥ s1(x) and s0(x)− n

p0(x)
= s1(x)− n

p1(x)
for all x ∈ Rn

with embeddings of Sobolev and Bessel potential spaces included as special cases.
If inf

x∈Rn
(s0(x)− s1(x)) > 0 we recover also the analogue of the Jawerth embedding

F
s0(·)
p0(·),q0(·)(R

n) ↪→ F
s1(·)
p1(·),q1(·)(R

n)

for any q0, q1.
The proofs are based on the decomposition techniques of [9] and work exclusively with the

associated sequence spaces f
s(·)
p(·),q(·).

1. Introduction

The interplay between smoothness and integrability constitutes one of the corner
stones of the theory of function spaces. It can be traced back as far as to Hardy and
Littlewood [17, 18], but the decisive breakthrough was achieved by Sobolev [33], who
proved the famous embedding

(1.1) Wm
p (Ω) ↪→ Lq(Ω),

where Ω ⊂ Rn is a bounded domain with Lipschitz boundary, Lq(Ω) stands for the
usual Lebesgue space and Wm

p (Ω) denotes the Sobolev space of functions with all
distributive derivatives of order smaller or equal to m bounded in the Lp(Ω) norm.
The crucial relation between the involved parameters m ∈ N, 1 < p < n/m and
1 < q < ∞ is

(1.2)
1

q
=

1

p
− m

n
.

During the last seventy years, many scales of spaces of smooth functions were defined
using various techniques (e.g. derivatives, differences, Fourier coefficients or Fourier
transform) with the corresponding analogues of (1.1) and (1.2) playing usually an
important role in most of the applications. Actually, it seems that any new scale
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of spaces of smooth functions needs to exhibit some kind of interaction between
smoothness and integrability to be accepted by the mathematical audience.

In recent years there has been a growing interest in function spaces describing
local regularity properties of functions. The first spaces of this type are the spaces of
variable integrability, which were introduced by Orlicz [27] already in 1931 and stud-
ied in detail by Kováčik and Rákosník [24] in 1991 together with the corresponding
Sobolev spaces of variable integrability. During 1990’s these spaces found appli-
cations in the study of variational integrals with non-standard growth, but it was
probably the work of R ‌užička [29, 30, 31] on electrorheological fluids what promoted
an enormous interest in these spaces. Since then, more than one hundred papers on
this topic appeared. We refer to [8] for a brief overview and an extensive collection
of references.

Another way how to describe the local properties of a function was outlined
already by Peetre in [28, p. 266] in Chapter 12 named “Some strange new spaces”
and resulted in the concept of 2-microlocal spaces, cf. [5] and [20]. Along a different
line of study, Leopold [25] introduced spaces of Besov-type with variable smoothness,
but constant integrability. This approach was further developed by Besov [3, 4].

The Sobolev embedding for the spaces with variable integrability was addressed
already by Kováčik and Rákosník [24] and later on by R ‌užička [31]. But their results
failed to cover the optimal exponent according to (1.1). Edmunds and Rákosník
[10, 11] proved the optimal Sobolev embedding theorem under Lipschitz and Hölder
continuity of the exponents, cf. also [13]. Finally, Diening [7] and Samko [32] showed,
that log-Hölder continuity is sufficient.

The embeddings of Besov and Triebel–Lizorkin spaces of variable smoothness
were obtained by Besov [4] in a fairly general form. It seems that Leopold [26]
was the only one up to now who tried to connect the function spaces with variable
smoothness with spaces of variable integrability. Unfortunately, he also failed to
recover the optimal exponent.

The last step (up to now) was done by Diening, Hästö and Roudenko in [9]. These
authors combined the concept of spaces with variable integrability of Orlicz, Kováčik
and Rákosník with the concept of variable smoothness of Leopold and Besov (which
is in some sense very similar to the ideas of Peetre, Bony and Jaffard) and proposed
the function spaces of Triebel–Lizorkin type of variable smoothness and integrability,
cf. Definition 2.5. They proved (under some restrictions on the function parameters
involved), that these spaces include the Lebesgue and Sobolev spaces of variable
integrability and the spaces of variable smoothness as special cases. They proved
also a certain version of the atomic decomposition theorem, which is a well known
tool in the theory of function spaces of Besov and Triebel–Lizorkin type. Finally,
they proved an analogue of the usual trace theorem, which exhibits the interplay
between smoothness and integrability. The reader may consult also [12], [19] and
references given there for other versions of the trace embedding theorem for Sobolev
spaces with varying integrability.

Although mentioned on several places in [9] (and even in the abstract), the au-
thors have not presented any version of Sobolev embedding, which would not only
result in a generalization of (1.1) with (1.2) holding pointwise, but would (in the sense
described above) help to justify the existence of this scale of function spaces—at least
until this promising line of research finds any applications.
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Our aim is to fill this gap. In the frame of Triebel–Lizorkin spaces with constant
parameters, the following analogue of Sobolev embedding is true.

Theorem 1.1. (Jawerth, [21]) Let

(1.3) −∞ < s1 < s0 < ∞, 0 < p0 < p1 < ∞, 0 < q ≤ ∞
with

(1.4) s0 − n

p0

= s1 − n

p1

.

Then

(1.5) F s0
p0,∞(Rn) ↪→ F s1

p1,q(R
n).

The remarkable effect, which was first observed by Jawerth and which is in some
sense unique to the Triebel–Lizorkin spaces, is the improvement in the third fine
parameter q > 0, which may be chosen arbitrarily small. Of course, (1.5) holds only
for q = ∞ if s0 = s1 (or, equivalently, p0 = p1). If the smoothness and integrability
parameters s and p become functions of x ∈ Rn, then it seems to be appropriate to
assume that (1.4) holds pointwise, i.e.,

(1.6) s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and if the improvement in the fine parameter is to be achieved, that also

(1.7) inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

( 1

p0(x)
− 1

p1(x)

)
> 0.

We prove that these “natural” assumptions (combined with appropriate regularity
conditions) are really sufficient. We show, that if s1(x) ≤ s0(x) and p0(x) ≤ p1(x)
with (1.6) and 0 < q(x) ≤ ∞ for all x ∈ Rn, then

(1.8) F
s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n).

If also (1.7) is satisfied, then even

F
s0(·)
p0(·),∞(Rn) ↪→ F

s1(·)
p1(·),q(·)(R

n)

holds.

2. Preliminaries

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing, in-
finitely differentiable functions on Rn and let S ′(Rn) be its dual—the space of all
tempered distributions. For f ∈ S ′(Rn) we denote by f̂ = Ff its Fourier transform
and by f∨ or F−1f its inverse Fourier transform. We give a Fourier-analytic defi-
nition of Triebel–Lizorkin spaces, which relies on the so-called dyadic resolution of
unity. Let ϕ ∈ S(Rn) with

(2.1) ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 3

2
.

We put ϕ0 = ϕ and ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x) for j ∈ N and x ∈ Rn. This leads
to the identity

∞∑
j=0

ϕj(x) = 1, x ∈ Rn.
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Definition 2.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Then F s
pq(R

n) is the
collection of all f ∈ S ′(Rn) such that

(2.2) ||f |F s
pq(R

n)|| =
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∣∣∣∣
∣∣∣∣ < ∞

(with the usual modification for q = ∞).

Remark 2.2. (i) These spaces have a long history. In this context we recommend
[28, 34, 35, 37] as standard references. We point out that the spaces F s

pq(R
n) are

independent of the choice of ϕ in the sense of equivalent (quasi-)norms. Special cases
of this scale include Lebesgue spaces, Sobolev spaces and inhomogeneous Hardy
spaces.

(ii) Interchanging the order of Lp and `q norm in (2.2) would lead to the Fourier-
analytic definition of Besov spaces. Unfortunately, they seem to be less convenient
for describing local regularity properties of distributions, because they lack the so-
called localization principle, cf. [35, Theorem 2.4.7]. Hence (also in correspondence
with [9]) we study only the F -scale.

Next, we introduce the Lebesgue spaces of variable integrability.

Definition 2.3. Let p : Rn → (0,∞) be a measurable function. Then the
space Lp(·)(Rn) consists of all measurable functions f : Rn → [−∞,∞] such that
||f |Lp(·)(Rn)|| < ∞, where

||f |Lp(·)(R
n)|| = inf{λ > 0 :

∫

Rn

( |f(x)|
λ

)p(x)

dx ≤ 1}

is the Minkowski functional of the absolutely convex set {f :
∫
Rn |f(x)|p(x) dx ≤ 1}.

Remark 2.4. (i) One could also consider (and it was done so already by Kováčik
and Rákosník in [24]) that p(x) = ∞ on a set of a positive measure. But Definition 2.3
is already sufficient for our purpose, cf. also Remark 2.6.

(ii) If p(x) ≥ 1 for all x ∈ Rn, then Lp(·)(Rn) are Banach spaces. To ensure, that
Lp(·)(Rn) are at least quasi-Banach spaces, we assume that

p− := inf
x∈Rn

p(x) > 0.

The generalization of Definition 2.1 to the setting of variable smoothness and
integrability as it was given by [9] is surprisingly simple.

Definition 2.5. Let −∞ < s(x) < +∞, 0 < p(x) < ∞, 0 < q(x) ≤ ∞. Then
F

s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn) such that

(2.3) ||f |F s(·)
p(·),q(·)(R

n)|| =
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

2js(·)q(·)|(ϕj f̂)∨(·)|q(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣
∣∣∣∣ < ∞

(with the usual modification for q(x) = ∞).

Remark 2.6. This definition introduces the Triebel–Lizorkin spaces of variable
smoothness, integrability and summability under almost no conditions on s(·), p(·)
and q(·). Unfortunately, these spaces may depend on the choice of the function ϕ
as described in (2.1). This is the case already when s and q < ∞ are constant and
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p = ∞. We refer to [34, Chapter 2.3.4] for a detailed discussion of related aspects.
So, a first natural restriction seems to be the condition

p+ = sup
x∈Rn

p(x) < ∞.

Together with Remark 2.4(ii) this leads to

(2.4) 0 < p− := inf
z∈Rn

p(z) ≤ p(x) ≤ sup
z∈Rn

p(z) =: p+ < ∞, x ∈ Rn.

Next we present the regularity assumptions of [9].

Definition 2.7. Let g be a continuous function on Rn.
(i) We say, that g is 1-locally log-Hölder continuous, abbreviated g ∈ C log

1−loc(R
n),

if there exists c > 0 such that

|g(x)− g(y)| ≤ c

log(e + 1/||x− y||∞)
for all x, y ∈ Rn with ||x− y||∞ ≤ 1.

Here, ||z||∞ = max{|z1|, . . . , |zn|} denotes the maximum norm of z ∈ Rn.

(ii) We say, that g is locally log-Hölder continuous, abbreviated g ∈ C log
loc (R

n), if
there exists c > 0 such that

|g(x)− g(y)| ≤ c

log(e + 1/|x− y|) , x, y ∈ Rn.

(iii) We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn),
if it is locally log-Hölder continuous and there exists c > 0 and g∞ ∈ R such that

|g(x)− g∞| ≤ c

log(e + |x|) , x ∈ Rn.

Remark 2.8. (i) The conditions (ii) and (iii) are overtaken literally from [9] and
we shall need them only for the transference of our results from sequence spaces to
function spaces. It is the less restrictive condition (i), which we shall involve in our
proofs.

(ii) The condition (i) is very similar to the original condition of Diening used in
[6] to show the boundedness of the maximal operator.

We shall use the property (i) in the form formulated in next Lemma. We leave
out the trivial proof.

Lemma 2.9. Let g ∈ C log
1−loc(R

n). Then there exists a constant c > 0 such that
for every j ∈ N0 and every x, y ∈ Rn with ||x− y||∞ ≤ 2−j the following inequalities
hold:

1

c
≤ 2−j|g(x)−g(y)| ≤ 2j(g(x)−g(y)) ≤ 2j|g(x)−g(y)| ≤ c.

Definition 2.10. (Standing assumptions of [9]) Let p and q be positive functions
on Rn such that 1

p
, 1

q
∈ C log(Rn) and let s ∈ C log

loc (R
n) ∩ L∞(Rn) with s(x) ≥ 0 and

let s(x) have a limit at infinity.

Remark 2.11. (i) Let us note, that the standing assumptions imply in particular
(2.4) and a similar chain of inequalities for q(x).

We introduce the sequence spaces associated with the Triebel–Lizorkin spaces of
variable smoothness and integrability. Let j ∈ N0 and m ∈ Zn. Then Qjm denotes
the closed cube in Rn with sides parallel to the coordinate axes, centered at 2−jm,
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and with side length 2−j. By χjm = χQjm
we denote the characteristic function of

Qj m. If
γ = {γjm ∈ C : j ∈ N0,m ∈ Zn},

−∞ < s(x) < ∞, 0 < p(x) < ∞ and 0 < q(x) ≤ ∞ for all x ∈ Rn, we define

||γ|f s(·)
p(·),q(·)|| =

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js(·)q(·)|γjm|q(·)χjm(·)
)1/q(·)

|Lp(·)(R
n)

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣
∞∑

j=0

∑
m∈Zn

2js(·)|γjm|χjm(·)
∣∣∣∣Lp(·)(`q(·))

∣∣∣∣
∣∣∣∣.

(2.5)

Establishing the connection between the function spaces F
s(·)
p(·),q(·)(R

n) and the
sequence spaces f

s(·)
p(·),q(·) was the main aim of [9]. Following [14] and [15], these

authors investigated the properties of the so-called ϕ-transform (denoted by Sϕ) and
obtained the following result.

Theorem 2.12. Under the standing assumptions of [9]

||f |F s(·)
p(·),q(·)(R

n)|| ≈ ||Sϕf |f s(·)
p(·),q(·)||

with constants independent of f ∈ F
s(·)
p(·),q(·)(R

n).

Remark 2.13. (i) The assumptions on s in the Theorem 2.12 seem to be too
restrictive. It seems, that several authors now try to prove similar results also for
s(x), which are not necessarily positive or convergent at infinity. We refer at least to
[23] and [39].

From this reason we formulate the theorems of embeddings of sequence spaces
under minimal assumptions, which shall really be needed in the proof. If later on
any improved version of Theorem 2.12 should appear, the results may then be easily
taken over.

(ii) We shall use only a corollary of Theorem 2.12, namely that (under the stand-
ing assumptions) the space F

s(·)
p(·),q(·)(R

n) is isomorphic to a subspace of f
s(·)
p(·),q(·) via

the Sϕ transform.

3. Main results

First, we state the results in the form of embeddings of sequence spaces under
those assumptions really needed in the proof. Later on, we combine those with the
standing assumptions of [9] and obtain similar results also for the embeddings of
function spaces. Finally, we state separately the embeddings of Sobolev and Bessel
potential spaces.

Theorem 3.1. Let −∞ < s1(x) ≤ s0(x) < ∞, 0 < p0(x) ≤ p1(x) < ∞ for all
x ∈ Rn with 0 < p−0 ≤ p−1 ≤ p+

1 < ∞ and

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.

Let q(x) = ∞ for all x ∈ Rn or 0 < q− ≤ q(x) < ∞ for all x ∈ Rn and s0,
1
p0
∈

C log
1−loc(R

n). Then
f

s0(·)
p0(·),q(·) ↪→ f

s1(·)
p1(·),q(·).
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Proof. Step 1. q(x) = ∞ for all x ∈ Rn. We set

(3.1) h(x) = sup
j,m

2js0(x)|γjm|χjm(x), x ∈ Rn.

Here, and later on, the supremum is taken over all j ∈ N0 and m ∈ Zn. Then by
(2.5),

(3.2) ||γ|f s0(·)
p0(·),∞|| = ||h|Lp0(·)(R

n)||
and trivially

(3.3) 2js0(x)|γjm| ≤ h(x), x ∈ Qjm,

which leads to

(3.4) |γjm| ≤ inf
x∈Qjm

2−js0(x)h(x), j ∈ N0, m ∈ Zn.

Using consequently (2.5), (3.4) and Lemma 2.9 for s0 we may estimate

||γ|f s1(·)
p1(·),∞|| =

∣∣∣∣
∣∣∣∣sup

j,m
2js1(x)|γjm|χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣sup

j,m
2js1(x)

(
inf

y∈Qjm

2−js0(y)h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣sup

j,m
2j(s1(x)−s0(x))

(
inf

y∈Qjm

2j(s0(x)−s0(y))h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)|Lp1(·)(R

n)

∣∣∣∣
∣∣∣∣.

Let A−1 ⊂ Rn stand for those x, where

(3.5) sup
j,m

2
jn

(
1

p1(x)
− 1

p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x) = 0.

For each x ∈ Rn \ A−1 we denote by J = Jx ∈ N0 the smallest non-negative integer
such that

sup
j,m

2
jn

(
1

p1(x)
− 1

p0(x)

)(
inf

y∈Qjm

h(y)
)
χjm(x)

≤ 2 · 2Jn
(

1
p1(x)

− 1
p0(x)

) ∑
m∈Zn

(
inf

y∈QJm

h(y)
)
χJm(x).

(3.6)

We may assume, that for almost all x ∈ Rn the left-hand side of (3.5) is finite.
Otherwise h(x) = ∞ on a set of positive measure and there is nothing to prove.
Furthermore, we denote by AJ ⊂ Rn those x with Jx = J ∈ N0.

Let λ > 0 be a positive real number such that

1 ≥
∫

Rn

(
h(x)

λ

)p0(x)

dx =
∞∑

J=−1

∫

AJ

(
h(x)

λ

)p0(x)

dx

≥
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

(3.7)
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We set

hjm :=

inf
y∈Qjm

h(y)

λ
, j ∈ N0, m ∈ Zn

and show, that there is a constant C > 0 such that
∫

Rn

(
C−1 sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx ≤ 1.

We split the integration over Rn into integrals over AJ and use (3.6).
∫

Rn

(
C−1 sup

j,m
2

jn
(

1
p1(x)

− 1
p0(x)

)
hjmχjm(x)

)p1(x)

dx

≤
∞∑

J=0

∫

AJ

(
(C/2)−1

∑
m∈Zn

2
Jn

(
1

p1(x)
− 1

p0(x)

)
hJmχJm(x)

)p1(x)

dx

=
∞∑

J=0

∑
m∈Zn

∫

AJ

(
(C/2)−12

Jn
(

1
p1(x)

− 1
p0(x)

)
hJm

)p1(x)

χJm(x) dx

=
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx

(3.8)

Let us fix (J,m) ∈ N0 × Zn. We shall distinguish two cases.
1. case: hJm ≤ 1. Then (as p0(x) ≤ p1(x))

2
Jn

(
1− p1(x)

p0(x)

)
≤ 1

and
h

p1(x)
Jm ≤ h

p0(x)
Jm .

Hence for C ≥ 2 we obtain∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx ≤

∫

AJ∩QJm

h
p0(x)
Jm dx

≤
∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx.

(3.9)

2. case: hJm > 1. Then

1 ≥
∫

QJm

(
h(x)

λ

)p0(x)

dx ≥
∫

QJm

h
p0(x)
Jm dx ≥ 2−Jnh

pJm
0

Jm ,

where pJm
0 = inf

x∈QJm

p0(x) > 0. Hence

(3.10) 1 < hJm ≤ 2Jn/pJm
0 .

We rewrite the integrals in (3.8) as∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx

=

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)−p0(x)
Jm︸ ︷︷ ︸

(?)

h
p0(x)
Jm dx

(3.11)
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and show that the estimate (?) ≤ 1 for C ≥ 2 large enough and x ∈ QJm finishes
immediately the proof. By (3.9) and (3.11) combined with (?) ≤ 1 and (3.7)

∞∑
J=0

∑
m∈Zn

∫

AJ∩QJm

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
h

p1(x)
Jm dx =

∑

(J,m):hJm≤1

· · ·+
∑

(J,m):hJm>1

. . .

≤
∑

(J,m):hJm≤1

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx +
∑

(J,m):hJm>1

∫

AJ∩QJm

h
p0(x)
Jm dx

≤
∞∑

J=0

∑
m∈Zn

∫

AJ∩QJm

(
h(x)

λ

)p0(x)

dx ≤ 1.

Hence, it remains to prove that (?) ≤ 1 for all x ∈ QJm. By (3.10), it is enough to
show that

(C/2)−p1(x)2
Jn

(
1− p1(x)

p0(x)

)
· 2Jn· p1(x)−p0(x)

pJm
0 ≤ 1

or, equivalently,

2
Jn[p1(x)−p0(x)]·[ 1

pJm
0

− 1
p0(x)

] ≤ (C/2)p1(x).

Using Lemma 2.9 for 1
p0

(with constant 2clog), this follows from

2
n[1− p0(x)

p1(x)
]·clog ≤ C/2.

As 0 ≤ 1− p0(x)
p1(x)

≤ 1, we may choose C = 2nclog+1 ≥ 2.

Step 2. 0 < q(x) < ∞ for all x ∈ Rn. Let λ > 0 be a positive real number with

(3.12)
∫

Rn

( ∞∑
j=0

∑
m∈Zn

2js0(x)q(x)|γjm|q(x)λ−q(x)χjm(x)
)p0(x)/q(x)

dx ≤ 1.

We have to show that there is a constant C > 0 independent of {γjm}, such that

(3.13)
∫

Rn

( ∞∑
j=0

∑
m∈Zn

2js1(x)q(x)|γjm|q(x)(Cλ)−q(x)χjm(x)
)p1(x)/q(x)

dx ≤ 1.

We show, that under (3.12) the following inequality holds for almost all x ∈ Rn

( ∞∑
j=0

∑
m∈Zn

2js1(x)q(x) |γjm|q(x)

(Cλ)q(x)
χjm(x)

)p1(x)

≤
( ∞∑

j=0

∑
m∈Zn

2js0(x)q(x) |γjm|q(x)

λq(x)
χjm(x)

)p0(x)

.

(3.14)

Obviously, (3.14) implies (3.13).
For almost every x ∈ Rn and every j ∈ N0, there is exactly one m = m(j) ∈ Zn

such that x ∈ Qj,m(j). We fix one such an x. Then (3.14) reads like
∞∑

j=0

2js1(x)q(x)|γj,m(j)|q(x)(Cλ)−q(x)

≤
( ∞∑

j=0

2js0(x)q(x)|γj,m(j)|q(x)λ−q(x)
)p0(x)/p1(x)

.

(3.15)
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We set

αj := 2js0(x) |γj,m(j)|
λ

, j ∈ N0

and rewrite (3.15) once again. It now becomes

(3.16)
∞∑

j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

(αj/C)q(x) ≤
( ∞∑

j=0

α
q(x)
j

)p0(x)/p1(x)

.

Using (3.12) and Lemma 2.9 for s0, we get

1 ≥
∫

Qj,m(j)

(
2js0(y)q(y)|γj,m(j)|q(y)λ−q(y)

)p0(y)/q(y)

dy

=

∫

Qj,m(j)

(
2js0(y)|γj,m(j)|λ−1

)p0(y)

dy

=

∫

Qj,m(j)

(
2j(s0(y)−s0(x))2js0(x)|γj,m(j)|λ−1

)p0(y)

dy

≥
∫

Qj,m(j)

(
c 2js0(x)|γj,m(j)|λ−1

)p0(y)

dy

=

∫

Qj,m(j)

(
c αj

)p0(y)
dy.

If cαj > 1, we may further estimate

1 ≥ 2−jn
(
c αj

)infz∈Qj,m(j)
p0(z)

,

or, equivalently,

(3.17) c αj ≤ 2
jn

infz∈Qj,m(j)
p0(z)

= 2
jn

p0(x) 2
jn

infz∈Qj,m(j)
p0(z)

− jn
p0(x) ≤ c′2

jn
p0(x)

and this estimate holds true also if c αj ≤ 1.

If
∞∑

j=0

α
q(x)
j ≤ 1, then (3.16) follows by monotonicity and p0(x) ≤ p1(x) for any

C ≥ 1. If
∞∑

j=0

α
q(x)
j = ∞, then there is nothing to prove. In the remaining case

1 <

∞∑
j=0

α
q(x)
j < ∞ we find a non-negative integer J ∈ N0 such that

(3.18) 2
Jnq(x)
p0(x) <

∞∑
j=0

α
q(x)
j ≤ 2

(J+1)nq(x)
p0(x) .
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We split the sum over j ∈ N0 into two parts, apply (3.17) in the first part and use
the inequality p0(x) ≤ p1(x) together with (3.18) in the second part.

∞∑
j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j

=
J∑

j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j +

∞∑
j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

α
q(x)
j

≤ cq(x)

J∑
j=0

2
jn

(
1

p1(x)
− 1

p0(x)

)
q(x)

2
jnq(x)
p0(x) + 2

(J+1)n
(

1
p1(x)

− 1
p0(x)

)
q(x)

∞∑
j=J+1

α
q(x)
j

≤ cq(x)

J∑
j=0

2
jnq(x)
p1(x) + 2

(J+1)nq(x)
p1(x) ≤ c

q(x)
1 2

(J+1)nq(x)
p1(x)

≤ c
q(x)
1 2

nq(x)
p1(x)

( ∞∑
j=0

α
q(x)
j

) p0(x)
p1(x) ≤ Cq(x)

( ∞∑
j=0

α
q(x)
j

) p0(x)
p1(x)

.

In the last line, we used 0 < p−1 ≤ p+
1 < ∞ and again (3.18). This finishes the proof

of (3.16) and consequently of the whole Step 2. ¤

Theorem 3.2. Let −∞ < s1(x) < s0(x) < ∞ and 0 < p0(x) < p1(x) < ∞ for
all x ∈ Rn with 0 < p−0 < p+

1 < ∞,

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and

(3.19) ε := inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

(
1

p0(x)
− 1

p1(x)

)
> 0.

Let s0,
1
p0
∈ C log

1−loc(R
n). Then, for every 0 < q ≤ ∞,

f
s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q.

Proof. We use again the notation of (3.1)–(3.4).

||γ|f s1(·)
p1(·),q|| =

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js1(x)q|γj m|qχj m(x)

)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2js1(x)q
(

inf
y∈Qjm

2−js0(y)h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2j(s1(x)−s0(x))q
(

inf
y∈Qjm

2j(s0(x)−s0(y))h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣

(3.20)

≤ c

∣∣∣∣
∣∣∣∣
( ∞∑

j=0

∑
m∈Zn

2
jn

(
1

p1(x)
− 1

p0(x)

)
q
(

inf
y∈Qjm

h(y)
)q

χjm(x)
)1/q

|Lp1(·)(R
n)

∣∣∣∣
∣∣∣∣.
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Let again λ > 0 be a positive real number, such that

(3.21)
∫

Rn

(h(x)

λ

)p0(x)

dx ≤ 1.

For almost every x ∈ Rn and every j ∈ N0 there is exactly one m = m(j) such that
x ∈ Qj,m(j). Fix one such x ∈ Rn and set

αj :=

inf
y∈Qj,m(j)

h(y)

λ
.

Then {αj}∞j=0 is a non-decreasing sequence of non-negative real numbers with α :=

lim
j→∞

αj ≤ h(x)

λ
.

Let first α ≤ 1. Then we use the monotonicity of {αj}, (3.19) and obtain for
Cq ≥ (1− 2−nεq)−1

( ∞∑
j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j

)p1(x)/q

≤
( ∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

)p1(x)/q

=

( ∞∑
j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q

)p1(x)/q

· αp1(x) ≤ αp0(x) ≤
(h(x)

λ

)p0(x)

.

(3.22)

Let us now consider the case α > 1. By (3.21), we get

1 ≥
∫

Rn

(h(x)

λ

)p0(x)

dx ≥
∫

Qj,m(j)

α
p0(x)
j dx.

If αj > 1, we may further estimate

1 ≥ 2−jnα
infy∈Qj,m(j)

p0(y)

j .

We apply Lemma 2.9 for 1
p0

to obtain an analogue of (3.17)

(3.23) αj ≤ 2
jn

infy∈Qj,m(j)
p0(y)

= 2
jn

p0(x) · 2
jn

infy∈Qj,m(j)

− jn
p0(x) ≤ clog 2

jn
p0(x)

and this estimate holds true also for αj ≤ 1.
We show, that for C > 0 large enough (cf. (3.16))

(3.24)
∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j ≤ α
qp0(x)
p1(x) .

As α = ∞ implies h(x) = ∞ and this happens only for a set of x ∈ Rn with measure
zero, we may choose for almost every x ∈ Rn a non-negative integer J ∈ N0 such
that

(3.25) 2
Jn

p0(x) < α ≤ 2
(J+1)n
p0(x)

and split
∞∑

j=0

C−q2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

j =
J∑

j=0

. . .

︸ ︷︷ ︸
I

+
∞∑

j=J+1

. . .

︸ ︷︷ ︸
II

.
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By (3.23) and (3.25)

I =
J∑

j=0

C−q2
jnq

p1(x) · 2− jnq
p0(x) · αq

j ≤
J∑

j=0

C−qclog2
jnq

p1(x) ≤ c−12
(J+1)nq

p1(x) ≤ 2
Jnq

p1(x) ≤ α
qp0(x)
p1(x) .

The monotonicity of {αj} and (3.25) lead to

II ≤
∞∑

j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q
αq

jC
−q ≤ αqC−q

∞∑
j=J+1

2
jn

(
1

p1(x)
− 1

p0(x)

)
q

≤ αqC−q2
Jn

(
1

p1(x)
− 1

p0(x)

)
q ≤ αqC−q

(
αp0(x)2−n

)( 1
p1(x)

− 1
p0(x)

)
q

= α
qp0(x)
p1(x) C−q2

n
(

1
p0(x)

− 1
p1(x)

)
q ≤ α

qp0(x)
p1(x)

This finishes the proof of (3.24). Now (3.20), (3.22), (3.24) with (3.21) gives

||γ|f s1(·)
p1(·),q|| ≤ C||γ|f s0(·)

p0(·),∞||. ¤
Remark 3.3. The original proof of Jawerth of Theorem 1.1 used the technique

of a distribution function, which fails for Lp(·)(Rn). Another proof was given by
Johnsen and Sickel [22] and relied on an inequality of Plancherel–Pólya–Nikol’skij
type. Its classical proof [34, Chapter 1.3] is based on dilation arguments and (at
least to our knowledge) there is still no analogue of these inequalities for Lp(·)(Rn)
up to now.

Our proofs of Theorems 3.1 and 3.2 were motived by [38]. An essential tech-
nique used there was the concept of non-increasing rearrangement. Unfortunately, it
fails completely in the case of variable integrability exponents p0(x) and p1(x). To
avoid this obstacle, we had to employ the somehow artificial inequality (3.24)—or its
analogue (3.16). To motivate this step, let us consider the interpolation inequality
between Lorentz spaces

(3.26) ||f |Lp1,q(0, 1)|| ≤ c ||f |Lp0,∞(0, 1)||θ · ||f |L∞(0, 1)||1−θ

with

0 < p0 < p1 < ∞,
1

p1

=
θ

p0

+
1− θ

∞ , 0 < θ < 1

and its discrete version
( ∞∑

j=0

2
−jnq( 1

p0
− 1

p1
)
f ∗(2−jn)q

)1/q

≤ c
(

sup
j∈N0

2−jn/p0f ∗(2−jn)
)1− p0

p1 ·
(

sup
j∈N0

f ∗(2−jn)
) p0

p1 .

We refer to [2, Chapter 2] as a standard reference for non-increasing rearrangements
and to [2, Chapter 4.4] for the notation connected with Lorentz spaces. We leave the
details to the reader. The reader may also observe some similarities between (3.26)
and the inequality (4) of [22].

Using Theorem 2.12, we obtain immediately following

Theorem 3.4. Let s0, s1, p0, p1 and q be continuous functions satisfying the
standing assumptions of [9]. Let s0(x) ≥ s1(x) and p0(x) ≤ p1(x) for all x ∈ Rn

with
s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn.
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Then
F

s0(·)
p0(·),q(·)(R

n) ↪→ F
s1(·)
p1(·),q(·)(R

n).

We denote by W k
p(·)(R

n) the Sobolev space of functions form Lp(·)(Rn), such that
all its distributional derivatives of order smaller or equal to k exist and belong to
Lp(·)(Rn). Furthermore, we introduce the Bessel potential spaces of variable integra-
bility introduced by Almeida and Samko [1] and by Gurka, Harjulehto and Nekvinda
[16]. Let σ ∈ R and let Bσ = F−1(1 + |ξ|2)−σ/2F be the Bessel potential operator.
We set

Lσ
p(·)(R

n) = {Bσf : f ∈ Lp(·)(R
n)}

and equip this space with norm ||f |Lσ
p(·)(R

n)|| = ||B−σf |Lp(·)(Rn)||.
Let p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and σ ∈ [0,∞). It was shown in

[9, Theorem 4.5] that F σ
p(·),2(R

n) ∼= Lσ
p(·)(R

n) in the sense of equivalent norms. If
moreover σ ∈ N0, then F σ

p(·),2(R
n) ∼= W σ

p(·)(R
n).

Hence setting q = 2 implies embeddings of Bessel potential spaces.

Theorem 3.5. Let 0 ≤ s1 ≤ s0 < ∞ and p0, p1 ∈ C log(Rn) with 1 < p−0 ≤
p0(x) ≤ p1(x) ≤ p+

1 < ∞ for all x ∈ Rn. If

s0 − n

p0(x)
= s1 − n

p1(x)
, x ∈ Rn,

then
Ls0

p0(·)(R
n) ↪→ Ls1

p1(·)(R
n).

If s1 ∈ N0, then Ls1

p1(·)(R
n) may be replaced by W s1

p1(·)(R
n) and similarly for s0.

Remark 3.6. Let us only mention, that if 1 < p− ≤ p+ < ∞, then p ∈ C log(Rn)
if, and only if, 1

p
∈ C log(Rn). So the standing assumptions on p0 and p1 are satisfied

and the proof becomes trivial.

Theorem 3.7. Let s0, s1, p0, p1, q0, q1 be continuous functions satisfying the stand-
ing assumptions of [9] with

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
, x ∈ Rn

and

inf
x∈Rn

(s0(x)− s1(x)) = n inf
x∈Rn

( 1

p0(x)
− 1

p1(x)

)
> 0.

Then
F

s0(·)
p0(·),q0(·)(R

n) ↪→ F
s1(·)
p1(·),q1(·)(R

n).

Proof. By monotonicity and using Theorem 3.2, we obtain

f
s0(·)
p0(·),q0(·) ↪→ f

s0(·)
p0(·),∞ ↪→ f

s1(·)
p1(·),q−1

↪→ f
s1(·)
p1(·),q1(·)

and Theorem 2.12 finishes the proof. ¤
Finally, we may combine our embedding results with the trace results of [9] and

obtain the following Sobolev embeddings for traces. We state it for Sobolev spaces,
but a similar assertion holds also for Bessel potential spaces and Triebel–Lizorkin
spaces.
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Theorem 3.8. Let k ∈ N and 1 < p− ≤ p+ < n
k
with 1

p
∈ C log(Rn). Then

W k
p(·)(R

n) ↪→ L (n−1)p(·)
n−kp(·)

(Rn−1).

Proof. By Theorem 3.13. of [9], we have

tr W k
p(·)(R

n) → F
k− 1

p(·)
p(·),p(·)(R

n−1),

which may be combined with Theorem 3.7

F
k− 1

p(·)
p(·),p(·)(R

n−1) ↪→ F 0
p̃(·),2(R

n−1) = Lp̃(·)(R
n−1)

for p̃(·) given by

k − 1

p(·) −
n− 1

p(·) = −n− 1

p̃(·) .

This finishes the proof. ¤
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