
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 523–528

CAMPANATO THEOREM ON
METRIC MEASURE SPACES

Przemysław Górka

Universidad de Talca, Instituto de Matemática y Física
Casilla 747, Talca, Chile

and

Warsaw University of Technology, Department of Mathematics and Information Sciences
Pl. Politechniki 1, 00-661 Warsaw, Poland; pgorka@mini.pw.edu.pl

Abstract. We prove the Campanato theorem on a metric space. The theorem characterizes
Hölder continuous functions by the growth of their local integrals. As a byproduct we obtain Morrey
theorem on Hajłasz–Sobolev spaces.

1. Introduction

In [1] Camapanato characterized Hölder continuous function f : Rn → R in terms
of the growth of it local integrals. To be more precise we recall this result.

Let Ω ⊂ Rn be a bounded domain such there exists some β > 0 with

|B(y, r) ∩ Ω| ≥ βrn for all y ∈ Ω, r > 0.

If f ∈ Lp(Y ) and there exist C and σ ∈ (n, n + p) such that∫

B(y,r)∩Ω

∣∣f(x)− fB(y,r)

∣∣p dµ ≤ Crσ for all y ∈ Ω, r > 0,

then f ∈ C
σ−n

p (Y ).

There is no doubt that Campanato theorem plays a crucial role in studying the
regularity of solutions to elliptic partial differential equations.

The main goal of the paper is Campanato type theorem on a metric measure space
(X, %, µ). In order to achieve such kinds of result we have to add some assumptions
on the measure µ and the metric %. We shall assume that the measure is doubling
and is continuous with respect to the metric %. It means that limy→x µ((B(x, r)4
B(y, r)) = 0 (see Definition 2.1), where4 is a symmetric difference. It turns out that
the doubling measure defined on the metric space satisfying the so-called segment
property is continuous with respect to the metric.

As a corollary we obtain Morrey like theorem for Hajłasz–Sobolev spaces.

2. Definitions

In this section we introduce definitions necessary for the paper. Let (X, %, µ) be
a metric measure space equipped with a metric % and Borel regular measure µ. We
assume throughout this paper that the measure of every open set is positive, and that
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the measure of every bounded set is finite. Moreover, we assume that the measure
µ satisfies a doubling condition. This means that there exist a constant Cd > 0 such
that for every ball B(x, r),

µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

By Lemma 14.6 from [4] we have

Remark 1. Let (X, %, µ) be a metric measure space equipped with a Borel mea-
sure % satisfying doubling condition with constant Cd. Then, for every y ∈ X and
r2 > r1 > 0 the inequality

µ(B(y, r2))

µ(B(y, r1))
≤ C2

d

(
r2

r1

)log2 Cd

holds.

Let A be a measurable subset of X and f ∈ L1(X). Then we denote the average
by

fA =
1

µ(A)

∫

A

f dµ.

Now, we recall the notion of continuity of a measure with respect to the metric
(see [3]).

Definition 2.1. Let (X, %, µ) be a metric measure space. Measure µ is said to
be continuous with respect to the metric % if for every r > 0, the following condition

lim
y→x

µ((B(x, r)4B(y, r)) = 0

holds. We will call such measure simply metric continuous when no confusion can
arise.

Let us stress that the continuity of µ is assumed at the rest of the paper. By the
basic properties of the symmetric difference 4 we obtain the fact.

Lemma 2.1. Let us assume that the measure µ is continuous with respect to
the metric. If f ∈ Lp(Y ) then for any r > 0 the map x 7−→ fB(x,r) is continuous.

This result will be needed in Section 3. Throughout the paper we assume that the
measure is continuous satisfying a doubling condition. Finally, we recall the result [3]
which expresses partial equivalence of doubling measures and continuous measures.

Theorem 2.1. Let (X, %, µ) be a doubling metric space satisfying the segment
property. Then, the measure µ is continuous with respect to the metric %.

Geometrically speaking, the segment property [2] means that for any x, y ∈ X
there exists continuous curve γ : [0, 1] → X such that γ(0) = x, γ(1) = y and for all
z ∈ [0, 1],

ρ(x, y) = ρ(x, γ(z)) + ρ(y, γ(z)).

3. Main result

In this section we present and prove the main result of this paper. We assume
the assumptions of Section 2.
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Theorem 3.1. Let p ≥ 1 and let Y ⊂ X be an open and pre-compact set such
that there exist β > 0 and R0 with

βµ(B(y, r)) ≤ µ(B(y, r) ∩ Y ) for all y ∈ Y, R0 > r > 0.

Then a function f ∈ Lp(Y ) belongs to Cα(Y ) for α ∈ (0, 1) (or to C0,1(Y ) in the
case α = 1) if and only if there exists a constant C with

1

µ(B(y, r))

∫

B(y,r)∩Y

∣∣f(x)− fB(y,r)

∣∣p dµ ≤ Cprαp for all y ∈ Y, r > 0.

In the definition of fB(y,r), we have extended f by 0 to X \ Y .

Remark 2. The theorem states that there exists f̃ which is Hölder continuous
and such that f = f̃ almost everywhere.

Proof. Let us assume that f ∈ Cα(Y ). Fix y ∈ Y and r > 0. If we take
x ∈ Y ∩B(y, r), we have

(1)
∣∣f(x)− fB(y,r)

∣∣ ≤ (2r)α ‖f‖Cα(Y )

where by definition

‖f‖Cα(Y ) = sup
y∈Y

|f(y)|+ sup
x,y∈Y,x 6=y

|f(x)− f(y)|
ρ(x, y)α

for α ∈ (0, 1),

‖f‖C0,1(Y ) = sup
y∈Y

|f(y)|+ sup
x,y∈Y,x 6=y

|f(x)− f(y)|
ρ(x, y)

for α = 1.

Integrating inequality (1) over the set B(y, r) ∩ Y we get∫

B(y,r)∩Y

∣∣f(x)− fB(y,r)

∣∣p dµ(x) ≤ µ(B(y, r))
(
2α ‖f‖Cα(Y )

)p

rαp.

Now, we shall prove the converse implication. For any y ∈ Y and 0 < r1 < r2 < R ≤
R0 we have∣∣fB(y,r1) − fB(y,r2)

∣∣p ≤ 2p−1
(∣∣f(x)− fB(y,r1)

∣∣p +
∣∣f(x)− fB(y,r2)

∣∣p) .

Integrating over the set Y ∩B(y, r1) we get
∣∣fB(y,r1) − fB(y,r2)

∣∣p ≤ 2p−1

µ(B(y, r1) ∩ Y )

(∫

Y ∩B(y,r1)

∣∣f(x)− fB(y,r1)

∣∣p dµ(x)

+

∫

Y ∩B(y,r1)

∣∣f(x)− fB(y,r2)

∣∣p dµ(x)

)

≤ 2p−1

βµ(B(y, r1))

(∫

Y ∩B(y,r1)

∣∣f(x)− fB(y,r1)

∣∣p dµ(x)

+

∫

Y ∩B(y,r1)

∣∣f(x)− fB(y,r2)

∣∣p dµ(x)

)

≤ 2p−1Cp

β

(
rαp
1 + rαp

2

µ(B(y, r2))

µ(B(y, r1))

)
.

Next, by Remark 1 we get

(2)
∣∣fB(y,r2) − fB(y,r1)

∣∣p ≤ 2p−1Cp

β

(
rαp
1 + C2

d

r
αp+log2 Cd

2

r
log2 Cd

1

)
.
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Subsequently, we put r1 = R
2i+i , r2 = R

2i in the expression (2) and we get
∣∣∣fB(y, R

2i )
− fB(y, R

2i+i )

∣∣∣ ≤ 21− 1
p CRα

2iαβ
1
p

(
1

2αp
+ C3

d

) 1
p

=
Rα

2iα
CA,

where

A = A (p, β, α, Cd) =
21− 1

p

β
1
p

(
1

2αp
+ C3

d

) 1
p

.

Hence, for l < k we get

(3)
∣∣∣fB(y, R

2l )
− fB(y, R

2k )

∣∣∣ ≤ Rα

2lα
CA

k−l−1∑
j=0

1

2jα
≤ Rα

2lα
CA

2α

2α − 1
=

Rα

2lα
CÃ,

where Ã = A 2α

2α−1
. Thus, we obtain that

{
fB(y, R

2l )

}∞
l=0

is a Cauchy sequence. Let us

denote its limit by f̃ :
f̃(y) = lim

l→∞
fB(y, R

2l )
.

Letting l = 0 and k →∞ in (3) we get

(4)
∣∣∣fB(y,R) − f̃(y)

∣∣∣ ≤ RαCÃ.

Hence, we obtain that f̃(y) = limR→0 fB(y,R). Moreover, inequality (4) implies that
fB(y,R) approaches f(y) uniformly in Y as R → 0. By the other hand, since fB(y,R)

is continuous for each R (see Lemma 2.1) we get that f̃ is continuous too. Next,
by Lebesgue differentiation theorem (see [5, Theorem 1.8]) we get fB(y,r) −→

r→0+
f(y)

almost everywhere. Thus, we obtain that f̃ = f .
By inequality (4) we get

|f(x)| ≤
∣∣fB(x,R0) − f(x)

∣∣ +
∣∣fB(x,R0)

∣∣ ≤ CÃRα
0 +

1

µ(B(x,R0)

∫

B(x,R0)

|f(y)| dµ(y)

≤ CÃRα
0 + ‖f‖Lp(Y )

1

(µ(B(x,R0))
1
p

,

where the Hölder inequality was applied. Since the measure is continuous with respect
to the metric we get that the quantity

C̃(Ȳ ) = sup
y∈Ȳ

1

(µ(B(y, R0)))
1
p

is finite.
Finally, we get

(5) sup
x∈Ỹ

|f(x)| ≤ CÃRα
0 + C̃(Ȳ ) ‖f‖Lp(Y ) .

Now, we are in position to show that f is Hölder continuous. For this purpose we
take x, y ∈ Y . We consider two cases. First of all we assume that R = %(x, y) ≤ R0

2
.

Hence, we get

|f(x)− f(y)| ≤
∣∣f(x)− fB(x,2R)

∣∣ +
∣∣f(y)− fB(y,2R)

∣∣ +
∣∣fB(y,2R) − fB(x,2R)

∣∣
≤ 2CÃ2αRα +

∣∣fB(y,2R) − fB(x,2R)

∣∣ .



Campanato theorem on metric measure spaces 527

Next, for any z ∈ Y ∩B(x, 2R) ∩B(y, 2R) we get∣∣fB(y,2R) − fB(x,2R)

∣∣ ≤
∣∣fB(y,2R) − f(z)

∣∣ +
∣∣f(z)− fB(x,2R)

∣∣ .

and integrating over G = Y ∩B(x, 2R) ∩B(y, 2R) yields
∣∣fB(y,2R) − fB(x,2R)

∣∣ ≤
(∫

Y ∩B(y,2R)

∣∣fB(y,2R) − f(z)
∣∣ dµ(z)

+

∫

Y ∩B(x,2R)

∣∣f(z)− fB(x,2R)

∣∣ dµ(z)

)
µ (G)−1

≤ C2αRα
(
(µ (B(x, 2R) ∩ Y ))1− 1

p (µ (B(x, 2R)))
1
p

+ (µ (B(y, 2R) ∩ Y ))1− 1
p (µ (B(y, 2R)))

1
p

)
µ (G)−1 ,

where the Hölder inequality was applied. Since R = %(x, y) we have that B(x,R) ⊂
B(y, 2R) and B(y,R) ⊂ B(x, 2R). Thus, we conclude that µ (G) ≥ µ (Y ∩B(x, R)))
≥ βµ (B(x,R)) and µ (G) ≥ βµ (B(y, R)) . Hence, for R ≤ R0

2
we get

|f(x)− f(y)| ≤ 2CÃ2αRα +
2Cd

β
C2αRα = 2α+1C

(
Ã +

Cd

β

)
Rα

= 2α+1C

(
Ã +

Cd

β

)
%(x, y)α.

We now turn to the case x, y ∈ Y such that %(x, y) ≥ R0

2
. By inequality (5) we get

|f(x)− f(y)| ≤ 2 sup
Ỹ

|f | ≤ 2CÃRα
0 + 2

Rα
0

Rα
0

C̃(Ȳ ) ‖f‖Lp(Y )

≤ 2α

(
2CÃ +

2

Rα
0

C̃(Ȳ ) ‖f‖Lp(Y )

)
%(x, y)α.

Finally, combining inequality (5) with above inequalities we get

sup
x∈Y

|f(x)|+ sup
x,y∈Y,x 6=y

|f(x)− f(y)|
%(x, y)α

≤ H (Cd, α, β, p, Y )
(
C + ‖f‖Lp(Y )

)
.

This proves the theorem. ¤
The following result may be proved in much the same way as Theorem 3.1.

Theorem 3.2. Suppose that α ∈ (0, 1] and f ∈ Lp(X) satisfies for every y ∈ X
and r > 0

1

µ(B(y, r))

∫

B(y,r)

∣∣f(x)− fB(y,r)

∣∣p dµ ≤ Cprαp.

Then f belongs to Cα
loc(X) for α ∈ (0, 1) (or to C0,1

loc (X) in the case α = 1). Moreover,
for any Y b X there holds

(6) sup
x∈Y

|f(x)|+ sup
x,y∈Y,x 6=y

|f(x)− f(y)|
%(x, y)α

≤ k
(
C + ‖f‖Lp(X)

)

where k = k (Cd, α, p, Y ).

3.1. Morrey type theorem. In this subsection we give an application of
Theorem 3.2 to Hajłasz–Sobolev spaces. We recall the definition. Let (X, %) be a
metric space and µ a Borel measure in X. We remind the reader that we assume
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the standard assumptions of Section 2. Especially, µ is doubling and continuous.
Let f : X → R be µ-measurable function. We denote by D(f) the set of all µ-
measurable functions g : X → R+ such that |f(x)− f(y)| ≤ %(x, y)(g(x) + g(y)) a.e.
A function f ∈ Lp(X) belongs to the Hajłasz–Sobolev space M1,p, 1 < p ≤ ∞, if
D(f) ∩ Lp(X) 6= ∅. This space is endowed with the norm

‖f‖M1,p =

(
‖f‖p

Lp(X) +

(
inf

g∈D(f)
‖g‖Lp(X)

)p) 1
p

.

Theorem 3.3. Let us assume that f ∈ M1,p(X), 1 < p < ∞. If there exist
g ∈ D(f) and c > 0 such that

1

µ(B(x, r))

∫

B(x,r)

|g|p dµ ≤ cprp(α−1) for any B(x, r)

for some α ∈ (0, 1), then f ∈ Cα
loc(X). Moreover, for any Y b X there holds

(7) sup
x∈Y

|f(x)|+ sup
x,y∈Y,x 6=y

|f(x)− f(y)|
%(x, y)α

≤ k
(
c + ‖f‖Lp(X)

)

where k is a positive constant.

Proof. It is easy to see that (see [4, Theorem 3.1]) there exists C such that∫

B(x,r)

|f − fB(x,r)| dµ ≤ Cr

∫

B(x,r)

g dµ.

Thus
∫

B(x,r)

|f − fB(x,r)| dµ ≤ Crµ(B(x, r))

(
1

µ(B(x, r))

∫

B(x,r)

|g|p dµ

) 1
p

≤ Ccrαµ(B(x, r)).

This implies that
1

µ(B(x, r))

∫

B(x,r)

|f − fB(x,r)| dµ ≤ Ccrα.

Hence, Theorem 3.2 completes the proof. ¤
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