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Abstract. In recent studies on the G-convergence of Beltrami operators, a number of is-
sues arouse concerning injectivity properties of families of quasiconformal mappings. Bojarski,
D’Onofrio, Iwaniec and Sbordone formulated a conjecture based on the existence of a so-called
primary pair. Very recently, Bojarski proved the existence of one such pair. We provide a general,
constructive, procedure for obtaining a new rich class of such primary pairs.

This proof is obtained as a slight adaptation of previous work by the authors concerning the
nonvanishing of the Jacobian of pairs of solutions of elliptic equations in divergence form in the plane.
It is proven here that the results previously obtained when the coefficient matrix is symmetric also
extend to the non-symmetric case. We also prove a much stronger result giving a quantitative bound
for the Jacobian determinant of the so-called periodic σ-harmonic sense preserving homeomorphisms
of C onto itself.

1. Introduction

In order to explain the results of this paper and their motivations, it is neces-
sary to introduce a number of topics, and to illustrate their mutual relationships.
These topics are Beltrami operators and their associated concept of G-convergence,
non-symmetric elliptic operators in divergence form and H-convergence, σ-harmonic
mappings.

1.1. The G-convergence of Beltrami operators and the K > 3 conjec-
ture. Recently Iwaniec et al. [27] and Bojarski et al. [16], introduced a notion of
G-convergence for Beltrami operators, aimed at generalizing to this context the well-
known theory of G-convergence initiated by Spagnolo [40] and De Giorgi [21]. Let us
recall their definitions and the main conjecture in [16]. Let Ω be a bounded, simply
connected open subset of R2, and, as usual, let us identify points x = (x1, x2) ∈ R2

with points z ∈ C through the relation z = x1+ix2. Let ν and µ be two complex val-
ued measurable functions defined on Ω and satisfying, for some K ≥ 1, the following
ellipticity condition

(1.1) |µ|+ |ν| ≤ K − 1

K + 1
.

Consider the following first order non homogeneous Beltrami equation

(1.2) fz − µfz − νfz = g.
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Given a sequence of pairs of Beltrami coefficients (µj, νj) and an extra pair (µ, ν) all
satisfying (1.1), for a fixed K ≥ 1, one denotes by Bj, B the differential operators
defined as follows

(1.3) Bj :=
∂

∂z
− µj

∂

∂z
− νj

∂

∂z
,

(1.4) B :=
∂

∂z
− µ

∂

∂z
− ν

∂

∂z
,

so that (1.2) can be rewritten as

(1.5) Bf = g.

The authors in [27] introduce the following definition, and prove Theorem 1.2 below.

Definition 1.1. The sequence of differential operators Bj is said to G-converge
to B if, for any sequence fj ∈ W 1,2(Ω;C) which converges weakly to f ∈ W 1,2(Ω;C),
and such that Bjfj converges strongly in L2(Ω;C), one has

(1.6) lim
j→+∞

Bjfj = Bf

strongly in L2(Ω;C).

Theorem 1.2. ([27]) For any K ∈ [1, 3], the family of Beltrami operators defined
by (1.4) and satisfying (1.1) is G-compact.

In order to explain our new main results and to put the previous one into context,
let us begin by explaining the main point in the proof of Theorem 1.2.

As previously outlined one of the main results in [27] is a compactness result
obtained under an assumption of small ellipticity, that is, K ≤ 3 in (1.1).

The key to this result relies on the following issue. Let Ω be a bounded, open
and convex set. Let (µ, ν) be a Beltrami pair satisfying (1.1) and let Φ and Ψ be the
solutions to

(1.7)





Φz̄ = µΦz + νΦz in Ω,

ReΦ = x1 on ∂Ω,

Ψz̄ = µΨz + νΨz in Ω,

ReΨ = x2 on ∂Ω,

where the boundary conditions are understood in the sense of W 1,2(Ω) traces. The
pair (Φ, Ψ) is called a primary pair. In [16] the authors formulate the following
conjecture.

Conjecture 1.3. Let (µ, ν) be complex valued measurable coefficients satisfying
(1.1). Then the pair of quasiconformal mappings Φ and Ψ defined by (1.7) satisfies
the following pointwise inequality:

(1.8) Im(ΦzΨz) > 0 almost everywhere in Ω.

In Section 12 of [27], it is proven that, if Conjecture 1.3 holds, then Theorem 1.4
follows. See also [27, 16].

As a consequence of our results we prove that (1.8) holds and therefore we obtain
the following result.

Theorem 1.4. For any K ∈ [1, +∞), the family of Beltrami operators defined
by (1.4) and satisfying (1.1) is G-compact.
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Very recently, Bojarski [15] has proved a result which also implies Theorem 1.4
but does not solve Conjecture 1.3. More precisely he has proven that given Ω and
a Beltrami pair (µ, ν) satisfying (1.1) there exists a primary pair (Φ, Ψ) so that Φ
and Ψ are quasiconformal mappings of the complex plane onto itself satisfying the
Beltrami equations with coefficients µ and ν and satisfy (1.8). Bojarski’s primary
pair is obtained by requiring the so-called hydrodynamical normalization, that is, by
looking for a globally homeomorphic solution of C onto itself obtained as follows.
First extend (µ, ν) to be zero in the complement of Ω. Then look for a solution
of the new Beltrami equation defined on C. Such a solution will be holomorphic
near infinity. Then normalize the behaviour at infinity of such function. By the
seminal work of Bojarski (see the references of [15]), it is known that one obtains a
quasiconformal mapping of C onto itself. This beautiful construction however does
not set the question of whether the Dirichlet data in (1.7) will provide us with a
primary pair. We prove that this is the case in Theorem 1.10. In fact we provide
a large class of Dirichlet boundary data achieving the desired task. We use the
combination of Theorem 2.4 and Theorem 3.1. See Corollary 3.2.

1.2. Second order equations in divergence form, ellipticity and H-
convergence. It is well known that Beltrami equations with complex dilatations
ν and µ give rise in a very natural way to second order elliptic operators whose
coefficient matrices σ depend in an explicit way upon ν and µ and conversely. A
brief review will be offered in the following subsection. The authors in [27, 16]
use the notion of G-convergence for Beltrami operators also to induce a concept
of G-convergence for second order non-symmetric operators in divergence form (see
Definition 2 in [16]) and to treat the G-convergence of second order non-divergence
equations (see [27]). We shall not enter such issues in this note, however we observe
that it is also instructive to recall the notion H-convergence introduced by Murat and
Tartar for possibly non-symmetric, elliptic operators in divergence form. An easily
accessible reference is [36]. The original work dates back to 1977 (see the quoted
reference for more details).

Definition 1.5. Consider a bounded, open, simply connected set Ω ⊂ R2. Given
positive constants α and β, we say that a measurable function σ, defined on Ω with
values into the space of 2× 2 matrices, belongs to the class M (α, β, Ω) if one has

σ(z)ξ · ξ ≥ α|ξ|2 for every ξ ∈ R2 and for a.e. z ∈ Ω,

σ−1(z)ξ · ξ ≥ β−1|ξ|2 for every ξ ∈ R2 and for a.e. z ∈ Ω.
(1.9)

It is obvious that, for λ = α and for some M > 0, such bounds are equivalent to
the usual ellipticity bounds for second order elliptic operators, see for instance [28,
Chapter 8]

σ(z)ξ · ξ ≥ λ|ξ|2 for every ξ ∈ R2 and for a.e. z ∈ Ω,
2∑

i,j=1

|σij(z)|2 ≤ M for a.e. z ∈ Ω.
(1.10)

Yet another notion, originally used for the H-convergence is the following.
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Definition 1.6. A matrix σ with measurable entries belongs to M(λ, Λ, Ω) if

σ(z)ξ · ξ ≥ λ|ξ|2 for every ξ ∈ R2 and for a.e. z ∈ Ω,
|σ(z)ξ| ≤ Λ|ξ| for every ξ ∈ R2 and for a.e. z ∈ Ω.

(1.11)

However, different ways of bounding sets of matrices σ may or may not give rise
to compact classes with respect to convergences of weak type. To explain this let us
recall the notion of H-convergence [36].

Definition 1.7. We say that a sequence of elliptic matrices σj ∈ M (α, β, Ω)
H-converges to σ0 ∈ M (α, β, Ω) if for any f ∈ H−1(Ω) the weak solution uj to

(1.12) −div(σj∇uj) = f in Ω, uj ∈ W 1,2
0 (Ω),

satisfies the following properties

(1.13)

{
uj ⇀ u0 weakly in W 1,2(Ω),

σj∇uj ⇀ σ0∇u0 weakly in L2(Ω),

where u0 denotes the weak solution to

(1.14) −div(σ∇u0) = f in Ω, u0 ∈ W 1,2
0 (Ω).

One of the main results in this theory is compactness. Given any sequence
{σj} ⊂ M (α, β, Ω) there exists a subsequence which H-converges to some element of
M (α, β, Ω). It is worth noting here that the compactness does indeed depend on the
specific character of the ellipticity bounds given by Murat and Tartar. For instance, it
is known that the set of matrices in M(λ, Λ, Ω), that is the set constrained by (1.11), is
not compact for H-convergence. Murat and Tartar proved that a sequence of matrices
in M(λ, Λ, Ω) admits (up to subsequence) an H-limit in the class M

(
λ, Λ2

λ
, Ω

)
.

An explicit example given by Marcellini in [34] shows that there exist a sequence
{σj} ⊂ M(λ, Λ, Ω) such that its H-limit σ0 is constant (with respect to position) and
satisfies

inf
|ξ|=1

σ0ξ · ξ = λ, sup
|ξ|=1

|σ0ξ| = (Λ2/λ).

Let us also recall that the approach of Murat and Tartar has been later extended to
larger classes of operators (under the name of G-convergence) by Dal Maso, Chiadò-
Piat and Defranceschi [20].

1.3. Beltrami equations, second order equations in divergence form
and ellipticity. Let us recall now the basic algebraic relationship between second
order elliptic equations in divergence form and linear first order systems. Given
σ ∈ M (α, β, Ω), let u ∈ W 1,2

loc (Ω) be a weak solution to

(1.15) div(σ∇u) = 0 in Ω.

Then there exists ũ ∈ W 1,2
loc (Ω), called the stream function of u, such that one has

(1.16) ∇ũ = Jσ∇u in Ω, J :=

(
0 −1
1 0

)
.

Setting

(1.17) F = u + iũ



Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds 51

one has F = u + iũ ∈ W 1,2
loc (Ω;R2) and one writes, in complex notations,

(1.18) Fz̄ = µFz + νF̄z in Ω,

where, the so called complex dilatations µ, ν are given by

(1.19) µ =
σ22 − σ11 − i(σ12 + σ21)

1 + Tr σ + det σ
, ν =

1− det σ + i(σ12 − σ21)

1 + Tr σ + det σ
,

and satisfy (1.1) for some K ≥ 1 only depending on α, β, or in other words F is a
quasiregular mapping.

In this paper we are interested in the opposite route, as well. Given measurable
complex valued functions µ and ν satisfying (1.1), consider the matrix σ defined as
follows

(1.20) σ :=




|1−µ|2−|ν|2
|1+ν|2−|µ|2

2Im(ν−µ)
|1+ν|2−|µ|2

−2Im(ν+µ)
|1+ν|2−|µ|2

|1+µ|2−|ν|2
|1+ν|2−|µ|2


 ,

which is obtained just by inverting the algebraic system (1.19). One can check [10]
that if (1.1) holds for some for given K ≥ 1, then there exists α, β > 0 such that (1.9)
holds for σ as defined in (1.20). In short, ellipticity in the Beltrami sense implies
ellipticity in the Murat and Tartar sense.

The exact relationship between K and (α, β) will not play a crucial role here.
However, we shall prove the following.

Proposition 1.8. Let (µ, ν) satisfy the ellipticity condition (1.1), let σ be defined
via (1.20). Then σ satisfies (1.9) with

(1.21) α =
1

K
and β = K.

Conversely assume that σ ∈ M (λ, 1
λ
, Ω) for some λ ∈ (0, 1] and let (µ, ν) be defined

by (1.19). Then (µ, ν) satisfy the ellipticity condition (1.1) with K defined as follows

(1.22) K =
1 +

√
1− λ2

λ
.

See Section 5 for a proof, which also shows the optimality of these bounds.

1.4. Quasiconformal solutions to (1.16). A question that is crucial in the
mere formulation of Conjecture 1.3 is the following.

Is it possible to prescribe a Dirichlet boundary data g on the real part of F as
defined in (1.17) so that the solution to (1.18) with that boundary data is globally
one-to-one?

Or, equivalently, for σ ∈ M (α, β, Ω), consider the Dirichlet problem

(1.23)

{
div(σ∇u) = 0 in Ω,

u = g on ∂Ω.

Under which condition on g the mapping F = u + iũ is one-to-one?

We recall that solutions to the Beltrami equation (1.18) are K-quasiregular map-
ping, therefore the question can be rephrased as requiring a boundary data which
give rise to a global quasiconformal solution.
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Such issues turned out to be very important in applications of very different
character [5, 10, 33, 8, 23] and were addressed already in past years.

The relevant notion in this context is unimodality. Assume that ∂Ω is a simple
closed curve. We say that a continuous, real valued function g on ∂Ω is unimodal if
∂Ω can be split into two simple arcs on which g is separately monotone (increasing
on one arc and decreasing on the other, once the orientation on ∂Ω is fixed). We
shall also say that g is strictly unimodal if it is strictly monotone on the same arcs.
We shall prove the following.

Theorem 1.9. Let F ∈ W 1,2
loc (Ω,C) be a solution to (1.18) such that u = ReF ∈

C(Ω). If g = u|∂Ω is unimodal then F is one-to-one in Ω.

The above statement summarizes a circle of reasonings which, in the last two
decades, has been repeatedly used in various contexts [4, 5, 10, 7]. See in particular
[10, Proposition 3.7], where indeed an interior Hölder bound for F−1 is obtained. A
sketch of a proof is given, for the convenience of the reader in Section 5.

The first result in this direction we are aware of is due to Leonetti and Nesi [33,
Theorem 5]. Indeed they proved a stronger statement.

If g is strictly unimodal and F ∈ C(Ω;C) then F is one-to-one in Ω.

In fact, in [33] there are two additional assumptions, that Ω is a disk, and that
σ is symmetric, that is, in other words, Im ν = 0. However, such assumptions are
indeed immaterial, in fact we can always reduce to the case that Ω is a disk by a
conformal mapping, and if F solves (1.18) then, as is well-known, it also solves a
similar equation with ν = 0 and µ replaced by

(1.24) µ̃ = µ +
Fz

Fz

ν.

Later, a result of the same sort was proven also in [16, Theorem 6.1]. In this case
the assumptions are that F ∈ W 1,2(Ω,C) and that g = ReF0 where F0 is a given
quasiconformal mapping whose one-to-one image is a convex domain. It is worth
noticing that this last set of hypotheses clearly implies both F ∈ C(Ω;C) and the
unimodality of g.

1.5. σ-harmonic mappings. Now we review several known results about the
so-called σ-harmonic mappings. We close this subsection by reformulating Conjec-
ture 1.3 in the language of σ-harmonic mappings and stating Theorem 1.10 which
proves Conjecture 1.3. Possibly because of a slightly different language, several re-
sults which were published before [16, 27] may have escaped the authors’ attention.
We review here those of more immediate relevance for Conjecture 1.3 and postpone
a few of them to the following Sections. In order to rephrase what is already known
it is convenient to use the following notation. We fix σ ∈ M (α, β, Ω) and we denote
by U = (u1, u2) the W 1,2(Ω,R2) solution to

(1.25)





div(σ∇u1) = 0 in Ω,

u1 = x1 on ∂Ω,

div(σ∇u2) = 0 in Ω,

u2 = x2 on ∂Ω.
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Finally we define the stream functions associated to u1 and u2 to be ũ1 and ũ2

respectively. Using these notations and recalling (1.7), we have the identities

(1.26) Φ ≡ u1 + iũ1, Ψ ≡ u2 + iũ2.

Alessandrini and Nesi use the terms σ-harmonic functions and σ-harmonic mapping
for u1, u2 and U respectively. With this language, one can compute

(1.27) Im(ΦzΨz) =
1 + Tr σ + det σ

4
det DU.

Note also that (1.9) implies

Tr σ ≥ 2α,
Tr σ

det σ
≥ 2β−1,

and hence

(1.28) (1 + Tr σ + det σ) > 0.

The interest of these calculations shall be evident after the following Theorem and
Remark.

Theorem 1.10. Let σ ∈ M (K−1, K, Ω). If Ω is convex, then the σ-harmonic
mapping U defined by (1.25) satisfies

(1.29) det DU > 0 almost everywhere in Ω.

Remark 1.11. It is a straightforward matter to conclude that, by (1.27) and
(1.28), Theorem 1.10 proves Conjecture 1.3 and, consequently, Theorem 1.4.

A proof of Theorem 1.10 will be given in Section 3.
The first result towards Theorem 1.10 was proven by Bauman, Marini and Nesi

[13]. They proved the assertion under the assumption that σ is symmetric and of
class Cα. A further advance was obtained by Alessandrini and Nesi [7] under the
assumption that σ is symmetric with measurable entries. The two papers follow a
common scheme, first one proves that under suitable conditions on the boundary data
(which are indeed satisfied for the problem (1.25) when Ω is convex) the mapping U
is one-to-one. Here the guiding light is a conjecture by Radò [38], which was first
proved by Kneser [30] and later, independently, by Choquet [17], in the case when
U is harmonic. See Theorem 2.4 below, for further details. Second, one proves that
if U is locally injective, and sense preserving, then det DU > 0 almost everywhere.
In this case the paradigmatic result, in the harmonic setting, is due to Lewy [32].
Actually, in the harmonic case, and in the case σ ∈ Cα, one obtains that det DU is
strictly positive, uniformly on compact subsets. In the case when σ has measurable
entries, such uniform bound cannot hold true. Instead, in [7] it is proven that for
any subset D compactly contained in Ω one has

(1.30) log(det DU) ∈ BMO(D)

which, as is well-known implies that there exist C, ε > 0 such that in any square
Q ⊂ Ω one has

(1.31)
(

1

|Q|
∫

Q

(det DU)ε dx

)(
1

|Q|
∫

Q

(det DU)−ε dx

)
≤ C

which clearly implies Theorem 1.10.
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Therefore, when σ is symmetric, the tools to prove Conjecture 1.3 were already
available. Later Bojarski, D’Onofrio, Iwaniec and Sbordone addressed the more
general question in the case when σ is not necessarily symmetric. They proved
Conjecture 1.3 in two cases. First when the coefficients are Hölder continuous so
extending the results by Bauman et al. to the non-symmetric case. Second they
proved the result when K ≤ 3 so extending the result of Alessandrini and Nesi to
the non-symmetric case in that regime.

In the next two Sections we shall show that the procedure outlined above for the
symmetric case and developed by the authors in [7] also apply to the non-symmetric
case. In fact these proofs already appeared in 2003 as a part of the Laurea Thesis
of Natascia Fumolo [24], an undergraduate student of the first author. In this paper
we present a much shorter version by outlining the very few slight changes needed to
adapt the arguments in [7]. On the other hand, some more delicate issues concerning
the precise ellipticity constants, like in Proposition 1.8 are treated in a more efficient
way here.

In Section 2 below, we summarize some of the results obtained in [7] which extend
to the non-symmetric case in a straightforward fashion.

Section 3 contains the core results of this paper, the main result being Theo-
rem 3.1. From the standpoint of primary pairs the main implication is Corollary
3.2.

In Section 4 we discuss consequences and improvements to Theorem 3.1 in the
case of periodic conductivities σ, which is relevant in the context of homogeniza-
tion and also in connection to issues concerning the rigidity of gradient fields where
quasiconvex hulls are defined either by using affine or periodic boundary conditions.
We refer to [23], [3], [2], [1] for more details. The main result here is Theorem 4.1,
which provides a novel, stronger, quantitative formulation of the non-vanishing of
the Jacobian determinant, in terms of Muckenhoupt weights.

Section 5 contains proofs of some auxiliary results.
The final Section 6 collects further developments, remarks and connections with

various relevant areas and applications. In § 6 we extend some area formulas first
discussed in [9]. In § 6 we lay a bridge towards the theory of correctors in homogeniza-
tion. Finally § 6 develops an application of the Theorem by Astala [11], generalizing
results in [33] and [9].

2. Preliminaries

In this Section, Ω is a simply connected open subset of R2 and, for applications
which will be discussed in Section 4, we also admit here that Ω be unbounded,
possibly the whole R2. We consider matrix valued functions σ ∈ M (α, β, Ω) as
defined in (1.9).

Notation 2.1. Let σ ∈ M (α, β, Ω) and let U = (u1, u2) ∈ W 1,2
loc (Ω,R2) be σ-

harmonic. We denote by Ũ := (ũ1, ũ2) the vectorial stream function associated to U .
Moreover, for any given non zero constant vector ξ we set f = U · ξ + i Ũ · ξ.

Proposition 2.2. Let Ω ⊆ R2 be simply connected and open. Let σ ∈ M (α, β,
Ω) and let U = (u1, u2) ∈ W 1,2

loc (Ω,R2) be σ-harmonic. If for every non zero ξ, f is
univalent, then U is univalent.
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The proof is identical to the proof of Proposition 1 in [7]. In the latter symmetry
of σ was assumed but never used. Details can be found in [24].

Theorem 2.3. Let Ω ⊆ R2 be a simply connected and open set. Let σ ∈
M (α, β, Ω) and let U = (u1, u2) ∈ W 1,2

loc (Ω,R2) be σ-harmonic. Adopt the Notation
2.1. We have that the following properties are equivalent:

(2.1)
(i) f is locally one-to-one for every non zero vector ξ,
(ii) U is locally one-to-one for every non zero vector ξ,

(iii) Ũ is locally one-to-one for every non zero vector ξ.

Also in this case, the proof is identical to the proof of Theorem 3 in [7], since
symmetry of σ was assumed but never used. In fact, additional equivalent conditions
to (i)–(iii) were stated in [7], which involve the notion of geometrical critical point,
we omit them here for the sake of simplicity. Details can be found in [24].

Theorem 2.4. Let Ω be a bounded open set whose boundary is a simple closed
curve and let σ ∈ M (α, β, Ω). Let φ = (φ1, φ2) : ∂Ω → R2 be a sense preserving
homeomorphism of ∂Ω onto a simple closed curve Γ which is the boundary of a
convex domain D. Let U ∈ W 1,2

loc (Ω;R2) ∩ C0(Ω;R2) be the σ-harmonic mapping
with components u1 and u2 solving

(2.2)

{
div(σ(x)∇ui(x)) = 0 in Ω, i = 1, 2,

ui = φi on ∂Ω, i = 1, 2.

Then

(2.3) U is a sense preserving homeomorphism of Ω onto D.

Again, the proof is identical to the proof of Theorem 4 in [7], and details can be
found in [24]. Theorem 2.4 generalizes to the measurable, non-symmetric, context
the celebrated result of Kneser [30] who solved a problem raised by Radò [38].

3. Jacobian of a σ-harmonic mapping: the BMO bound

The main subject of this Section is the proof of Theorem 1.10. We will prelimi-
narily proof a much more general result, namely Theorem 3.1.

We recall that, given an open set D ⊂ R2, φ ∈ L1
loc(D) belongs to BMO(D) if

‖φ‖∗ = sup
Q⊂D

(
1

| Q |
∫

Q

| φ− φQ |
)

< ∞

where Q is any square in D and φQ = 1
|Q|

∫
Q

φ. Recall also that the normed space
(BMO(D), ‖ · ‖∗) is in fact a Banach space. The main object of this Section is the
following.

Theorem 3.1. Let Ω be an open subset of R2, let σ ∈ M (α, β, Ω) and let
U ∈ W 1,2

loc (Ω,R2) be a σ-harmonic mapping which is locally one-to-one and sense
preserving. For every D ⊂⊂ Ω we have

(3.1) log(det DU) ∈ BMO(D).
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Corollary 3.2. Let (µ, ν) be a Beltrami pair satisfying (1.1) and let Φ and Ψ
be the solutions to

(3.2)





Φz̄ = µΦz + νΦz in Ω,

ReΦ = φ1 on ∂Ω,

Ψz̄ = µΨz + νΨz in Ω,

ReΨ = φ2 on ∂Ω,

where φ = (φ1, φ2), as in Theorem 2.4, defines the convex set D. Then Φ and Ψ are
quasiconformal mappings defined on Ω which satisfy the inequality

(3.3) Im(ΦzΨz) > 0 almost everywhere in Ω.

The proof of Theorem 3.1 needs some preparation. It will be presented at the
end of this Section. This part requires slightly more extended changes with respect
to the work in [7]. For this reason more details will be given.

We recall below two fundamental results, Theorems 3.3 and 3.4, which will be
needed for a proof of Theorem 3.1.

Theorem 3.3. (Reimann [39]) Let f be a quasiregular mapping on the open set
D ⊂ R2, then for every D′ ⊂⊂ D

log(det Df) ∈ BMO(D′).

Proof. See [39, Theorem 1, Remark 2]. ¤

Theorem 3.4. (Reimann [39]) Let f : D → G be a quasiconformal mapping,
D, G ⊂ R2. For every D′ ⊂⊂ D, there exists C > 0 such that

‖v ◦ f‖∗ ≤ C‖v‖∗ for every v ∈ BMO(f(D′)).

Proof. See [39, Theorem 4] and also [29, p. 58]. ¤
The next Theorem requires the notion of adjoint equation for a nondivergence

elliptic operator. Let G ⊂ R2 be an open set. Let a ∈ M (α, β,G). Set

L =
2∑

i,j=1

aij
∂2

∂xi∂xj

.

We say that v ∈ L1
loc(G) is a weak solution of the adjoint equation

(3.4) L∗v = 0 in G,

if ∫

G

vLu = 0 for every u ∈ W 2,2
0 (G).

We remark that, usually, the ellipticity bounds for a are expressed in the form (1.10),
rather than (1.9), but this plays no role here.

Theorem 3.5. (Bauman [12], Fabes and Strook [22]) For every w ∈ L2
loc(G),

w ≥ 0, which is a weak solution of the adjoint equation (3.4) we have

(3.5)
(

1

|Q|
∫

Q

w2

) 1
2

≤ C

(
1

|Q|
∫

Q

w

)

for every square Q such that 2Q ⊂ G. Here C > 0 only depends on the ellipticity
constants α and β.
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Proof. This Theorem is a slight adaptation between [12, Theorem 3.3] and [22,
Theorem 2.1]. A proof is readily obtained by following the arguments in [22]. The
only additional ingredient which is needed here, is the observation that, with no need
of any smoothness assumption on the coefficients of L, for the special case when the
dimension is two (which is of interest here), for any ball B ⊂ G and any f ∈ L2(B)
there exists and it is unique, the strong solution

u ∈ W 2,2(B) ∩W 1,2
0 (B)

to the Dirichlet problem {
Lu = f in B,

u = 0 on ∂B,

see [41, Theorem 3]. ¤
Proof of Theorem 3.1. Preparation. Let U = (u1, u2) satisfy the hypotheses of

Theorem 3.1 and let

(3.6) f = u1 + iũ1

be the quasiregular mapping introduced in Notation 2.1 with ξ = (1, 0). In view of
Theorem 2.3, for every z ∈ Ω, we can find a neighborhood D of z, D ⊂⊂ Ω such
that U |D and f |D (i.e. the restrictions of U and f to D) are univalent. Therefore,
for the proof of Theorem 3.1, it suffices to show that (3.1) holds for any sufficiently
small D ⊂⊂ Ω, such that U |D and f |D are univalent. We set

G = f |D(D)

and V : G → R2 given by

(3.7) V = U |D ◦ (f |D)−1

where, by definition (f |D)−1 : G → D. From now on, with a slight abuse of notation,
we will drop the subscripts denoting restrictions to D. We have DU = (DV ◦ f)Df ,
and hence

(3.8) log(det DU) = log(det DV ) ◦ f + log(det Df) .

In view of Theorems 3.3 and 3.4, the thesis will be proven as soon as we show that
log(det DV ) belongs to BMO on compact subsets of G. The advantage in replacing
U by V , lies in the observation that, in contrast with det DU , det DV satisfies an
equation of the type (3.4) for a suitable choice of the operator L∗.

In fact, letting v1 and ṽ1 be the first component of V and its stream function
respectively, we can compute

v1(z) = u1 ◦ f−1(z) = u1 ◦ (u1 + iũ1)
−1(z) = x1,

ṽ1(z) = ũ1 ◦ f−1(z) = ũ1 ◦ (u1 + iũ1)
−1(z) = x2.

(3.9)

Moreover, by definition,

(3.10) ∇ṽ1 = Jτ∇v1,

where

(3.11) τ = Tfσ =
DfσDfT

det Df
◦ f−1.
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Hence, using (3.9) and (3.10)(
0
1

)
=

(
0 −1
1 0

)(
τ11 τ12

τ12 τ22

)(
1
0

)
,

that is

(3.12) τ =

(
1 b
0 c

)

where, by construction,
c = det τ = det(σ ◦ f−1) ∈ L∞(G),

b = τ12 = (σ12 − σ21) ◦ f−1 ∈ L∞(G).
(3.13)

For a given σ, let us denote
ασ = ess inf

z∈Ω

{
σ(z)ξ · ξ such that ξ ∈ R2, |ξ| = 1

}
,

1

βσ

= ess inf
z∈Ω

{
(σ(z))−1ξ · ξ such that ξ ∈ R2, |ξ| = 1

}
,

(3.14)

that is, ασ, βσ are the best ellipticity constants α, β for which σ ∈ M (α, β, Ω) holds.
We restrict our attention to the case when ασ = βσ

−1 := K−1. There is no loss of
generality in this choice in view of a rescaling argument. See also Remark 4.6 for
further details.

A calculation that we omit shows that, if ατ , βτ are defined accordingly for τ in
G, we have

ατ = ess inf
z∈G

{
c(z) + 1−

√
(c(z)− 1)2 + b(z)2

2

}
,

1

βτ

= ess inf
z∈G

{
c(z) + 1−

√
(c(z)− 1)2 + b(z)2

2c(z)

}
.

(3.15)

That is τ is elliptic in the sense of (1.9) and a calculation shows that, in fact, one
can take

(3.16) ατ =
1

βτ

= 1−
√

1− 1

K2
.

See Section 5 for a proof. Furthermore, by (3.7) and (3.9),

(3.17) det DV =
∂v2

∂x2

∈ L2(G).

Consequently, v2 satisfies
∂

∂x1

(
∂v2

∂x1

+ b
∂v2

∂x2

)
+

∂

∂x2

(
c
∂v2

∂x2

)
= 0 weakly in G.

Differentiating the equation above with respect to x2, we see that w = det DV is a
distributional solution of

∂2

∂x2
1

w +
∂2

∂x1∂x2

(bw) +
∂2

∂x2
2

(cw) = 0 in G,

that is, it is a distributional solution to the adjoint equation

(3.18) L∗w = 0 in G,
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where

L =
∂2

∂x2
1

+ b
∂2

∂x1∂x2

+ c
∂2

∂x2
2

.

On use of (3.18) and (3.15) we may now apply Theorem 3.5.
We summarize the resulting statement below.

Proposition 3.6. For every square Q such that 2Q ⊂ G, we have

(3.19)
(

1

| Q |
∫

Q

(det DV )2

) 1
2

≤ C

(
1

| Q |
∫

Q

det DV

)
,

where C > 0 only depends on α and β.

Proof of Theorem 3.1. Conclusion. A well known characterization of BMO
in terms of the reverse Hölder inequality (see, for instance, [25, Theorem 2.11 and
Corollary 2.18]), shows that Proposition 3.6 implies log(det DV ) ∈ BMO(G′) for
every G′ ⊂⊂ G. Thus, possibly after replacing D with D′ = f−1(G′), we have, by
(3.8) and Theorems 3.3 and 3.4 that log(det DU) ∈ BMO(D). ¤

Proof of Theorem 1.10. Apply Theorem 2.4 with φ1 = x1, φ2 = x2 and D = Ω,
which, by assumption, is convex. Then use Theorem 3.1. ¤

Remark 3.7. We recall now that, in view of Remark 1.11, the proof of Theo-
rem 1.10 concludes also the proof of Conjecture 1.3 and of Theorem 1.4. The proof
of Corollary 3.2 is also immediate.

4. The periodic case

In the homogenization theory, operators with periodic coefficients play an impor-
tant role. We refer to the wide literature on the subject, see for instance [14] and [35].
We want to remark here that our result has two interesting consequences in that par-
ticular setting. We set Q = (0, 1)× (0, 1) and we shall deal with functions which are
1-periodic with respect to each of its variables x and y, which we will call Q-periodic,
or for short, periodic. For a given 2× 2 matrix A, we write U ∈ W 1,2

],A(Q;R2) for the
space of zero average (on Q) vector fields U such that U −Ax ∈ W 1,2

] (Q;R2), where
W 1,2

] (Q;R2) denotes the completion of Q-periodic function with respect to the W 1,2

norm (see [19] for more details).
We are especially interested in boundary conditions of periodic type because

of their central role in homogenization and in particular in the so-called G-closure
problems. In fact, our starting point for this investigation has its origin in such type
of applications. Given a 2 × 2 matrix A, we denote by UA = (uA

1 , uA
2 ) a solution

(unique because of our normalization) of

(4.1)





div(σ∇uA
1 ) = 0 in R2,

div(σ∇uA
2 ) = 0 in R2,

UA ∈ W 1,2
],A(R2,R2).

The auxiliary problem (4.1) is usually called the cell problem. Solutions to (4.1) will
be called, with a slight abuse of language, periodic σ-harmonic mappings.

In the sequel, α, β > 0 and σ ∈ M (α, β,R2) and Q-periodic are given.



60 Giovanni Alessandrini and Vincenzo Nesi

Theorem 4.1. Let A be a non singular 2 × 2 matrix and let UA be a solution
to (4.1). Then we have

(4.2) UA is a homeomorphism of R2 onto itself.

Moreover there exists positive constants C, δ only depending on α and β such that,
for every square P ⊂ R2 and any measurable set E ⊂ P we have

(4.3)
∫

E

det DUA

det A
≥ C

( |E|
|P |

)δ ∫

P

det DUA

det A
.

Here, and in the sequel, integration is meant with respect to two-dimensional
Lebesgue measure.

Remark 4.2. It is worth observing that, when P = Q, the unit square, and
E ⊂ Q, we obtain

(4.4)
|UA(E)|
| det A| ≥ C|E|δ.

Which also trivially implies

(4.5)
det DUA

det A
> 0 almost everywhere in R2.

In fact, for any σ-harmonic homeomorphism U the area formula

(4.6) |U(E)| =
∫

E

| det DU |

holds, see [9, Proposition 4.2], for a proof in the symmetric case, which however
applies equally well to the present context. See also the discussion in the Section 6
below.

Remark 4.3. It is anticipated that quantitative Jacobian bounds, like the one
obtained in (4.4), are useful to prove new bounds for effective conductivity, i.e., for
classes of H-limits. See [37] and [3]. In particular [37, Theorem 3.4] gives an explicit
improved bound in terms of the constants C and δ appearing in (4.4). Note the
relevance of (4.4) in [37, Definition 3.7] (thanks to the preceding discussion about
the role of the boundary conditions in Section 2 of that paper). However, all such
developments would require a careful derivation of bounds for C and δ and are beyond
the scope of this note.

Before beginning the proof Theorem 4.1, let us recall some basic facts about
Muckenhoupt weights.

Definition 4.4. A non negative measurable function w = w(z) with z ∈ C is
an A∞-weight if

(i) there exist constants C, δ > 0 such that for every square P and every mea-
surable set E ⊂ P we have

(4.7)
∫

E
w∫

P
w
≤ C

( |E|
|P |

)δ

.

Thus, as is well-known, the A∞ condition is a property of absolute continuity,
uniform at all scales, of the measure wdx with respect to Lebesgue measure dx. The
following characterizations of A∞ are also well-known, see for instance [18, Lemma 5].



Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds 61

Lemma 4.5. Condition (i) above is equivalent to (ii) and (iii) below.
(ii) There exist constants N, θ > 0 such that for every square P

(4.8)
(

1

|P |
∫

P

w1+θ

) 1
1+θ

≤ N

(
1

|P |
∫

P

w

)
.

(iii) There exists constants M, η > 0 such that for every square P and every
measurable set E ⊂ P , we have

(4.9)
∫

E
w∫

P
w
≥ M

( |E|
|P |

)η

.

We observe that the quantitative relationships among the pairs of constants
(C, δ), (N, θ) and (M, η) appearing in the equivalent characterizations of A∞ can
be constructively evaluated, see Vessella [42].

We shall also make use of the following observation.

Remark 4.6. Let σ ∈ M (α, β, Ω) and let u be σ-harmonic in Ω. Then, up to a
multiplicative scaling, we have that u is also σ̃-harmonic with

(4.10) σ̃ =

√
β

α
σ ∈ M

(√
α

β
,

√
β

α
, Ω

)
.

Thus in the proof below, we may assume, without loss of generality, σ ∈ M (K−1, K,

Ω) with K =
√

β/α.

Proof of Theorem 4.1. It suffices to treat the case when A is the identity matrix
I because UA = AU I . From now on, for simplicity, we omit the superscript I. The
proof of (4.2) follows with no substantial changes the one in [7, Theorem 1]. The
proof of (4.3) consist of showing that det DU is a Muckenhoupt weight. We observe
that the arguments of Theorem 3.1 tell us that (det DU)ε is a Muckenhoupt weight
for some sufficiently small ε > 0. Here we improve the result and show that this is
true also for ε = 1.

By Remark 4.6, we may assume σ ∈ M (K−1, K, Ω) with K =
√

β/α.
Using the notation of Section 3, we have U = V ◦ f where f now is a K-

quasiconformal homeomorphism of C onto itself. Moreover V satisfies (3.19) for all
squares in C. Recall also that V is a τ -harmonic homeomorphism of C onto itself
with τ given by (3.12), hence we also have that area formulas of the type (4.6) also
apply to V , and obviously to f because of its quasiconformality.

By (3.19) we deduce that det DV is an A∞-weight, and for suitable M, η > 0
only depending on K, we have

(4.11)
∫

F

det DV ≥ M

( |F |
|P |

)η ∫

P

det DV

for any square P and any measurable set F ⊂ P .
Since f is K-quasiconformal, we have that f satisfies the following condition,

which can be viewed as one of the many manifestations of the bounded distortion
property of quasiconformal mappings.

There exist q ∈ (0, 1) depending on K only such that for every square P ⊂ C,
there exists a square P ′ ⊂ C such that

(4.12) qP ′ ⊂ f(P ) ⊂ P ′.
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Here, if l is the length of the side of P ′, we denote by qP ′ the square concentric
to P ′ with side q · l. We refer to [31, Proof of Theorem 9.1] for a proof.

Therefore, we have f(E) ⊂ f(P ) ⊂ P ′ and hence

(4.13) |U(E)| = |V (f(E))| ≥ M

( |f(E)|
|P ′|

)η

|V (P ′)|.

Obviously,

|V (P ′)| ≥ |V (f(P ))| and |P ′| = 1

q2
|q P ′| ≤ 1

q2
|f(P )|.

Therefore

(4.14) |U(E)| ≥ Qq2η

( |f(E)|
|f(P )|

)η

|U(P )|.

By Gehring’s Theorem [26], we have that det Df satisfies a reverse Hölder inequality
of the form (ii) in Lemma 4.5, with constants only depending on K. By (iii) in
Lemma 4.5, there exists L, ρ > 0 only depending on K such that

(4.15)
|f(E)|
|f(P )| ≥ L

( |E|
|P |

)ρ

and finally, by (4.14) and (4.15)

(4.16) |U(E)| ≥ Q(q2 L)η

( |E|
|P |

)η ρ

|U(B)|.

Thus (4.3) follows. ¤

Remark 4.7. The A∞-property of the Jacobian determinant, obtained in The-
orem 4.1 for the periodic setting, is indeed an improvement of the BMO bound
obtained previously and which applies to the wider context of locally injective σ-
harmonic mappings. Local versions of a bound like (4.3) could be obtained as well
for locally injective σ-harmonic mappings, however it is expected that a quantitative
evaluation of the constants might be more involved in this case.

5. Miscellaneous proofs

Proof of Theorem 1.9 (Sketch). By the well-known Stoïlow representation, see
for instance [31, Chapter VI], there exists a quasiconformal mapping χ : C → C
such that F factorizes as F = H ◦ χ with H holomorphic in χ(Ω). Thus, up to
the change of variable χ, one can assume w.l.o.g. µ = ν = 0. Then u is harmonic
and ũ is its harmonic conjugate. Being g unimodal, u has no critical point inside
Ω [4, 6], moreover, by the maximum principle, for every t ∈ (min g, max g) the level
set {u > t} is connected and the level line {u = t} in Ω is a simple open arc. On
{u = t}, ũ has nonzero tangential derivative, hence it is strictly monotone there.
Consequently, F is one-to-one on Ω. ¤

Proof of Proposition 1.8. The proof of this Proposition is a calculus matter
regarding matrices σ and complex numbers µ, ν linked by the relations (1.19), or
equivalently (1.20). The dependence on the space variables z = x1 + ix2 plays no
role at this point, and thus we can neglect it. The inequalities (1.9) can be viewed
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as lower bounds on the eigenvalues of the symmetric matrices σ+σT

2
and σ−1+(σ−1)T

2
.

In terms of µ, ν, the lower eigenvalues of such matrices are given by

(5.1)
(1− |µ|)2 − |ν|2
|1 + ν|2 − |µ|2 ,

(1− |µ|)2 − |ν|2
|1− ν|2 − |µ|2 ,

respectively. By computing the minima of such expressions as µ, ν ∈ C satisfy (1.1)
we obtain (1.21). It is worth noticing that such minima are achieved when ν = |ν| in
the first case, and when ν = −|ν| in the second case. In either case, the corresponding
σ turns out to be symmetric.

Viceversa, if we constrain µ, ν to satisfy both limitations

(5.2)
(1− |µ|)2 − |ν|2
|1 + ν|2 − |µ|2 ≥ λ,

(1− |µ|)2 − |ν|2
|1− ν|2 − |µ|2 ≥ λ,

then the maximum of |µ| + |ν| turns out to be
√

1−λ
1+λ

and (1.22) follows. Note that
in this case the maximum is achieved with µ, ν satisfying µ = 0 and Reν = 0 which
means

(5.3) σ =

(
a b
−b a

)
with a = λ, b = ±

√
1− λ2.

Let us also recall the well-known fact that, if we a-priori assume σ symmetric, then,
under the constraints (5.2), the maximum of |µ|+|ν| becomes 1−λ

1+λ
, that is K = 1

λ
. ¤

Proof of (3.16). As in the Proof of Proposition 1.8, we can neglect the depen-
dence on the space variables z = x1 + ix2. The task here is to evaluate the minimum
eigenvalue of the symmetric part of the matrices τ and of τ−1. It suffices to consider
the case det σ ≤ 1. Indeed, up to replacing σ with σ−1 we can always reduce to this
case. Set D = det σ, T = Trσ and H = (σ12 − σ21)

2. Elementary computations lead
us to minimize the functions

F (D, H) =
D + 1−

√
(D − 1)2 + H

2
,(5.4)

G(F, H) =
F (D,H)

D
,(5.5)

subject to the constraints

T −√T 2 + H − 4D

2
≥ 1

K
,(5.6)

T −√T 2 + H − 4D

2D
≥ 1

K
.(5.7)

Note that, being D ≤ 1, we have that (5.6) is always satisfied if (5.7) holds and
also that G(D,H) ≥ F (D, H) with equality when D = 1. Thus we are reduced to
compute

min{F (D, H) | 0 ≤ D ≤ 1, H, T ≥ 0, (5.6) holds} = 1 +

√
1− 1

K2
.

The minimum is achieved when

(5.8) T =
2

K
, D = 1, and H = 1− 1

K2
,
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which implies that σ has the form (5.3) with λ = 1/K. This proves that ατ as defined
in (3.15) satisfies (3.16). Consequently, by (5.5) and (5.8) we also obtain βτ = 1

ατ
,

proving (3.16). ¤

6. Further results and connections

6.1. Area formulas for σ-harmonic mappings. One of the original motiva-
tions to the study of Theorem 1.9 came from homogenization and in particular the
study of bounds for effective conductivity, that is, H-limits. So let σ ∈ M (α, β,R2)
be Q-periodic (Q = (0, 1) × (0, 1)). By its associated H-limit we mean the con-
stant matrix σeff also called the effective conductivity defined as the H-limit of
σε(z) := σ( z

ε
) which, as is well-known, it is defined via cell problems as follows.

For any vector ξ ∈ R2, one has

(6.1) σeffξ · ξ = min

{∫

Q

σ∇u · ∇u | u− ξ · x ∈ W 1,2
] (Q;R)

}
.

Let uξ be the minimizer of (6.1) and let ũξ be its stream function. Using the notation
of Section 4, we have uξ = U I · ξ. Set f ξ = uξ + iũξ. Notice that this quasiconformal
mapping coincides with the one introduced in Notation 2.1 when U = U I . Here we
use the superscript ξ just in order to emphasize this dependence.

Theorem 6.1. For any nonzero vector ξ ∈ R2 one has

(6.2) σeffξ · ξ = |f ξ(Q)|.
Proof. We refer to [9, Proposition 4.1]. Again in that context σ was assumed to

be symmetric but the hypotheses was not used. ¤
The previous result transforms the problem of the calculation of the effective

conductivity into a geometrical one, finding the area of the set f ξ(Q).
Next result has already been invoked in Section 3.

Theorem 6.2. Let Ω be a bounded, open, simply connected set. Let σ ∈
M (α, β, Ω) and let U ∈ W 1,2(Ω;R2) be a univalent σ-harmonic mapping onto an
open set D. For any measurable set E ⊂ Ω and any function φ ∈ L1(D;R) one has

(6.3)
∫

E

φ(U(x))| det DU(x)| dx =

∫

U(E)

φ(y) dy.

Proof. We refer to [9, Proposition 4.2]. Again in that context σ was assumed to
be symmetric but the hypotheses was not used. ¤

6.2. Correctors and H-convergence. In order to explain the meaning of our
results in the context of H-convergence we need to recall the notion of correctors.
It is convenient to use the operator Div which acts as the usual div operator on the
rows of 2× 2 matrices.

Definition 6.3. Let σε be a sequence in M (α, β, Ω) which is H-converging to
σ0. Set P ε = DU ε where, for ω open with ω ⊂⊂ Ω, one has that U ε satisfies the
following properties

(6.4)





U ε ∈ W 1,2(ω;R2),

U ε ⇀ Id weakly in W 1,2(ω;R2×2),

−Div(DU ε(σε)
T ) → −Div(σT

0 ) strongly in W−1,2(ω;R2).
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Then P ε is called a corrector associated with (σε, σ0).

For the main properties of the correctors we refer to [36]. Let us just recall here
that they exist and that, for a given sequence, σε which is H-converging to σ0, the
difference between two such correctors converges strongly to zero in L2

loc(Ω;R2×2).
Our interest in this context is given by the following result.

Proposition 6.4. (Murat and Tartar [36]) Let σε be a sequence in M (α, β, Ω)
which is H-converging to σ0. Set U ε = (uε

1, u
ε
2) ∈ H1(Ω;R2) to be the unique solution

to

(6.5)

{
Div(DU εσT

ε ) = Div(σT
0 ) in Ω,

(uε
1, u

ε
2) = (x1, x2) on ∂Ω.

Then P ε = DU ε is a corrector associated with (σε, σ0).

Proposition 6.4 has a particularly simple interpretation in our language when σ0

does not depend on position. In this case (which is of fundamental importance in
the so called G-closure problems), (6.5) is nothing else than a reformulation of the
boundary value problem (1.25), or equivalently of (1.7), with σ = σε and Proposition
6.4 says that the corrector can be identified, up to an L2 strong remainder as the
Jacobian matrix of an appropriate σ-harmonic mapping.

6.3. Exponent of higher integrability. As a concluding remark, we observe
a straightforward corollary to Proposition 1.8 which we state as a Theorem for the
reader’s convenience.

Theorem 6.5. (Astala) Let σ ∈ M (α, β, Ω) and let u ∈ W 1,2
loc (Ω) be a σ-

harmonic function. Set

(6.6) K =

√
β

α
+

√
β − α

α
.

Then u ∈ W 1,p
loc (Ω) for any

p ∈
[
2,

2K

K − 1

)
.

Proof. As we noted already in Remark 4.6, u is also σ̃-harmonic with σ̃ given by
(4.10), which belongs to M (λ, λ−1, Ω) and λ =

√
α/β. By Proposition 1.8, f = u+iũ

is K-quasiregular with K given by (6.6). Then one applies the celebrated Astala’s
Theorem [11]. ¤

Let us emphasize here that the only, possibly new, observation is of algebraic
nature. In the case when σ is symmetric the algebraically optimal bound is known
as was pointed out in [33] and [9] and achieved for some σ’s. Astala states explicitly
in his paper fundamental paper [11] that the exact exponent for the σ-harmonic
function seems to depend in a non obvious and complicated way on the entries of
σ. Our calculation seems to set the algebraically optimal bound in the most general
case of non-symmetric σ. Optimality, in the sense of the existence of a σ showing
that the exponent of higher integrability cannot be improved, in the context of non
symmetric σ’s seems to be an open problem. Indeed, by the optimality conditions
(5.3), the extremal σ cannot be symmetric almost everywhere. Therefore it appears
that the putative example must be of a new type.



66 Giovanni Alessandrini and Vincenzo Nesi

Acknowledgements. The research of the first author was supported in part by
MiUR, PRIN no. 2006014115. The research of the second author was supported in
part by MiUR, PRIN no. 2006017833.

References

[1] Albin, N.: Optimality of the translation bounds for linear conducting composites in two and
three dimensions. - Ph.D. thesis, University of Utah, 2006.

[2] Albin, N., A. Cherkaev, and V. Nesi: Multiphase laminates of extremal effective conduc-
tivity in two dimensions. - J. Mech. Phys. Solids 55, 2007, 1513–1553.

[3] Albin N., S. Conti, and V. Nesi: Improved bounds for composites and rigidity of gradient
fields. - Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463, 2007, 2031–2048.

[4] Alessandrini, G.: An identification problem for an elliptic equation in two variables. - Ann.
Mat. Pura Appl. (4) 145, 1986, 265–296.

[5] Alessandrini, G., and A. Diaz Valenzuela: Unique determination of multiple cracks by
two measurements. - SIAM J. Control Optim. 34:3, 1996, 913–921.

[6] Alessandrini, G., and R. Magnanini: Elliptic equation in divergence form, geometric criti-
cal points of solutions and Stekloff eigenfunctions. - SIAM J. Math. Anal. 25:5, 1994, 1259–1268.

[7] Alessandrini, G., and V. Nesi: Univalent σ-harmonic mappings. - Arch. Ration. Mech.
Anal. 158:2, 2001, 155–171.

[8] Alessandrini, G., and V. Nesi: Univalent σ-harmonic mappings: connections with quasi-
conformal mappings. - J. Anal. Math. 90, 2003, 197–215.

[9] Alessandrini, G., and V. Nesi: Area formulas for σ-harmonic mappings. - In: Non-
linear problems in mathematical physics and related topics I, Int. Math. Ser. (N.Y.) 1,
Kluwer/Plenum, New York, 2002, 1–21.

[10] Alessandrini, G., and L. Rondi: Stable determination of a crack in a planar inhomogeneous
conductor. - SIAM J. Math. Anal. 30:2, 1998, 326–340.

[11] Astala, K.: Area distortion of quasiconformal mappings. - Acta Math. 173, 1994, 37–60.

[12] Bauman, P.: Positive solutions of elliptic equations in nondivergence form and their adjoints.
- Ark. Mat. 22:2, 1984, 153–173.

[13] Bauman, P., A. Marini, and V. Nesi: Univalent solutions of an elliptic system of partial
differential equations arising in homogenization. - Indiana Univ. Math. J. 50:2, 2001, 747–757.

[14] Bensoussan, A., J.-L. Lions, and G. Papanicolaou: Asymptotic analysis for periodic
structures. - North Holland, Amsterdam, 1978.

[15] Bojarski, B.: Primary solutions of general Beltrami equations. - Ann. Acad. Sci. Fenn. Math.
32, 2007, 549–557.

[16] Bojarski, B., L. D’Onofrio, T. Iwaniec, and C. Sbordone: G-closed classes of elliptic
operators in the complex plane. - Ricerche Mat. 54:2, 2005, 403–432.

[17] Choquet, G.: Sur un type de transformation analytique généralizant le représentation con-
forme et definie au moyen de fonctions harmoniques. - Bull. Sci. Math. 69, 1945, 156–165.

[18] Coifman, R., and C. Fefferman: Weighted norm inequalities for maximal functions and
singular integrals. - Studia Math. 51, 1974, 241–250.

[19] Dal Maso, G.: An Introduction to Γ-convergence. - Progr. Nonlinear Differential Equations
Appl. 8, Birkäuser, Boston, 1993.

[20] Dal Maso, G., V. Chiadò-Piat, and A. Defranceschi: G-convergence of monotone op-
erators. - Ann. Inst. H. Poincaré Anal. Non Linéaire 7:3, 1990, 123–160



Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds 67

[21] De Giorgi, E., and S. Spagnolo: Sulla convergenza degli integrali dell’energia per operatori
ellittici del secondo ordine. - Boll. Un. Mat. Ital. (4) 8, 1973, 391–411.

[22] Fabes, E. B., and D.W. Strook: The Lp-integrability of Green’s functions and fundamental
solutions for elliptic and parabolic equations. - Duke Math. J. 51:84, 1984, 997–1016.

[23] Faraco, D., and L. Szèkelyhidi: Tartar’s conjecture and localization of the quasiconvex hull
in R2×2. - Acta Math. 200:2, 2008, 279–305.

[24] Fumolo, N.: Mappe sigma-armoniche nonvariazionali. - Tesi di Laurea in Matematica, Uni-
versità degli Studi di Trieste, 2003.

[25] García-Cuerva, J., and J. L. Rubio de Francia: Weighted Norm Inequalities and Related
Topics. - North-Holland, Amsterdam, 1985.

[26] Gehring F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping.
- Acta Math. 130, 1973, 265–277.

[27] Giannetti, F., T. Iwaniec, L. Kovalev, G. Moscariello, and C. Sbordone: On G-
compactness of the Beltrami operators. - In: Nonlinear homogenization and its applications
to composites, polycrystals and smart materials, NATO Sci. Ser. II Math. Phys. Chem. 170,
Kluwer Acad. Publ., Dordrecht, 2004, 107–138.

[28] Gilbarg, D., and N. S. Trudinger: Elliptic partial differential equations of second order.
Second edition. - Springer Verlag, Berlin, 1983.

[29] Jones, P.W.: Extension theorems for BMO. - Indiana Univ. Math. J. 29:1, 1980, 41–66.

[30] Kneser, H.: Lösung der Aufgabe 41. - Jber. Deutsch. Math.-Verein. 35, 1926, 123–124.

[31] Lehto, O., and K. I. Virtanen: Quasiconformal mappings in the plane. - Springer Verlag,
Berlin, 1973.

[32] Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. - Bull. Amer.
Math. Soc. 42, 1936, 689–692.

[33] Leonetti F., and V. Nesi: Quasiconformal solutions to certain first order systems and the
proof of a conjecture of G.W. Milton. - J. Math. Pures Appl. (9) 76:2, 1997, 109–124.

[34] Marcellini, P.: Convergence of second order linear elliptic operators. - Boll. Un. Mat. Ital.
B (5) 16:1, 1979, 278–290.

[35] Milton, G.W.: The theory of composites. - Cambridge Monogr. Appl. Comput. Math. 6,
Cambridge Univ. Press, Cambridge, 2002.

[36] Murat, F., and L. Tartar: H-convergence. - In: Topics in the mathematical modelling
of composite materials, Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston,
Boston, MA, 1997, 21–43.

[37] Nesi, V.: Bounds on the effective conductivity of two-dimensional composites made of n ≥ 3
isotropic phases in prescribed volume fraction: the weighted translation method. - Proc. Roy.
Soc. Edinburgh Sect. A 125:6, 1995, 1219–1239.

[38] Radó, T.: Aufgabe 41. - Jber. Deutsch. Math.-Verein. 35, 1926, 49.

[39] Reimann, H.M.: Functions of bounded mean oscillations and quaisconformal mappings. -
Comment. Math. Helv. 49, 1974, 260–276.

[40] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. - Ann. Sc.
Norm. Super. Pisa 22, 1968, 571–597.

[41] Talenti, G.: Equazioni lineari ellittiche in due variabili. - Matematiche (Catania) 21, 1966,
339–376.

[42] Vessella, S.: Quantitative continuation from a measurable set of solutions of elliptic equa-
tions. - Proc. Roy. Soc. Edinburgh Sect. A 130:4, 2000, 909–923.

Received 30 June 2007


