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Abstract. Let k(a, b) denote the quasihyperbolic distance between points a, b in a domain
G ⊂ R2. We show that there is a universal constant c0 > 0 with the following properties: (1) If
k(a, b) < c0, then there is only one quasihyperbolic geodesic from a to b. (2) If k(a, b) < c0 and if
γ is a quasihyperbolic geodesic from a to b, then there is a prolongation of γ to a quasihyperbolic
geodesic γ1 from a to b1 with k(a, b1) = c0. (3) Each quasihyperbolic disk of radius r < c0 is strictly
convex in the euclidean metric.

1. Introduction

1.1. Let G ⊂ Rn be a domain, n ≥ 2. We always assume without further notice
that G 6= Rn. We recall that the quasihyperbolic length of a rectifiable arc γ ⊂ G or
a path γ in G is the number

lk(γ) =

∫
γ

|dx|
δ(x)

,

where δ(x) = δG(x) = d(x,Rn \ G) = d(x, ∂G). For a, b ∈ G, the quasihyperbolic
distance k(a, b) = kG(a, b) is defined by

k(a, b) = inf lk(γ)

where the infimum is taken over all rectifiable arcs γ joining a and b in G.
We write γ : a y b if γ is an arc from a to b. An arc γ : a y b is a quasihyperbolic

geodesic or briefly a geodesic if lk(γ) = k(a, b). For quasihyperbolic balls and spheres
in G we use the notation

Bk(a, r) = {x ∈ G : k(x, a) < r}, B̄k(a, r) = {x ∈ G : k(x, a) ≤ r},
Sk(a, r) = {x ∈ G : k(x, a) = r}.

A domain D ⊂ Rn is strictly convex if (1) it is convex and (2) D contains the
open line segment (x, y) for each pair of boundary points a, b ∈ ∂D. A bounded
domain is strictly convex as soon as it satisfies (2). A convex domain is strictly
convex iff its boundary does not contain a line segment.

The quasihyperbolic metric of a domain in Rn was introduced by Gehring and
Palka [GP] in 1976, and it has turned out to be a useful tool, for example, in the
theory of quasiconformal maps. It is known [GO, Lemma 1] that a quasihyperbolic
geodesic between given points always exists. Martin [Ma] proved in 1985 that quasi-
hyperbolic geodesics are C1 smooth with Lipschitz continuous derivatives. However,
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several questions on the basic quasihyperbolic geometry remain open, for example
the following three conjectures:

1.2. Uniqueness conjecture. There is a universal constant cU > 0 such that if
a, b ∈ G and k(a, b) < cU, then there is only one quasihyperbolic geodesic γ : a y b.

1.3. Prolongation conjecture. There is a universal constant cP > 0 such that
if γ : a y b is a quasihyperbolic geodesic with lk(γ) = k(a, b) < cP, then there is a
quasihyperbolic geodesic γ1 : a y b1 such that γ ⊂ γ1 and l(γ1) = cP.

1.4. Convexity conjecture. There is a universal constant cC > 0 such that
the quasihyperbolic ball Bk(a, r) is strictly convex for all r < cC.

If the condition of one of the conjectures, say 1.2, holds for a domain G ⊂ Rn

with cU replaced by a constant c > 0, we say that G satisfies the conjecture 1.2 with
cU = c.

1.5. In [MV] we proved that convex domains satisfy all three conjectures without
any restriction to the quasihyperbolic distance. The domain G1 = R2 \ {0} and the
points a = −1, b = 1 show that one must have cU ≤ π and cP ≤ π. Moreover, the
same domain shows that cC ≤ 1; see [Kl, 3.5] or Corollary 3.7 of the present paper.

The main purpose of this paper is to prove that the three conjectures are true in
the case n = 2.

We show in 2.3 and 2.6 that 1.4 ⇒ 1.2 ⇒ 1.3 in all dimensions. The rest of
the paper is devoted to the proof of the Convexity conjecture for planar domains
with the sharp constant cC = 1. This will imply the other two conjectures with
cU = 2, cP = π/2, which will be improved to cP = 2 in 8.11.

The strategy of the proof is as follows: We start with the case of the punctured
plane G1 = R2 \ {0}. This domain was considered in 1986 by Martin and Osgood
[MO], who made the important observation that the exponential function ez trans-
forms euclidean length in R2 to quasihyperbolic length in G1. The quasihyperbolic
geodesics and disks of G1 are therefore well understood.

Next we consider the case where Q = R2 \ G is a finite set. This set defines a
Voronoi diagram VorQ, which is the decomposition of the plane into Voronoi cells

Dq = {x ∈ R2 : |x− q| < |x− p| for all p ∈ Q \ {q}},

q ∈ Q. See, for example, [OBS]. Each cell is an open polygon, possibly a half plane
or a parallel strip, and R2 =

⋃
{D̄q : q ∈ Q}. If γ is a quasihyperbolic geodesic of G

and if α is a component of γ ∩Dq, then ᾱ is a geodesic in R2 \ {q} and therefore well
known. To study the whole geodesic, we must investigate its behavior at the edges
of the polygons Dq. This leads to a combinatorial analysis that will be carried out
in Section 5, and we obtain the nonstrict Convexity conjecture for these domains in
5.7 and the strict one in 6.10.

Finally, to prove the Convexity conjecture for an arbitrary domain G ⊂ R2, we
approximate G by a sequence of domains Gj = R2 \ Qj where each Qj is a finite
subset of ∂G. Given a ∈ G and r > 0, the sets Qj can be chosen so that the quasi-
hyperbolic disk Bk(a, r) of G is the intersection of the quasihyperbolic disks Bkj(a, r)
of Gj and therefore convex if r ≤ 1. To obtain strict convexity we need estimates for
the strictness of the convexity of the disks Bkj(a, r). The proof will be completed in
7.7. Some further results and conjectures are given in Section 8.
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We use the same notation as in [V3]. In particular, arcs are assumed to be
oriented, that is, equipped with one of the two possible orderings. We write γ : a y b
if γ is an arc with first point a and last point b. An arc γ is C1 smooth or briefly
smooth if it has a unit tangent vector v(x) at every x ∈ γ (one-sided at the endpoints)
and if the map v : γ → S(1) is continuous. See [V3, 2.7]. We write γ̊ = γ \ {a, b}.

The affine subspace spanned by a set A ⊂ Rn is aff A. For open and closed balls
and for spheres in Rn we use the notation B(a, r), B̄(a, r), S(a, r), where the center
a may be omitted if a = 0. In particular, S(1) is the unit sphere of Rn.

It is often convenient to parametrize an arc or a path by quasihyperbolic length.
We say that g : [0, r] → G is a quasihyperbolic parametrization if lk(g|[0, t]) = t for
all t ∈ [0, r]. Then r = lk(g) and

(1.6) |g′(t)| = δ(g(t))

almost everywhere. Every rectifiable arc γ ⊂ G has a quasihyperbolic parametrization
g : [0, r]→ γ, and g satisfies the Lipschitz condition

(1.7) |g(s)− g(t)| ≤M |s− t|
where M = max{δ(x) : x ∈ γ}.

If γ is a geodesic, then g is an isometry from [0, r] into the metric space (G, k),
and we say that g is a geodesic path from g(0) to g(r). Then g is C1 by [Ma, 4.8] and
(1.6) holds for all t ∈ [0, r]. Instead of [0, r], the parametric interval of a geodesic
path may be [t0, t0 + r] for some t0 ∈ R.

Acknowledgement. I thank Olli Martio for useful discussions and for comments
on various drafts of the paper.

2. General results

In this section we give some results on quasihyperbolic geometry, valid in all
dimensions. A domain D ⊂ Rn is strictly starlike with respect to a point a ∈ D if D
is bounded and if each ray from a meets ∂D at exactly one point. From [V3, 3.11]
we get

2.1. Lemma. If 0 < r < π/2, then every quasihyperbolic ball Bk(a, r) in a
domain G ⊂ Rn is strictly starlike with respect to a. Hence Sk(a, r) is homeomorphic
to the unit sphere S(1). Moreover, if x ∈ B̄k(a, r), then the closed ball Ā(a, x) =
B̄((a+ x)/2, |a− x|/2) lies in G. �

We next consider sequences of geodesic paths.

2.2. Theorem. Let G ⊂ Rn be a domain and let gj : [0, r] → G be a sequence
of geodesic paths such that gj(0)→ a ∈ G, gj(r)→ b ∈ G. Then:

(1) There is a convergent subsequence of (gj).
(2) Each convergent subsequence (hj) of (gj) converges uniformly to a geodesic

path h from a to b.
(3) If there is only one geodesic path g from a to b, then (gj) converges uniformly

to g.

Proof. There is a compact set in G containing all geodesics im gj. By (1.7) and by
Ascoli’s theorem, there is a subsequence (hj) of (gj) converging uniformly to a path
h : [0, r] → G. Then lk(h) ≤ lim infj→∞ lk(hj) = r (see [MV, 3.1]), whence γ = imh
is a quasihyperbolic geodesic. Repeating the argument on subintervals of [0, r] we
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see that h is a geodesic path. Hence (1) and (2) are true, and (3) is a corollary of
these. �

2.3. Theorem. If a domain G ⊂ Rn satisfies the Convexity conjecture 1.4, it
satisfies the Uniqueness conjecture 1.2 with cU = 2cC.

Proof. Assume that a, b ∈ G with k(a, b) = 2r < 2cC and that γ1, γ2 : a y b
are quasihyperbolic geodesics. Let zj ∈ γj be the point bisecting the quasihyperbolic
length of γj. If z1 6= z2, then for y = (z1+z2)/2 we have k(a, y) < r and k(b, y) < r by
1.4. This implies the contradiction k(a, b) < 2r = k(a, b), whence z1 = z2. Iteration
and continuity prove the theorem. �

2.4. Theorem. Suppose that c > 0 and that G ⊂ Rn satisfies the Prolongation
conjecture 1.3 with all cP < c. Then it satisfies 1.3 with cP = c.

Proof. Let γ0 : a y b be a quasihyperbolic geodesic in G with lk(γ0) = c0 < c.
Choose a sequence c0 < c1 < . . . converging to c. Then there are quasihyperbolic
geodesics γj : a y bj such that γj ⊂ γj+1 and such that lk(γj) = cj. As k(bi, bj) =
cj − ci for i < j, the sequence (bj) is Cauchy and converges to a point b ∈ G with
k(a, b) = c. Now the union of all γj is a geodesic γ : a y b with lk(γ) = c. �

2.5. Ball convexity and shuttles. We recall from [Ma, 2.2] that quasi-
hyperbolic geodesics are ball convex. This means that if B is a euclidean ball in a
domain G ⊂ Rn and if γ : a y b is a quasihyperbolic geodesic with a, b ∈ B̄, then
γ ⊂ B̄. This implies that sufficiently short geodesics are contained in shuttles, defined
by

Y (a, b;R) =
⋂
{B(z,R) : |z − a| = |z − b| = R},

Ȳ (a, b;R) =
⋂
{B̄(z,R) : |z − a| = |z − b| = R},

where |a − b| ≤ 2R. If n = 2, then Y (a, b;R) is a Jordan domain bounded by two
circular arcs. The angle α of Y is defined by

sinα = |a− b|/2R, 0 < α ≤ π/2.

If γ : a y b is a geodesic in G ⊂ Rn and if 2R ≤ δ(x)∨ δ(y), then γ ⊂ Ȳ (a, b;R)
([V3, 2.6]).

2.6. Theorem. If a domain G ⊂ Rn satisfies the Uniqueness conjecture 1.2, it
satisfies the Prolongation conjecture 1.3 with cP = cU ∧ π

2
.

Proof. Let a ∈ G and let 0 < r < s < cP. For each x ∈ Sk(a, s) there is a unique
quasihyperbolic geodesic γx : a y x. Let f(x) be the unique point in γx ∩ Sk(a, r).
By 2.4 it suffices to show that f : Sk(a, s)→ Sk(a, r) is surjective.

From 2.2 it follows that f is continuous. Since s < π/2, the quasihyperbolic balls
Bk(a, r) and Bk(a, s) are strictly starlike by 2.1. Hence the central projection from
a defines a homeomorphism g : Sk(a, s) → Sk(a, r). It suffices to show that f and g
are homotopic, because then they have the same degree. For this, it suffices to show
that a /∈ [fx, gx] for each x ∈ Sk(a, s).

The ball B̄ = Ā(a, x) lies in G by 2.1. By the ball convexity of γx (see 2.5),
fx ∈ B, and the theorem follows. �
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For nonzero vectors a, b ∈ Rn we let ang (a, b) denote the angle between a and b,
defined by

a · b = |a||b| cos ang (a, b), 0 ≤ ang (a, b) ≤ π.

2.7. Lemma. Let g : [0, r] → G be a geodesic path and let 0 ≤ t < s ≤ r, s ≤
t+ 1/2. Then

ang (g′(t)), g(s)− g(t)) ≤ 4(s− t).
Proof. By a standard estimate we have

k(x, y)/2 ≤ |x− y|/δ(x) ≤ 2k(x, y)

whenever x, y ∈ G with either |x − y| ≤ δ(x)/2 or k(x, y) ≤ 1; see [V1, 2.5] or [V2,
3.9]. For x = g(t), y = g(s) we have k(x, y) = s − t ≤ 1/2, whence |x − y| ≤ δ(x).
By 2.5 this implies that g[t, s] ⊂ Ȳ (x, y; δ(x)/2). For α = ang (g′(t), y − x) we thus
have

α ≤ 2 sinα ≤ 2|x− y|/δ(x) ≤ 4k(x, y) = 4(s− t). �

We apply 2.7 to show that in a convergent sequence of geodesics also the deriva-
tives converge:

2.8. Theorem. Suppose that (gj) is a sequence of geodesic paths gj : [0, r] →
G ⊂ Rn converging to a path g : [0, r]→ G. Then

(1) g is a geodesic path and the convergence is uniform,
(2) g′j(t)→ g′(t) uniformly on [0, r].

Proof. Part (1) follows from 2.2. By (1.6) we have |g′(t)| = δ(g(t)), |g′j(t)| =
δ(gj(t)). Hence it suffices to show that ang (g′j(t), g

′(t))→ 0 uniformly on [0, r].
Assume that this is not true. Passing to a subsequence we may assume that there

is a number θ > 0 and a sequence (tj) in [0, r] such that tj → t0 ∈ [0, r] and such that
ang (g′j(tj), g

′(tj)) ≥ θ for all j. Replacing g(t) by g(r−t) if necessary we may assume
that t0 6= r 6= tj for all j. Fix a number u such that 0 < u < θ/10, s0 = t0 + u ≤ r
and sj = tj + u ≤ r for all j.

From 2.7 it follows that the angles ang (g′(t0), g(s0)−g(t0)) and ang (g′(tj), gj(sj)−
gj(tj)) are less than 2θ/5. Furthermore,

g′(tj)→ g′(t0), gj(sj)→ g(s0), gj(tj)→ g(t0)

as j →∞, and we obtain the contradiction θ ≤ 4θ/5. �

2.9. Normal vectors. We recall the theory of normal vectors from [V3, Sec. 5].
Let a ∈ G ⊂ Rn, r > 0, and set S = Sk(a, r). A unit vector e is an inner normal
vector of S at b ∈ S if

lim inf
x→b,k(x,a)≥r

ang (x− b, e) ≥ π/2,

and a unit vector u is an outer normal vector of S at b if

lim inf
x→b,k(x,a)≤r

ang (x− b, u) ≥ π/2.

By Theorem 2.10 below, an inner normal vector always exists, but it is possible that
S has several inner normal vectors at some point b ∈ S. However, if an outer normal
vector u exists, then both are unique and u = −e by [V3, 5.3]. Then we say that u
is the normal vector of S at b, and T = b+ u⊥ is the tangent hyperplane of S at b.
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2.10. Theorem. Let a ∈ G ⊂ Rn, r > 0, let γ : a y b ∈ S = Sk(a, r) be a
quasihyperbolic geodesic, and let v be the unit tangent vector of γ at b. Then −v is
an inner normal vector of S at b. If γ has a prolongation to a geodesic γ1 : a y b1 6= b,
then v is a normal vector of S at b.

If G satisfies the Uniqueness and Prolongation conjectures 1.2 and 1.3 with a
constant c and if r < c, then S is smooth, that is, it has a continuous normal vector.

If Bk(a, r) is convex, then S is smooth.
Proof. The first part of the theorem follows from [V3, 5.4, 5.10].
In the second part, let u(y) be the normal vector of S at y ∈ S. Let (bj) be

a sequence in Sk(a, r) converging to b ∈ S, and let gj : [0, r] → G be the unique
geodesic path from a to bj. By 2.2, the sequence (gj) converges to a geodesic path g
with im g = γ. Then g′j(r)→ g′(r) by 2.8. It follows that

u(bj) = g′j(r)/δ(bj)→ g′(r)/δ(b) = u(b),

whence u is continuous.
Finally, assume that D = Bk(a, r) is convex. Let T be a supporting hyperplane

of D at y ∈ S. Let H be the component of Rn \ T containing D and let u(y) be the
unit normal vector of T with y + u(y) /∈ H. Then u(y) is a normal vector of S at
y. To prove that u is continuous in a neighborhood of a point b ∈ S we may assume
that b = 0 and that u(b) = −en. Now there is a neighborhood V of 0 in S such that
V is the graph of a convex function h : U → R, defined in an (n − 1)-dimensional
ball U . This function is differentiable at every point and therefore C1 by a classical
result on convex functions; see [Ro, 25.5.1]. Hence u is continuous. �

2.11. Distortion of geodesics. Let γ : a y b be a quasihyperbolic geodesic
in a domain G ⊂ Rn and let v(x) be the unit tangent vector of γ at x ∈ γ. Then
v : γ → S(1) is continuous but it need not be differentiable. However, it is Lip-
schitz, and a sharp estimate for a generalized curvature of γ was given by Martin
in [Ma, (4.10),(4.11)]. From this theory it is easy to obtain the sharp estimate
ang (v(a), v(b)) ≤ k(a, b). We give a slightly modified treatment of Martin’s theory.

The following was proved in [Ma, 2.5]; the stronger condition |x| < (d − r)/2 is
not needed.

2.12. Lemma. Suppose that x, z, p ∈ Rn with |x| ≤ d − r, |z| = r, |p| ≥
d, d/2 < r < d. If x′ ∈ (x, z), then

|x− p|/|x′ − p| < |x− z|/|x′ − z|. �

2.13. Cap convexity theorem. (cf. [Ma, 2.4]) Let G ⊂ Rn be a domain, let
x0, z ∈ G with |z − x0| = r, δ(x0) = d, d/2 < r < d. Let 0 < t ≤ d− r and let γ be
a quasihyperbolic geodesic with endpoints on the cap C = S(z, r) ∩ B̄(x0, t). Then
γ ⊂ B̄(z, r) ∩ B̄(x0, t).

Proof. We may assume that x0 = 0. By ball convexity 2.5, we have γ ⊂
B̄(x0, t). Assume that the theorem is false. Then there is a geodesic γ : a y b with
a, b ∈ C, γ ∩ B̄(z, r) = {a, b}. Let u be the inversion in the sphere S(z, r). Then
|u′(x)| = r2/|x− z|2. By the convexity of B(x0, d) we have [x, z] ⊂ B(x0, d) ⊂ G for
each x ∈ γ. Hence uγ ⊂ G. It suffices to show that lk(uγ) < lk(γ).

We have

(2.14) lk(uγ) =

∫
γ

|u′(x)||dx|
δ(ux)

= r2

∫
γ

|dx|
δ(ux)|x− z|2

.
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Choosing p ∈ ∂G with |ux− p| = δ(ux) and applying 2.12 with x′ = ux we get

δ(x)

δ(ux)
≤ |x− p|
|ux− p|

<
|x− z|
|ux− z|

=
|x− z|2

r2

for all x ∈ γ̊. This and (2.14) yield lk(uγ) < l(γ). �

With the aid of cap convexity one can replace the shuttle in 2.5 by a narrower
one if the geodesic γ is short:

2.15. Theorem. Let γ : a y b be a quasihyperbolic geodesic in G ⊂ Rn such
that s := |a− b| < d/2 where d = δ(a)∨ δ(b). Then γ ⊂ Ȳ (a, b; d− s). For the angle
α(s) of the shuttle we have

lim
s→0

α(s)

s
=

1

2d
.

Proof. We may assume that d = δ(a) ≥ δ(b). Set r = d− s and let z be a point
with |z − a| = |z − b| = r. Now 2.13 gives γ ⊂ B̄(z, r), whence γ ⊂ Ȳ (a, b; r). As
sinα(s) = s/2(d− s), the theorem follows. �

2.16. Theorem. Let γ : a y b be a quasihyperbolic geodesic in G ⊂ Rn and let
v(x) be the unit tangent vector of γ at x ∈ γ. Then ang (v(a), v(b)) ≤ k(a, b).

Proof. Set ∆ = [0, k(a, b)] and let g : ∆ → γ be the quasihyperbolic para-
metrization of γ. Define ϕ : ∆→ R by ϕ(t) = ang (v(g(t)), v(a)). It suffices to show
that

(2.17) lim sup
t→t0

|ϕ(t)− ϕ(t0)|
|t− t0|

≤ 1

for all t0 ∈ ∆, since this implies that ϕ is 1-Lipschitz.
Set

x0 = g(t0), x = g(t), d = δ(x0), s = |x− x0|,
and assume that s < d/2. By 2.15, the arc γ[x0, x] lies in a shuttle with chord
[x0, x] and angle α(s). Here |ϕ(t) − ϕ(t0)| ≤ 2α(s). Since α(s)/s → 1/2d and since
|g′(t0)| = d by (1.6), this implies (2.17). �

From 2.16 we obtain as an easy corollary:

2.18. Theorem. Let γ : a y b be a quasihyperbolic geodesic in G ⊂ Rn with
k(a, b) ≤ π/2. Let x, y ∈ γ, x 6= y, and let L be either the tangent of γ at x or
the line aff {x, y}. Then the tangent of γ is nowhere perpendicular to L, and the
orthogonal projection of γ into L is injective. �

3. The domains G1 and G2

3.1. In this section we consider domains G ⊂ R2 such that Q = R2 \G consists
of one or two points and start with the punctured plane G1 = R2 \ {0}, which has
been studied by Martin and Osgood [MO] in 1986 and recently by Klén [Kl]. We
shall make extensive use of the exponential map

F : R2 → G1, F (z) = ez, F (x, y) = (ex cos y, ex sin y).

Recall that F is an angle-preserving covering map with F (z) = F (z′) iff z = z′+2mπi
for some m ∈ Z. Thus F is injective in each strip {(x, y) : a < y < a + 2π}, a ∈ R.
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Every path g : [t1, t2]→ G1 has an F -lift g∗ : [t1, t2]→ R2 with F ◦ g∗ = g, and g∗ is
unique as soon as we fix the point g∗(t1) ∈ F−1{g(t1)}.

Martin and Osgood made the important observation that F transforms euclidean
lengths to quasihyperbolic lengths. We recall its proof.

3.2. Lemma. [MO, p. 38] Let g : [0, λ] → R2 be a rectifiable path. Then the
quasihyperbolic length of F ◦ g in G1 is equal to the euclidean length of g.

Proof. We may assume that g is a length parametrization with λ = l(g). We
have δ(w) = |w| for w ∈ G1. As (F ◦ g)′(t) = F (g(t))g′(t) and |g′(t)| = 1 a.e., we get

lk(F ◦ g) =

∫ λ

0

|(F ◦ g)′(t)|
|F (g(t))|

dt =

∫ λ

0

dt = λ. �

A domain D ⊂ R2 is a Jordan domain if it is bounded and if ∂D is a Jordan
curve (topological circle). A Jordan domain D is smooth if ∂D is a C1 smooth curve.

3.3. Lemma. Let D ⊂ R2 be a Jordan domain with rectifiable boundary. If
0 ∈ D, then lk(∂D) ≥ 2π in G1.

Proof. Choose a path g : [0, λ]→ ∂D such that g(0) = g(λ) and such that g|[0, λ)
is injective. Let g∗ : [0, λ] → R2 be an F -lift of g. As g is not null-homotopic, we
have g∗(0) 6= g∗(λ). By 3.2 this gives

lk(∂D) = l(γ∗) ≥ |g∗(0)− g∗(λ)| ≥ 2π. �

3.4. Geodesics in G1. From Lemma 3.2 it follows that a quasihyperbolic
geodesic γ : a y b in G1 can be found as follows. Choose an arbitrary point a∗ ∈
F−1{a} and then b∗ ∈ F−1{b} such that |a∗ − b∗| is minimal. Then γ = F [a∗, b∗].

If k(a, b) < π, then γ is unique. It is a subarc of a logarithmic spiral, possibly of a
circle centered at 0 or a ray emanating from 0; these limiting cases are also regarded
as logarithmic spirals. We say that the origin is the center of the spiral.

3.5. Quasihyperbolic disks in G1. From 3.2 it follows that a quasihyperbolic
disk in G1 is obtained from

Bk(a, r) = FB(a∗, r),

where a∗ is an arbitrary point in F−1{a}.
3.6. Theorem. If p ∈ R2 and 0 < r < π, then D = FB(p, r) is a smooth Jordan

domain. If r ≤ 1, then D is strictly convex. If r < 1, then the curvature radius of
∂D at each point has the upper bound

R0(p, r) =
r|ep|er

1− r
.

If r > 1, then D is not convex.

Proof. As F is a C∞ embedding in each strip s < Im z < s + 2πi, the first part
of the theorem is clear. A parametrization for ∂D is given by g(t) = F (p + reit) =

aere
it
, 0 ≤ t ≤ 2π, where a = ep. Suppose that r ≤ 1. Setting ϕ(t) = arg g′(t) we

have

ϕ(t) = arg a+ r sin t+ t+ π/2.
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Hence ϕ′(t) = r cos t + 1 > 0 except for r = 1, t = π. Consequently, ϕ is strictly
increasing on [0, 2π], whence D is strictly convex. Furthermore,

|g′(t)| = r|ep||ereit | ≤ r|ep|er.
If r < 1, the curvature of ∂D at a point g(t) is therefore

ϕ′(t)/|g′(t)| ≥ (1− r)/r|ep|er = 1/R0(p, r).

If r > 1, then ϕ′(t) < 0 in a neighborhood of π, whence D is not convex. �

By 3.5 we get the result of [Kl, 3.10] for n = 2:

3.7. Corollary. The domain G1 satisfies the Convexity conjecture 1.4 with the
sharp constant c = 1. �

3.8. The domain G2. We next consider the complement of two points in R2,
which can be normalized as

G2 = R2 \ {0, 2}.
The vertical line

L0 = {z : Re z = 1}
divides the plane into two open half planes H = {z : Re z < 1} and H̃ = {z : Re z >
1}. For z ∈ G2 we have δ(z) = |z|∧ |z−2|, whence quasihyperbolic geodesics lying in
H or in H̃ are parts of logarithmic spirals as explained in 1.4. To study the behavior
of a geodesic meeting L0 we set

C∗ = F−1L0, U = F−1H.

Then

C∗ = C0 + 2πiZ, C0 = {(x, y) ∈ R2 : − π/2 < y < π/2, x = − log cos y}.
The curve C0 lies in the half strip x ≥ 0, −π/2 < y < π/2 with horizontal asymptotes
y = ±π/2. The function f(y) = − log cos y is strictly convex.

1 2 3 4 5 6

-1.5

-1

-0.5

0.5

1

1.5

lc-curve C0

We say that a set in R2 is an lc-curve (lc for log cos) if it is of the form C0 + z0 for
some z0 ∈ R2. Thus C∗ is the union of a countable number of lc-curves Cm = C0 +
2πim, m ∈ Z. The set U is the domain with ∂U = C∗. It contains the left half plane
x < 0 and the closed horizontal strips π/2 + 2mπ ≤ y ≤ 3π/2 + 2mπ, m ∈ Z. The
map F defines a covering map Ū → H̄, and it maps each Cm homeomorphically onto
L0. If L ⊂ R2 is an arbitrary line not containing the origin, we can write L = ez0L0

for some z0 ∈ R2, and thus F−1L = C∗+z0 consists of lc-curves C0+z0+2πim,m ∈ Z.
We next study quasihyperbolic geodesics meeting L0 but consider only the case

k(a, b) = lk(γ) ≤ π.
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3.8. Lemma. Let γ : a y b be a quasihyperbolic geodesic in G2 such that
lk(γ) ≤ π and a, b ∈ L0. Then γ = [a, b].

Proof. Assume that γ 6= [a, b]. Passing to a subarc we may assume that γ ∩L0 =
{a, b}. By symmetry we may assume that γ ⊂ H̄. Let γ∗ : a∗ y b∗ be an F -lift of γ
with a∗ ∈ C0. As l(γ∗) = lk(γ) ≤ π by 3.2, we have b∗ ∈ C0. Let α∗ be the subarc of
C0 between a∗ and b∗. Then l(α∗) < l(γ∗) = lk(γ). Since l(α∗) = lk(Fα

∗) = lk([a, b]),
this gives a contradiction. �

3.10. Geodesics in H̄. Suppose that a, b ∈ H̄ and that γ : a y b is a quasi-
hyperbolic geodesic in G2 with lk(γ) ≤ π. From 3.9 it follows that γ ∈ H̄. Let
γ∗ : a∗ y b∗ be an F -lift of γ. By 3.2, the arc γ∗ is a geodesic in the inner metric dŪ
of Ū , defined by

dŪ(a∗, b∗) = inf{l(α)| α : a∗ y b∗, α ⊂ Ū}.
Since l(γ∗) ≤ π, the arc γ∗ meets at most one component of C∗, and we may assume
that this is C0. There are three cases:

Case 1. [a∗, b∗] ∩ C0 = ∅. Now γ∗ = [a∗, b∗] and γ ⊂ H is a quasihyperbolic
geodesic in G1, hence a part of a logarithmic spiral.

Case 2. [a∗, b∗] ∩ C0 = {z0} is a singleton. Again γ is a geodesic in G1, but now
L0 is a tangent of γ at z0.

Case 3. [a∗, b∗] meets C0 at two points. If a, b ∈ H, then the dŪ -geodesic γ∗ is
a union [a∗, x∗]∪C0[x∗, y∗]∪ [y∗, b∗] where the line segments meet C0 tangentially at
the endpoints x∗ and y∗. If a ∈ L0 or b ∈ L0, then the corresponding line segment
degenerates to a point.

The geodesic γ = Fγ∗ consists of the line segment [F (x∗), F (y∗)] ⊂ L0 and
(possibly) of two arcs of logarithmic spirals in H̄.

a*

x*

y*

b*

C0

a

x

y

b

L0

F

H     H
~

     

Case 3. A geodesic in H̄ containing a segment of L0

Let %0 : R2 → R2 be the reflection in L0, %0(x, y) = (2 − x, y). If ã, b̃ ∈ H̃ with
k(ã, b̃) ≤ π, then a geodesic γ̃ : ã y b̃ is %0γ where γ is a geodesic from a = %0ã to
%0b̃ given above.

3.11. Geodesics from H to H̃. We shall make use of the sense-reversing
angle-preserving covering map

F̃ = %0 ◦ F : R2 → R2 \ {2}.

Observe that F̃−1H̃ = U and that F̃ = F on C∗.
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Suppose that γ : a y b is a quasihyperbolic geodesic in G2 with a ∈ H, b ∈
H̃, lk(γ) ≤ π. Let x, y ∈ γ be the first and the last point of γ in L0, respectively.
From 3.9 it follows that γ ∩ L0 = [x, y], where the case x = y may occur. Write
α = [x, y], γ1 = γ[a, x], γ2 = γ[y, b]. If x 6= y, the arc α has a unique F -lift
α∗ : x∗ y y∗ on C0, and α∗ is also an F̃ -lift of α. Furthermore, the arc γ1 has a
unique F -lift to a line segment γ∗1 = [a∗, x∗] ⊂ Ū , and γ2 has a unique F̃ -lift to a
line segment γ∗2 = [y∗, b∗] ⊂ Ū . Let ϕ ∈ [0, π/2] be the angle between [a∗, x∗] and the
tangent of C0 at x∗. We consider three cases.

Case 1. x = y and ϕ > 0. Now γ crosses L0 at the point x = y, and the angle
between L0 and the tangent of γ at x is ϕ. Hence also the angle between γ∗2 and the
tangent of C0 at x∗ = y∗ is ϕ. We may think that the pair (γ∗1 , γ

∗
2) represents a light

beam from a∗, which reflects from the convex mirror C0 to b∗. We say that the pair
(γ∗1 , γ

∗
2) is the (F, F̃ )-lift of γ.
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Case 1. Crossing overpass from H to H̃

Case 2. x = y and ϕ = 0. This case is almost similar to Case 1, but now
γ∗1 ∪ γ∗2 = [a∗, b∗] and γ touches L0 at the overpass point x.

Case 3. x 6= y. Since γ is smooth, the line segments γ∗1 and γ∗2 meet C0 tangen-
tially, and the arc γ∗1 ∪ α ∪ γ∗2 is similar to γ∗ in Case 3 of 3.10. The arc γ consists
of the line segment [x, y] and two arcs of logarithmic spirals.
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Case 3. Sliding overpass from H to H̃
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Terminology. In Cases 1,2,3 we say that the overpass from H to H̃ of the
geodesic γ is crossing, touching or sliding, respectively.

3.12. Geodesic germs. We say that two quasihyperbolic geodesics γ : a y b
and γ′ : a′ y b′ in a domain G are equivalent if a = a′ and if there is a neighborhood
U of a such that γ ∩ U = γ′ ∩ U . An equivalence class is a geodesic germ or briefly
a germ.

We let [γ] denote the germ containing γ. Each germ [γ] with γ : a y b has a
well-defined starting point a and a direction v ∈ S(1), which is the unit tangent
vector of γ at a. We want to find all germs in G2 with given a ∈ G2 and v ∈ S(1).

Suppose first that a ∈ H and that γ : a y b is a quasihyperbolic geodesic in G2

with γ ⊂ H. Choose a point a∗ ∈ F−1{a} and an F -lift γ∗ : a∗ y b∗ of γ. Then γ∗ is
a line segment [a∗, b∗], and b∗ − a∗ has the same direction as v∗ = v/a. Hence there
is precisely one germ starting at a to the direction v.

By symmetry, the same is true if a ∈ H̃. Furthermore, if a ∈ L0 and v 6= ±e2, the
same argument proves that the germ from a to the direction v is uniquely determined.

Next assume that a ∈ L0, v = e2. The discussion in 3.10 shows that there are
three germs [γ] from a to the direction e2: one with γ̊ ⊂ H, one with γ̊ ⊂ H̃, and one
such that γ contains a line segment [a, a+ te2], t > 0. The case v = −e2 is similar.

4. Voronoi diagrams and quasihyperbolic geodesics

4.1. Voronoi diagrams. In this section we assume that Q ⊂ R2 is a finite
set containing at least two points. We shall study quasihyperbolic geodesics in the
domain GQ = R2 \Q. The section is preparation for Sections 5 and 6 where we prove
the basic conjectures for GQ.

Recall from the introduction that the Voronoi diagram VorQ of Q is the finite
family of Voronoi cells

Dq = {x ∈ R2 : |x− q| < |x− p| for all p ∈ Q \ {q}}, q ∈ Q.

The point q is the nucleus of the cell Dq. Each cell is a finite intersection of open half
planes, hence a convex domain. If Dq is bounded, it is a convex polygon with m edges
and m vertices for some m ≥ 3. If Dq is unbounded, there are three possibilities:

(1) Dq is a half plane,
(2) Dq is a parallel strip,
(3) Dq has m ≥ 1 vertices v1, . . . , vm ∈ R2, and ∂Dq consists of m+ 1 edges: the

line segments [vj, vj+1], 1 ≤ j ≤ m− 1, and two rays, emanating from v1 and vm.
The cases (1) and (2) occur only if Q is contained in a line, and then the edges

are lines. The domains Dq are disjoint, and their closures D̄q cover the plane. If
q 6= p and D̄q meets D̄p, then D̄q ∩ D̄p is a common edge or a common vertex. The
latter case can occur only if there is a circle containing four points of Q. We shall
use the notation

X = X(Q) = the union of all edges of VorQ.
We give a generalization of Lemma 3.9:

4.2. Edge theorem. Let γ be a quasihyperbolic geodesic in GQ with lk(γ) ≤ π
and let J be an edge of VorQ. Then γ ∩ J is a singleton or a line segment.

Proof. If the theorem is false, then there is an edge J = D̄p ∩ D̄q and a geodesic
γ : a y b such that a, b ∈ J, lk(γ) ≤ π, γ 6= [a, b]. Let k2 be the quasihyperbolic
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metric of the domain R2 \ {p, q}. Since k ≥ k2, we obtain by 3.9 the contradiction

lk(γ) ≥ lk2(γ) > lk2([a, b]) = lk([a, b]). �

4.3. Terminology. Let U ⊂ R2 be an open set and let γ ⊂ Ū be an arc in Ū
with endpoints a and b. We recall that γ is a crosscut of U if γ ∩ ∂U = {a, b} and
an endcut of U if γ ∩ ∂U is {a} or {b}.

4.4. The standard decomposition. Let γ : a y b be a geodesic in GQ with
lk(γ) ≤ π. If α is a component of γ \X, then ᾱ is a crosscut of a cell D ∈ VorQ or
perhaps an endcut if α contains one of the endpoints of γ. By 4.2 we obtain a unique
decomposition of γ into subarcs

γ = γ1 ∪ · · · ∪ γm
where γν = γ[xν−1, xν ], x0 = a, xm = b, and each γν is either a line segment on some
edge of VorQ or a crosscut or (if ν = 1,m) an endcut of a cell D ∈ VorQ. This is
called the standard decomposition of γ.

4.5. Orientation. Let W ⊂ R2 be a domain and let γ : a y b be a smooth arc
on ∂W such that

(i) γ̊ is open in ∂W ,
(ii) γ ⊂ ∂(R2 \ W̄ ).

For x ∈ γ let v(x) be the unit tangent vector of γ at x. The vector n(x) = iv(x) is
the left normal vector of γ at x. For each x ∈ γ̊ there is sx > 0 such that either (1)
x + tn(x) ∈ W for 0 < t < sx or (2) x − tn(x) ∈ W for 0 < t < sx. Moreover, if
(1) holds at some point x, it holds at every x ∈ γ̊. Then we say that W lies on the
left-hand side of γ and that γ is positively oriented in W . In case (2), W lies on the
right-hand side of γ and γ is negatively oriented.

IfW is a smooth Jordan domain, an orientation of ∂W can be defined by choosing
a continuous unit tangent vector v(x) of ∂D, x ∈ ∂D. The orientation is positive if
x+ tiv(x) ∈ W for small t > 0.

4.6. The direction angle. Let γ : a y b be a smooth arc in R2 and let v(x)
be the tangent vector as above. The direction angle ϕ(x) = arg v(x) is defined up to
a multiple of 2π, and it is uniquely determined as a continuous function as soon as
we fix ϕ(x0) for some x0 ∈ γ.

4.7. The maps Fq. For each q ∈ Q we define the covering map Fq : R2 →
R2 \ {q} by

Fq(z) = F (z) + q = ez + q.

Setting Uq = F−1
q Dq we obtain covering maps Uq → Dq, Ūq → D̄q, ∂Uq → ∂Dq.

Assume that the cell Dq is bounded and let J1, . . . , Jm be the successive edges
of Dq in the positive orientation. Let Lν be the line containing Jν . From 3.8 we see
that the preimage F−1

q Lν consists of disjoint lc-curves Cν
n = Cν

0 +2nπi, n ∈ Z, where
Cν

0 = C(zν) = C0 + zν and Fq(zν) is the point of Lν closest to q. The boundary ∂Uq
consists of successive arcs . . . , Km

−1, K
1
0 , . . . , K

m
0 , K

1
1 , . . . such that FqKν

n = Jν and
Kν
n ⊂ Cν

n. Each horizontal line ly = {z : Im z = y} meets ∂Uq at exactly one point
w(y), and Fq maps the ray ly ∩ Ūq onto the line segment (q, Fq(w(y))].

If Dq is unbounded, then ∂Uq again consists of arcs Kν
n ⊂ Cν

n but some of these
are unbounded and ∂Uq is not connected. In fact, a horizontal line ly meets ∂Uq iff
Dq does not contain the ray {q + teiy : t ≥ 0}.
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Let dq be the inner euclidean metric of Ūq, defined by

dq(a, b) = inf{l(γ)| γ : a y b, γ ⊂ Ūq}.

For given a, b ∈ Ūq, a dq-geodesic γ : a y b always exists and is unique. If a, b ∈ ∂Uq,
then γ consists of a finite number of subarcs, each of which is either a subarc of some
Kν
n or a line segment joining two points of ∂Uq in Ūq. Moreover, the projection Im z

is strictly monotone for z ∈ γ.
4.8. Lemma. Suppose that q ∈ Q and that γ : a y b is a quasihyperbolic

geodesic in GQ such that a, b ∈ ∂Dq, γ ⊂ D̄q. Then γ consists of a finite number
of successive subarcs, each of which is either a line segment on ∂Dq or a subarc of a
logarithmic spiral with center q.

The direction angle ϕ of γ is monotone on γ and strictly monotone on each
component of γ∩Dq. The q-component Aq of Dq \γ is a convex Jordan domain with
γ ⊂ ∂Aq, and ϕ is increasing iff Aq lies on the left-hand side of γ.

Proof. Let γ∗ : a∗ y b∗ be an Fq-lift of γ. By Lemma 3.2, the arc γ∗ is a dq-
geodesic in Ūq and has the structure explained in 4.7. Hence γ has the required
structure. If Im a∗ < Im b∗, then z 7→ Im z is strictly increasing on γ∗, whence
x 7→ arg(x− q) is strictly increasing on γ. The lemma follows. �

4.9. Lemma. Suppose that Dq ∈ VorQ and that γ : a y b is a smooth crosscut
of R2\D̄q. LetW ⊂ R2\D̄q be the Jordan domain bounded by γ and an arc α : a y b
on ∂Dq. If the direction angle of γ is decreasing, then W lies on the right-hand side
of γ.

Proof. Let J be an edge of Dq containing a subarc of α and let L be the line
containing J . Then there is an open half plane H bounded by L such that Dq ⊂
R2 \ H̄. Now W meets H, and we can choose a point x ∈ γ ∩H such that d(x, L) is
maximal. The tangent line L1 of γ at x is parallel to L and there is a component H1

of R2 \ L1 containing W . As ϕ is decreasing, the points x+ tn(x) lie in R2 \H1 for
t ≥ 0, and the lemma follows. �

4.10. Terminology. Let D ∈ VorQ and let γ : a y b be a crosscut of U =
R2 \ D̄. Then there is a unique bounded component W of U \ γ. We say that γ
encircles a point x in U if x ∈ W . We also say that the open arc γ̊ encircles x.

4.11. Lemma. Let γ : a y b be a crosscut of the half plane H = {z : Re z < 1}
with 0 /∈ γ, and let γ∗ : a∗ y b∗ be an F -lift of γ (see 3.1). Then the points a∗ and b∗
belong to different components of F−1∂H iff γ encircles the origin in H. Moreover,
in this case lk(γ) > π in the domain R2 \ {0}.

Proof. LetW be the Jordan domain as in 4.10. Then γ does not encircle 0 iff the
Jordan curve ∂W is null-homotopic in R2 \ {0}. As F is a universal covering map,
this holds iff the F -lifts of ∂W are Jordan curves, and the first part of the lemma
follows.

If a∗ and b∗ are in different components of F−1∂H, then 3.2 yields

lk(γ) = l(γ∗) ≥ |a∗ − b∗| > π. �

4.12. Theorem. Let p ∈ Q and let γ : a y b be a quasihyperbolic geodesic in
GQ with γ ∩ D̄p = {a, b}. Then γ encircles some point of Q. Moreover, lk(γ) > π.
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Proof. Assume that the first part of the theorem is false. Then there are p and
γ as in the theorem such that γ does not encircle any point of Q. Set Qγ = {q ∈
Q : Dq ∩ γ 6= ∅} and m = #Qγ. We may assume that m has the least possible value
over all such p and γ. Since γ is smooth, we have m ≥ 1.

Let W be as in 4.10. We may assume that γ is positively oriented in W . Let
q ∈ Qγ. By the minimality of m, the set γq = γ ∩ D̄q is a subarc of γ, and we may
apply Lemma 4.8 to γq. If the direction angle ϕ of γ is increasing on γq, then γq is
positively oriented in Aq. Hence Aq ⊂ W , which gives the contradiction q ∈ W .

It follows that ϕ is decreasing on γq and hence on the whole arc γ. By 4.9 this
implies that γ is negatively oriented in W , contrary to the assumption. Hence γ
encircles a point q ∈ Q.

As Dp is convex, there is a half plane H containing q such that H̄ ∩ Dp = ∅.
Furthermore, a subarc β = γ[a′, b′] is a crosscut of H, and β encircles q in H. Let k′
be the quasihyperbolic metric of R2 \ {q}. By 4.11 we get lk(γ) ≥ lk′(β) > π. �

4.13. Cell theorem. Let a, b ∈ GQ be points with k(a, b) ≤ π such that
a, b ∈ D̄ for some cell D ∈ VorQ. If γ is a quasihyperbolic geodesic in GQ from a to
b, then γ ⊂ D̄.

Proof. This follows directly from 4.12. �

4.14. Geodesic germs in GQ. Let a ∈ GQ, v ∈ S(1). We study geodesic
germs from a to the direction v; see 3.12. If a ∈ Dq for some q ∈ Q, we see with the
aid of the covering map Fq that there is precisely one germ from a to the direction
v. The same is true if a ∈ ∂Dq and a + tv ∈ Dq for small t > 0. Finally assume
that a ∈ ∂Dq and that a + tv ∈ J for small t ≥ 0 where J is an edge of Dq. Then
J = D̄q ∩ D̄p for some p ∈ Q \ {q}, and the situation is essentially the same as in the
domain G2 with a ∈ L0, v = e2; see 3.12. Thus there is precisely one germ [γ] with
γ̊ ⊂ Dq, one with γ̊ ⊂ Dp, and one such that γ contains a subsegment of J .

5. Basic conjectures in GQ

In this section we continue the study of the domain GQ = R2 \Q where Q ⊂ R2

is a finite set with #Q ≥ 2 and show that it satisfies the conjectures 1.2, 1.3 and
a nonstrict version of 1.4. Although the Convexity conjecture 1.4 implies the other
two by 2.3 and 2.6, we start with the Uniqueness conjecture 1.2, since it and the
Prolongation conjecture 1.3 are needed in the proof of 1.4.

5.1. Theorem. The domain GQ satisfies the Uniqueness conjecture 1.2 with the
constant cU = π/2.

Proof. Assume that the theorem is false. Then there are points a, b ∈ GQ with
k(a, b) < π/2 and geodesics γ1, γ2 : a y b such that γ1 ∩ γ2 = {a, b}. We may assume
that a = 0, b = (b1, 0) with b1 > 0. By Theorem 2.18, the arcs γj are graphs of
smooth functions fj : [0, b1] → R with fj(0) = fj(b1) = 0. We may assume that
f1(t) < f2(t) for 0 < t < b1. Let W be the Jordan domain bounded by γ = γ1 ∪ γ2.
If q ∈ Q ∩W , it follows from 3.3 that the quasihyperbolic length of γ in R2 \ {q} is
at least 2π, whence 2π ≤ lk(γ) < π. This contradiction shows that Q ∩W = ∅.

For x ∈ γj let vj(x) be the unit tangent vector of γj at x and set ϕj(x) =
arg vj(x), −π/2 < ϕj(x) < π/2. Then ϕ1(a) ≤ ϕ2(a) and ϕ1(b) ≤ ϕ2(b). Setting

∆ϕj = ϕj(b)− ϕj(a)
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we therefore have ∆ϕ2 ≤ ∆ϕ1. We shall show that ∆ϕ1 < ∆ϕ2, which will give the
desired contradiction.

For j = 1, 2 we let Qj denote the family of all q ∈ Q such that Dq meets γj but
not γ3−j and set Q12 = {q ∈ Q : γ1∩Dq 6= ∅ 6= γ2∩Dq}. If γj meets Dq, then γj∩D̄q

is a subarc γj[x, y] by 4.13, and we write

∆qϕj = ϕj(y)− ϕj(x).

Then

∆ϕj =
∑
q∈Qj

∆qϕj +
∑
q∈Q12

∆qϕj.

Observe that ϕj is constant on each subarc of γj contained in an edge of VorQ.
Let q ∈ Q be such that Dq meets γ and assume first that Dq does not meet

{a, b}. If q ∈ Q1, then the q-component Aq of Dq \ γ1 lies on the right-hand side of
γ1 ∩ D̄q, since q ∈ W in the opposite case. By 4.8 this implies that ϕ1 is decreasing
on γ1 ∩ D̄q, whence ∆qϕ1 < 0. Similarly ∆qϕ2 > 0 for all q ∈ Q2.

Let q ∈ Q12 and set γ1[x1, y1] = γ1 ∩ D̄q, γ2[x2, y2] = γ2 ∩ D̄q. These arcs
consist of crosscuts of Dq and of line segments on ∂Dq as explained in 4.8. Let Ajq
be the q-component of Dq \ γj. Assume first that A1

q lies on the left-hand side of
γ1 ∩ D̄q. Since q /∈ W , also A2

q lies on the left-hand side of γ2 ∩ D̄q. Moreover,
γ2 ∩ D̄q contains a crosscut γ2[x′2, y

′
2] of Dq separating q and γ1 ∩ D̄q in Dq. Setting

ω1 = ang (x1−q, y1−q), ω2 = ang (x′2−q, y′2−q) we have ω1 < ω2. By a fundamental
property of logarithmic spirals, we have ω1 ≥ ∆qϕ1, ω2 = ϕ2(y′2) − ϕ2(x′2) ≤ ∆qϕ2.
Hence 0 < ∆qϕ1 < ∆qϕ2.

If the domains A1
q and A2

q lie on the right-hand side of γ1 ∩ D̄q and γ2 ∩ D̄q,
respectively, we similarly obtain 0 > ∆qϕ2 > ∆qϕ1.

If Dq contains one of the endpoints a, b, we obtain the inequality ∆qϕ1 < ∆qϕ2

by an obvious modification of the above arguments. Combining the estimates yields
∆ϕ1 < ∆ϕ2, and the theorem is proved. �

5.2. Theorem. The domain GQ satisfies the Prolongation conjecture 1.3 with
the constant cP = π/2.

Proof. This follows directly from Theorems 5.1 and 2.6. �

5.3. Theorem. If a ∈ GQ and if r < π/2, then Bk(a, r) is a smooth Jordan
domain.

Proof. This follows from the results 2.1, 2.10, 5.1, 5.2. �

The proof of the Convexity conjecture will be based on the following local char-
acterization of the strict convexity of a Jordan domain:

5.4. Lemma. Suppose that D ⊂ R2 is a Jordan domain such that
(1) D has a tangent Tb at every point b ∈ ∂D,
(2) there is a finite set E ⊂ ∂D such that each point p ∈ ∂D \E has a neighbor-

hood V (b) with D̄ ∩ V (b) ⊂ Hb ∪ {b} where Hb is a component of R2 \ Tb.
Then D is strictly convex.

Proof. First observe that ∂D does not contain any line segment. Furthermore,
the neighborhood V (b) can be chosen to be an arbitrarily small disk B(b, r).
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Fact 1. Suppose that ∂D is divided into subarcs α and β by points x, y ∈ ∂D
such that

(i) (x, y) ⊂ R2 \ D̄,
(ii) α is a crosscut of the Jordan domain D′ bounded by [x, y] ∪ β.

Let L be the line containing [x, y] and let z ∈ α be a point where d(z, L) is maximal.
Then z ∈ E.

Assume that z /∈ E. Let V (z) = B(z, r) be a disk given by (2) with V (z) ⊂ D′.
Now α is a crosscut of D′, and the components of D′ \α are D and a Jordan domain
U with ∂U = [x, y] ∪ α. The line Tz is parallel to L. Let Hz be the component of
R2 \ Tz with Hz ∩ L = ∅, and let W be the half disk V (z) ∩Hz. Since W does not
meet α ∪ β = ∂D , we have either W ⊂ D or W ⊂ R2 \ D̄.

If W ⊂ D, then Tz ∩ V (z) ⊂ D̄, which is a contradiction by (2). If W ⊂ R2 \ D̄,
then W ⊂ D′ \ D̄ = U , which is impossible, because d(z, L) ≥ d(p, L) for all p ∈ Ū .
Fact 1 is proved.

Assume that the lemma is false. Then there are x, y ∈ ∂D such that (x, y) ⊂
R2\D̄. Let α, β, L, z be as in Fact 1. Then z ∈ E by Fact 1. Since E is finite, there is
a disk B = B(z, r) ⊂ D′ such that B ∩E = {z}. Let Hz and H ′z be the components
of R2 \ Tz where Hz ∩ L = ∅ as in the proof of Fact 1, and set W = Hz ∩ B.
Now α ⊂ H̄ ′z. Since α contains no line segment, there is a point z1 ∈ α ∩ H ′z with
α[z, z1] ⊂ B. As Tz is a tangent of D, there is z2 ∈ (z, z1] ∩ α with (z, z2) ∩ α = ∅.

Again W ∩ ∂D = ∅ and again W cannot lie in R2 \ D̄. Hence W ⊂ D. Let u be
the unit vector perpendicular to Tz such that z+u ∈ H ′z. Then u is normal vector of
D at z, whence (z, z2) ⊂ R2 \ D̄. Setting α2 = α[z, z2] and applying Fact 1 with the
substitution (x, y, α) 7→ (z, z2, α2) we get the desired contradiction α̊2 ∩ E 6= ∅. �

5.5. Harmful arcs. Recall that X is the union of all edges of VorQ. Moreover,
we let X0 denote the finite set of all vertices of the cells in VorQ.

In the proof of the convexity of a quasihyperbolic disk Bk(a, r), r ≤ 1, we study
quasihyperbolic geodesics γ : a y b ∈ Sk(a, 1) and the behavior of quasihyperbolic
circles Sk(a, u), u ≤ 1, along γ. In order to limit the number of cases and subcases we
shall rule out certain arcs with unpleasant properties. We say that an arc α : a1 y b1

in GQ is harmful to a if
(i) α is a subarc of a quasihyperbolic geodesic γ : a y b with lk(γ) = 1,
(ii) a1 ∈ X0,
(iii) a1 6= a,
(iv) α ∩X does not contain a line segment.

We let A = A(Q, a) denote the union of all arcs harmful to a. If we are working with
a fixed a, we briefly say that α is harmful if it is harmful to a.

5.6. Lemma. (1) The set A is a finite union of harmful arcs,
(2) A ∩ Sk(a, u) is finite for all u ∈ (0, 1],
(3) A ∩X is finite.

Proof. Suppose that α : a1 y b1 is harmful to a. Let γ : a y b be as in (i). Since
lk(α) ≤ lk(γ) = 1, it follows from (iv) and from the Edge theorem 4.2 that each edge
J of VorQ contains at most one point of α. Hence α∩X is finite, and (3) will follow
from (1).

By Theorem 5.1, the geodesic γ[a, a1] is uniquely determined by a1, whence also
the tangent vector v(a1) of α at a1 is uniquely determined by a1. Let α = α1∪· · ·∪αm
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be the standard decomposition of α; see 4.4. By (iv), the arcs αj are crosscuts of
Voronoi cells for j ≤ m − 1; the arc αm may be an endcut. From the discussion in
4.14 we see that there are at most two possibilities for α1 and hence at most two
possibilities for v(a2). Repeating the argument we see that (1) is true, and (2) is an
obvious corollary. �

We next give the nonstrict version of the Convexity conjecture for GQ.

5.7. Theorem. If a ∈ GQ and 0 < r ≤ 1, then Bk(a, r) is convex.

Proof. To simplify notation we write Br = Bk(a, r), Sr = Sk(a, r). By 5.3,
Br is a smooth Jordan domain. Let b ∈ Sk(a, 1) and let γ : a y b be the unique
quasihyperbolic geodesic. Let γ = γ1 ∪ · · · ∪ γm be the standard decomposition of
γ with γν = γ[xν−1, xν ]. Set ∆ = [0, 1] and let g : ∆ → γ be the quasihyperbolic
parametrization. For tν = k(a, xν) and ∆ν = [tν−1, tν ] we have γν = g∆ν . We express
the set M = {1, . . . ,m} as a disjoint union M = M1 ∪M2 where ν ∈ M1 if γν is a
crosscut or and endcut of a Voronoi cell Dν and ν ∈M2 if γν is a segment of an edge
in VorQ.

Suppose that ν ∈ M1. Let qν ∈ Q be the nucleus of Dν and write Fν(z) =
ez + qν , Uν = F−1

ν Dν . Fix a point x∗ν−1 ∈ F−1
ν {xν−1} and let g∗ν : ∆ν → Ūν be the

Fν-lift of gν = g|∆ν with g∗ν(xν−1) = x∗ν−1. Then g∗ν is an affine euclidean isometry of
∆ν onto a line segment γ∗ν = [x∗ν−1, x

∗
ν ] ⊂ Ūν with Fνγ∗ν = γν . Set

v∗ν =
x∗ν − x∗ν−1

|x∗ν − x∗ν−1|
, pν = x∗ν−1 − tν−1v

∗
ν .

Then

(5.8) |g∗ν(u)− pν | = u

for all u ∈ ∆ν .
If tν−1 < u < tν and if Y ⊂ Su∩Dν is an arc neighborhood of the point y = g(u),

then Y has an Fν-lift to an arc Y ∗ containing y∗ = g∗ν(u). We say that the index
ν ∈M is good (for γ) if

(1) ν ∈M1,
(2) γν is not contained in a harmful arc,
(3) for each u ∈ (tν−1, tν) there is an arc neighborhood Y of y = g(u) in Su ∩Dν

such that Y ∗ ⊂ B̄(pν , u).
We shall use induction to show that all indices satisfying (1) and (2) are good.
Fact 1. If 1 ∈M1, then 1 is a good index.
Conditions (1) and (2) are clearly true. Now p1 = x∗0 ∈ Ū1. If x∗0 ∈ U1, there is

an arc neighborhood Y of y such that Y ∗ is a circular arc of S(x∗0, u). The same is
true if x∗0 ∈ ∂U1 and if γ∗1 is not tangent to an arc in ∂U1. In the tangential case Y ∗
can be chosen to be an arc of the d1-circle Sd1(x∗0, u) where d1 is the inner metric of
Ū1, and again Y ∗ ⊂ B̄(x∗0, u).

Fact 2. If ν ≥ 2, ν ∈M1, ν − 1 ∈M2, xν−1 /∈ X0, then ν is good.
Conditions (1) and (2) are again clear. Now γν−1 = [xν−2, xν−1] lies on a common

edge J of Voronoi cells D and D̃. Since xν−1 /∈ X0, the arc γν is a crosscut of D or
D̃ (or possibly an endcut if ν = m). We may assume that γν ⊂ D̄ and thus D = Dν .
Now y ∈ Dν and we may again use the function Fν(z) = ez + qν . The Fν-lift of γν−1

is a subarc γ∗ν−1 = C[x∗ν−2, x
∗
ν−1] of an lc-curve C with FνC = aff J , and the line

segment γ∗ν = [x∗ν−1, x
∗
ν ] is tangent to C at x∗ν−1.
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There is an arc neighborhood Y1 ⊂ Su of y such that for each z ∈ Y1 the geodesic
γz : a y z contains a line segment [xν−2, x] ⊂ J . The Fν-lift γ∗z of γz[xν−2, z] is a
geodesic in the inner metric dν of Ūν , and the Fν-lift Y ∗1 of Y1 lies on the dν-circle
Sdν (x

∗
ν−2, u− tν−2). The arc Y ∗1 can be obtained by taking a thread of length u− tν−2

with one endpoint at x∗ν−2, keeping it taut and moving the other endpoint so that
the thread stays in Ūν .

It follows from classical curve theory that Y ∗1 is an arc of the involute (= evolvent)
of C. The curvature center of Y ∗1 at y∗ is x∗ν−1 and the curvature radius is |x∗ν−1−y∗| =
k(xν−1, y) < u. Hence there is an arc neighborhood Y ∗ of y∗ in Y ∗1 with Y ∗ ⊂ B̄(pν , u),
and Fact 2 is proved.

Fact 3. If ν ≥ 2, ν ∈M1, xν−1 /∈ X0 and ν − 1 is good, then ν is good.
Conditions (1) and (2) are again clear. Now there are unique cells Dν−1, Dν

containing γ̊ν−1 and γ̊ν , respectively. Since xν−1 /∈ X0, there are three possibilities
(see 3.11 and 3.10):

(1) Dν−1 6= Dν and γ crosses the common edge J = D̄ν−1 ∩ D̄ν at xν−1.
(2) As (1) but γ touches J at xν−1.
(3) Dν−1 = Dν , γ touches an edge J at xν−1 and returns to Dν−1.
We prove case (1) in detail. Let qν−1, qν be the nuclei of Dν−1, Dν , and let

% : R2 → R2 be the reflection in the line L containing J . We shall apply the covering
map Fν−1(z) = ez+qν−1 in Dν−1 and the map F̃ν−1 = %◦Fν−1 in Dν , modifying in an
obvious way the treatment in 3.11, replacing H by Dν−1 and H̃ by Dν . Fix a point
x∗ν−1 ∈ F−1

ν−1{xν−1} = F̃−1
ν−1{xν−1} and let g∗ν−1 : ∆ν → R2 and g̃∗ν be the Fν−1-lift of

gν−1 and the F̃ν−1-lift of gν with g∗ν−1(tν−1) = g̃∗ν(tν−1) = x∗ν−1. Then the line segments
γ∗ν−1 = [x∗ν−2, x

∗
ν−1] = g∗ν−1∆ν−1 and γ̃∗ν = [x∗ν−1, x̃

∗
ν ] = g̃∗ν∆ν represent a light beam

that reflects from the convex mirror C, which is an lc-curve in F−1
ν−1L = F̃−1

ν−1L; see
3.11, Case 1, and the figure below.
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Fact 3, case (1). The dotted lines are perpendicular to T .
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Fix u0 ∈ (tν−2, tν−1) and set y0 = g(u0), y∗0 = g∗ν−1(u0), ỹ∗ = g̃∗ν−1(u). Let T be
the tangent of C at x∗ν−1 and let %T : R2 → R2 be the reflection in T . Since ν − 1
is a good index, there is an arc neighborhood Y0 ⊂ Su0 of y0 with Y ∗0 ⊂ B̄(pν−1, u0).
From 2.2 it follows that there is an arc neighborhood Y ⊂ Su of y such that every
geodesic γz : a y z ∈ Y meets Y0 at some point z0. Let Ỹ ∗ be the F̃ν−1-lift of Y
containing ỹ∗ and set

ṽ∗ν =
x̃∗ν − x∗ν−1

|x̃∗ν − x∗ν−1|
, p̃ν = x∗ν−1 − tν−1ṽ

∗
ν .

Then |ỹ∗ − pν | = u and p̃ν = %Tpν−1.
Condition (3) in the definition of a good index is easily seen to be equivalent to

(5.9) Ỹ ∗ ⊂ B̄(p̃ν , u).

Indeed, the maps Fν and F̃ν−1 are related by Fν = F̃ν−1 ◦ µ where µ is the reflection
of R2 in the horizontal line Im z = arg(qν − qν−1) + π/2.

Let z ∈ Y and let γz and z0 ∈ γz ∩ Y0 be as above. Let z1 be the unique point
in γz ∩ J and let [z∗0 , z

∗
1 ] and [z∗1 , z

∗] give the (Fν−1, F̃ν−1)-lift of γz[z0, z
∗]. We must

show that
|p̃ν − z∗| ≤ u.

By the convexity of the lc-curve C, we have |z′0−z∗1 | ≤ |z∗0−z∗1 | where z′0 = %T (z∗0).
Furthermore,

u− u0 = k(z0, z) = |z∗0 − z∗1 |+ |z∗1 − z∗|.
Since |z′0 − p̃ν | = |z∗0 − p∗ν−1| ≤ u0, we obtain

|p̃ν − z∗| ≤ |p̃ν − z′0|+ |z′0 − z∗1 |+ |z∗1 − z∗| ≤ u0 + (u− u0) = u,

and case (1) of Fact 3 is proved. We omit the proofs of cases (2) and (3), which are
obtained by combining the proofs of case (1) and Fact 2.

Recall that A denotes the union of all arcs harmful to a; see 5.5.
Fact 4. If ν ∈M1 and γν 6⊂ A, then ν is a good index.
Assume that ν is not good. Then ν ≥ 2 by Fact 1. Since γν is not harmful, we

have xν−1 /∈ X0. Hence ν − 1 ∈ M1 by Fact 2 and ν − 1 is not good by Fact 3. As
γν 6⊂ A implies γν−1 6⊂ A, we may proceed inductively and see that 1 ∈ M1 and 1 is
not good, which is a contradiction by Fact 1.

From Lemma 5.6 it follows that the set Z = (A ∩X) ∪X0 is finite.
Fact 5. If 0 < t < 1, and if St ∩ Z = ∅, then St ∩X is finite.
Assume that z ∈ St ∩ X. It suffices to show that there is an arc neighborhood

Y ⊂ St of z such that Y ∩ X = {z}. Since X0 ∩ St = ∅, z is an interior point
of an edge J of VorQ. Let γ be a quasihyperbolic geodesic from a through z with
lk(γ) = 1. By Theorem 2.10, the quasihyperbolic circle St has a tangent Tz at z, and
Tz is perpendicular to the tangent vector v(z) of γ at z. Hence the arc Y exists if
v(z) is not perpendicular to J .

Assume that v(z) ⊥ J . Let γ = γ1 ∪ · · · ∪ γm be the standard decomposition of
γ. Then z ∈ γν = γ[xν−1, xν ] for some ν, and z is an endpoint of γν , since γν 6⊂ J .
We may choose ν so that z = xν . Then t = tν = k(a, xν) and ν is a good index for γ
by Fact 4.

The arc γν is a crosscut or (if ν = 1) an endcut of a cell Dν ∈ VorQ. We use the
notation Fν(w) = ew + qν and gν : [tν−1, tν ]→ γν as before. Let g∗ν be an Fν-lift of gν .
Then γ∗ν = im gν is a line segment [x∗ν−1, x

∗
ν ], which meets orthogonally a lift J∗ of J
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lying on an lc-curve C. Fix u ∈ (tν−1, tν) and set y = gν(u) ∈ γ̊ν , y∗ = g∗ν(u) ∈ γ̊∗ν .
As ν is a good index, there is an arc neighborhood Y0 of y in Su with Fν-lift Y ∗0 ⊂
B̄(pν , u). Then the euclidean distance d(x∗, C) > t−u for all x∗ ∈ Y ∗0 \{y∗}, whence
k(x, J) > t− u for all x ∈ Y0 \ {y}. Hence there is an arc neighborhood Y of z in St
with Y ∩ J = {z}, and Fact 5 is proved.

We turn to the proof of Theorem 5.7. Let Z be as above and suppose that
0 < r < 1 and that Sr ∩ Z = ∅. As Z is finite, it suffices to show that Br is
convex. We show that the conditions of Lemma 5.4 are satisfied with the substitution
D 7→ Br, E 7→ (X ∪ A) ∩ St. This will imply that Br is in fact strictly convex.

By Fact 5 and Lemma 5.6, the set E is finite. Let y ∈ Sr \ E, and let γ : a y b
be a quasihyperbolic geodesic containing y with lk(γ) = 1. Let γ = γ1 ∪ · · · ∪ γm be
the standard decomposition of γ. As y /∈ X, there is ν such that y ∈ γ̊ν , and γ is
a crosscut or an endcut of a cell Dν . Furthermore, we have y /∈ A, whence γν 6⊂ A.
By Fact 4, the index ν is good for γ. With notation as before we obtain an arc
neighborhood Y ⊂ Sr of y such that the Fν-lift Y ∗ of Y satisfies Y ∗ ⊂ B̄(pν , r).

By Theorem 3.6, the domain W = FνB(pν , r) is a strictly convex smooth Jordan
domain. The tangent T ofW at y is also a tangent of the arc Y . There is a component
Hy of R2 \ T such that W̄ ⊂ Hy ∪ {y}, and therefore B̄r ∩ V (y) ⊂ Hy ∪ {y} for some
neighborhood V (y) of y. Hence Br is convex by 5.4. �

6. Strict convexity in GQ

In this section we show that a quasihyperbolic disc Bk(a, r) in GQ = R2 \ Q is
strictly convex for r < 1. Moreover, we give an estimate for the strictness, which
is needed in the next section to obtain the result for arbitrary domains in R2. As
a quasihyperbolic circle Sk(a, r) need not be C2 smooth, it does not always have a
curvature in the ordinary sense. We must therefore introduce a more general notion,
called outer curvature radius. First, an elementary lemma:

6.1. Lemma. Suppose that 0 < t0 < R and that f : [−t0, t0] → R is a convex
C1 function such that f(0) = 0 and such that

f(x) ≥ g(x) := R−
√
R2 − x2

for all x ∈ [−t0, t0]. Then |f ′(x)| ≥ |x|/2R for all x ∈ [−t0, t0].

Proof. We may assume that x > 0. Since f is convex and since g(x) > x2/2R,
we get

f ′(x) > f(x)/x ≥ g(x)/x > x/2R. �

6.2. Outer curvature radius. Suppose that W ⊂ R2 is a convex Jordan
domain and that γ = ∂W is C1 smooth. For this it suffices to know that W has
a tangent at every point of γ, since a convex differentiable function is C1; see [Ro,
25.5.1]. Assume that γ is positively oriented in W and let v(x) be the unit tangent
vector of γ at x ∈ γ. Then the left normal vector n(x) = iv(x) is directed intoW ; see
4.5. The outer curvature radius R(x) of γ at x is the infimum of all numbers r > 0
such that there is an arc neighborhood Y ⊂ γ of x contained in B̄(x + rn(x), r). If
there is no such r, we set R(x) = ∞. If γ is C2 smooth, then R(x) is equal to the
ordinary curvature radius.
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6.3. Lemma. Suppose thatW is a convex Jordan domain with smooth boundary
γ = ∂W , that E ⊂ γ is a finite set and that R(x) ≤ R0 < ∞ for all x ∈ γ \ E. Let
α : a y b be a positively oriented arc on γ. Then

ϕ(b)− ϕ(a) ≥ l(α)/2R0

where ϕ(x) = arg v(x) is the direction angle of γ.

Proof. Assume first that E = ∅. Set λ = l(α) and let g : [0, λ]→ α be the length
parametrization of α. Write ϕ(s) = ϕ(g(s)) and let 0 ≤ t ≤ λ. It suffices to show
that

(6.4) lim inf
h→0

ϕ(t+ h)− ϕ(t)

h
≥ 1

2R0

,

since a bisection argument then gives ϕ(s2) − ϕ(s1) ≥ (s2 − s1)/2R0 for 0 ≤ s1 <
s2 ≤ λ.

We normalize the situation so that g(t) = 0, ϕ(t) = 0. Let R1 > R0. By the
definition of outer curvature, there is an arc neighborhood Y of 0 in ∂W that is a
graph of a convex C1 function f : [−δ, δ] → R such that f(x) ≥ R1 −

√
R2

1 − x2 for
all x ∈ [−δ, δ]. By Lemma 6.1 we have f ′(x) ≥ |x|/2R1 for all |x| ≤ δ.

Let 0 < h ≤ δ. There is xh ∈ (0, h) such that g(h) = (xh, f(xh)). Then
f ′(xh) = tanϕ(h), and we obtain

ϕ(h)

h
≥ ϕ(h)

tanϕ(h)

1

2R1

xh
h
.

As h→ 0, we have xh/h→ 1 and ϕ(h)/ tanϕ(h)→ 1, whence

lim inf
h→0+

ϕ(h)

h
≥ 1

2R1

.

The case h→ 0− is treated similarly. As R1 → R0, we get (6.4).
The case E ⊂ {a, b} follows by a limiting argument. The general case is proved

applying the special case to each component of α \ E. �

6.5. Lemma. Let W and α ⊂ γ = ∂W be as in 6.3. Then there is z ∈ α such
that

d(z, aff {a, b}) ≥ |a− b|2

4(1 + 2R0)2
.

Proof. Let z ∈ α be the point where h = d(z, aff {a, b}) is maximal. We normalize
the situation so that z = 0 and ϕ(z) = 0. Then a2 = b2 = h for the second
coordinates. We may assume that |a1| ≤ |b1| and that b1 ≥ 0. It suffices to show
that

(6.6) b1 ≤ (1 + 2R0)
√
h.

If b1 ≤
√
h, this is clearly true. Assume that b1 >

√
h and let x ∈ α(0, b) be the

unique point with x1 =
√
h. Now

b1 ≤
√
h+ h/ tanϕ(x) ≤

√
h+ h/ϕ(x).

By 6.3 we have ϕ(x) ≥
√
h/2R0, and (6.6) follows. �
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We return to the domain GQ = R2 \Q. Let a ∈ GQ. As in 5.5 we let A denote
the union of all arcs harmful to a. Moreover, we set Z = (A ∩X) ∪X0 as in Fact 5
of 5.7. The set Z is finite by Lemma 5.6.

6.7. Lemma. Let a ∈ GQ, 0 < r < 1, and suppose that Sk(a, r)∩Z = ∅. Then
there is a finite set E ⊂ Sk(a, r) such that the outer curvature radius of Sk(a, r) is at
most K(r)δ(a) for all y ∈ Sk(a, r) \ E where

K(r) =
re3r

1− r
.

Proof. We show that the lemma holds with E = (X∪A)∩Sk(a, r), which is finite
by Fact 5 of 5.7 and by Lemma 5.6. Let y ∈ Sk(a, r)\E and choose a quasihyperbolic
geodesic γ : a y b such that y ∈ γ and such that lk(γ) = 1. Using the notation of
the proof of 5.7 we consider the covering map Fν(z) = ez + qν where qν is the nucleus
of the Voronoi cell Dν containing y. We find an arc neighborhood Y of y in Sk(a, r)
such that the Fν-lift Y ∗ of Y is contained in a disk B̄(pν , r) where pν is a point with
|pν − y∗| = r = k(a, y).

By Theorem 3.6, the domain FνB(pν , r) is a smooth strictly convex Jordan do-
main, and the curvature radius of its boundary at each point is at most

R0(pν , r) =
r|epν |er

1− r
.

Consequently, it suffices to show that

(6.8) |epν | ≤ e2rδ(a).

Let kν be the quasihyperbolic metric of R2 \ {qν}. By Lemma 3.2 we get

r = |pν − y∗| = kν(Fν(pν), Fν(y
∗)) = kν(e

pν + qν , y) ≥ log
|epν |
|y − qν |

= log
|epν |
δ(y)

.

Since r = k(a, y) ≥ log δ(y)
δ(a)

, this implies (6.8). �

6.9. Lemma. Let a ∈ GQ, 0 < r < 1 and let α : x y y be an arc in Sk(a, r).
Then there is z ∈ α such that

d(z, aff {x, y}) ≥ |x− y|2

4(1 + 2K(r)δ(a))2
.

Proof. If Sk(a, r) ∩ Z = ∅, the estimate holds by 6.5 and 6.7. As Z is finite, the
case Sk(a, r) ∩ Z 6= ∅ follows by an easy limiting process. �

6.10. Theorem. The domain GQ satisfies the Convexity conjecture 1.4 with the
sharp constant cC = 1.

Proof. This follows from 5.7 and 6.9. �

7. Arbitrary planar domains

In this section we prove the main results of the paper.

7.1. Approximation. Let G ⊂ R2 be a bounded domain. For each positive
integer j we choose a finite set Qj ⊂ ∂G such that

(1) Qj ⊂ Qj+1,
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(2) d(x,Qj) < 1/j for all x ∈ ∂G.
Writing Gj = R2 \Qj and

δj = δGj , kj = kGj , δ = δG, k = kG

we have

(7.2) δ(x) ≤ δj+1(x) ≤ δj(x) ≤ δ(x) + 1/j

for all j ∈ N, x ∈ G. Hence
δj(x)↘ δ(x)

uniformly in G. For a rectifiable arc γ ⊂ G ⊂ Gj we have

(7.3) lkj(γ)↗ lk(γ).

We next show that

(7.4) kj(a, b)↗ k(a, b)

for all a, b ∈ G.
Since G ⊂ Gj+1 ⊂ Gj, the sequence (kj(a, b)) is increasing and limj→∞ kj(a, b) ≤

k(a, b). To prove the converse inequality we choose for each j ∈ N a quasihyperbolic
geodesic γj : a y b in Gj. For each x ∈ γj we have

k(a, b) ≥ kj(a, b) ≥ kj(a, x) ≥ log
δj(a)

δj(x)
≥ log

δ(a)

δj(x)
.

Thus
δj(x) ≥ δ(a)e−k(a,b) =: s > 0.

If 1/j < s/2, then (7.2) implies that γj ⊂ G and that 1/δ(x) − 1/δj(x) ≤ 1/jsδ(x)
for all x ∈ γj. Consequently,

kj(a, b) =

∫
γj

|dx|
δj(x)

≥ (1− 1/js)lk(γj) ≥ (1− 1/js)k(a, b),

and (7.4) follows.

7.5. Theorem. Let G ⊂ R2 be a domain and let a ∈ G, 0 < r ≤ 1. Then
Bk(a, r) is a convex smooth Jordan domain.

Proof. Replacing G by a component of G∩B(a,R) with a large R we may assume
that G is bounded. Let Gj = R2 \Qj be as in 7.1. By (7.4) we have

B̄k(a, r) =
⋂
{B̄kj(a, r) : j ∈ N}.

As the domains Bkj(a, r) are convex by 5.7, the set B̄k(a, r) is convex. Since Bk(a, r)
is a Jordan domain by 2, it is convex, and the smoothness follows from the last part
of 2.10. �

7.6. Lemma. Let G ⊂ R2 be a domain and let a ∈ G, 0 < r < 1. Let α : x y y
be an arc in Sk(a, r). Then there is z ∈ α such that

d(z, L) ≥ |x− y|2

4(1 + 2K(r)δ(a))2
,

where L = aff {x, y} and K(r) is as in 6.7.
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Proof. We may again assume that G is bounded. For each j we choose points
xj, yj ∈ Skj(a, r) ∩ L. Let αj : xj y yj be the subarc of Skj(a, r) for which α̊ is
contained in the Jordan domain bounded by αj ∪ [xj, yj]. By 6.9 we find a point
zj ∈ αj for which

d(zj, L) ≥ |xj − yj|2

4(1 + 2K(r)δj(a))2
.

Passing to a subsequence we may assume that (zj) converges to a point z ∈ α. Now
z satisfies the lemma. �

7.7. Main theorem. Let G ⊂ R2 be a domain.
(1) The Convexity conjecture 1.4 holds for G with the sharp constant cC = 1.
(2) The Uniqueness conjecture 1.2 holds for G with cU = 2.
(3) The Prolongation conjecture 1.3 holds for G with cP = 2.

Proof. Part (1) follows from 7.5 and 7.6. By Theorems 2.3 and 2.6, this implies
(2) and (3) with cU = 2, cP = π/2. The improvement cP = 2 will be proved in
8.11. �

7.8. Sharpness. I do not know whether Bk(a, 1) is always strictly convex. The
constants in (2) and (3) are presumably not sharp. The punctured plane G1 gives
the upper bounds cU ≤ π, cP ≤ π, and it is possible that the constants cU = cP = π
are valid for all planar domains.

The dimensions n ≥ 3 remain open, but the following example shows that the
uniqueness constant cU must be less than π in R3. Let G = R3 \ {−e3, e3} and let
a = −2e1, b = 2e1. Explicit calculation shows that lk([a, b]) = 2 log(2 +

√
5) > 2.88

and lk(γ) = 2π/
√

5 < 2.81 for the semicircle γ : a y b, γ ⊂ R2. Hence [a, b] is
not a quasihyperbolic geodesic in G. If α : a y b is a geodesic, then %α is another
geodesic where % : R3 → R3 is the reflection in the line span e1. Thus cU < 2.81 for
this domain.

7.9. Theorem. If a ∈ G ⊂ R2 and r < π/2, then the quasihyperbolic disk
Bk(a, r) is a smooth Jordan domain.

Proof. By 2.1, Bk(a, r) is a Jordan domain, and the smoothness follows from
2.10 and 7.7. �

8. Other topics

In this section we give some further results and make some conjectures on the
quasihyperbolic geometry of domains in Rn.

8.1. Quasihyperbolic convexity. Let G ⊂ Rn be a domain. A set A ⊂ G
is quasihyperbolically convex in G if γ ⊂ A whenever γ : a y b is a quasihyperbolic
geodesic in G with a, b ∈ A.

8.2. Quasihyperbolic convexity conjecture. There is a universal constant
cQH > 0 such that the quasihyperbolic ball Bk(a, r) is quasihyperbolically convex for
all r < cQH.

8.3. Remark. Using the function F (z) = ez as in Section 3 it is easy to show
that the punctured plane satisfies 8.2 with cQH = π/2.
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8.4. Local geodesics. Let G ⊂ Rn be a domain and let ∆ ⊂ R be a closed
interval, possibly unbounded. A map g : ∆ → G is a locally geodesic path if each
t0 ∈ ∆ has an interval neighborhood ∆0 ⊂ ∆ such that g|∆0 is a geodesic path. An
arc γ ⊂ G is a local geodesic if γ = im g for some injective locally geodesic path.

For example, the map g : R→ G1 = R2 \ {0}, g(t) = Meit, M > 0, is a locally
geodesic path.

Suppose that g : ∆ → G ⊂ Rn is a locally geodesic path. Then g is C1 with
|g′(t)| = δ(g(t)) for all t ∈ ∆. The vector v(t) = g′(t)/δ(g(t)) is the unit tangent
vector of g at g(t). From 2.16 we see that

(8.5) ang (v(s), v(t)) = ang (g′(s), g′(t)) ≤ |s− t|

for all s, t ∈ ∆. More generally, the total variation of t 7→ ang (v(t0), v(t)) is at most
s− t0 on any subinterval [t0, s] ⊂ ∆.

The Prolongation theorem 7.7(3) implies:

8.6. Theorem. Every geodesic path g : [t1, t2]→ G ⊂ R2 can be extended to a
locally geodesic path g1 : R→ G. �

8.7. Theorem. If g : [0, r] → G ⊂ Rn is a locally geodesic path and if r ≤ π,
then g is injective.

Proof. Assume that g is not injective. We may assume that g(0) = g(r) = 0. Let
t0 ∈ (0, r) be the point where |g(t)| is maximal, set x0 = g(t0) and u = g′(t0). Then
u ·x0 = 0. Let t1 ∈ (0, t0) be the point where u · g(t) is minimal and let t2 ∈ (t0, r) be
the point where u · g(t) is maximal. Then u · g′(tj) = 0 for j = 1, 2, and (8.5) yields
the contradiction

π ≥ lk(g) > lk(g|[t1, t0]) + lk(g|[t0, t2]) ≥ π/2 + π/2 = π. �

8.8. Local geodesic conjecture. There is a universal constant cLG > 0 such
that if g : ∆ → G ⊂ Rn is a locally geodesic path with lk(g) ≤ cLG, then g is a
geodesic path.

We show in 8.10 that the conjecture holds for n = 2. First we show that two
short geodesics can be joined together.

8.9. Theorem. Let s1, s2 ∈ (0, 1], let g : [0, s1 + s2] → G ⊂ R2 be a path such
that the restrictions g1 = g|[0, s1] and g2 = g|[s1, s1 + s2] are geodesic paths and such
that g is differentiable at s1. Then g is a geodesic path.

Proof. Suppose first that s1 < 1, s2 < 1. Set a = g(0), z = g(s1), b = g(s1 +s2),
and let L = z + g′(s1)⊥ be the normal of g at z. By 2.10, the line L is a common
tangent of the quasihyperbolic disks Bk(a, s1) and Bk(b, s2) at z. Since these disks
are strictly convex by 7.7(1), their closures meet only at z. Consequently, the unique
quasihyperbolic geodesic γ : a y b contains z, whence γ[a, z] = im g1, γ[z, b] = im g2

and therefore γ = im g.
The case where s1 = 1 or s2 = 1 follows by an easy limiting process. �

8.10. Theorem. The Local geodesic conjecture 8.8 holds for all planar domains
with cLG = 2.

Proof. Let 0 < r ≤ 2 and let g : [0, r] → G ⊂ R2 be a locally geodesic path.
There is a subdivision of [0, r] by points 0 = t0 < t1 < · · · < tm = r such that
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g|[tν−1, tν ] is a geodesic path for each ν and such that r/2 is one of the points tν . By
successive applications of 8.9 we see that g|[0, r/2] and g|[r/2, r] are geodesic paths,
and the theorem follows by one further application. �

8.11. Theorem. The Prolongation conjecture 1.3 holds for all planar domains
with cP = 2.

Proof. This follows from 8.6 and 8.10. �

We finally show that the Prolongation conjecture implies a limiting version.

8.12. Theorem. Let G ⊂ Rn be a domain satisfying the Prolongation conjec-
ture 1.3 with a constant c. Let a ∈ G and let v ∈ S(1). Then there is a quasi-
hyperbolic geodesic γ : a y b such that lk(γ) = c and such that v is the unit tangent
vector of γ at a.

Proof. Let c ∧ (1/2) > r1 > r2 > . . . be a sequence converging to 0. For each
j there is a geodesic path gj : [0, c] → G with gj(0) = a, gj(rj) = a + |gj(rj)|v.
The geodesics im gj lie in the compact set B̄(a, c). Passing to a subsequence we
may assume by Ascoli’s theorem and by 2.2 that (gj) converges to a geodesic path
g : [0, c]→ G. By 2.7 we have ang (g′j(0), v) ≤ 4rj. By 2.8 this yields ang (g′(0), v) =
0. �
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