QUASIHYPERBOLIC GEOMETRY OF PLANAR DOMAINS

Jussi Väisälä
Helsingin yliopisto, Matematiikan ja tilastotieteen laitos PL 68, 00014 Helsinki, Finland; jussi.vaisala@helsinki.fi

Dedicated to the memory of Juha Heinonen.

Abstract

Let $k(a, b)$ denote the quasihyperbolic distance between points a, b in a domain $G \subset \mathbf{R}^{2}$. We show that there is a universal constant $c_{0}>0$ with the following properties: (1) If $k(a, b)<c_{0}$, then there is only one quasihyperbolic geodesic from a to b. (2) If $k(a, b)<c_{0}$ and if γ is a quasihyperbolic geodesic from a to b, then there is a prolongation of γ to a quasihyperbolic geodesic γ_{1} from a to b_{1} with $k\left(a, b_{1}\right)=c_{0}$. (3) Each quasihyperbolic disk of radius $r<c_{0}$ is strictly convex in the euclidean metric.

1. Introduction

1.1. Let $G \subset \mathbf{R}^{n}$ be a domain, $n \geq 2$. We always assume without further notice that $G \neq \mathbf{R}^{n}$. We recall that the quasihyperbolic length of a rectifiable arc $\gamma \subset G$ or a path γ in G is the number

$$
l_{k}(\gamma)=\int_{\gamma} \frac{|d x|}{\delta(x)},
$$

where $\delta(x)=\delta_{G}(x)=d\left(x, \mathbf{R}^{n} \backslash G\right)=d(x, \partial G)$. For $a, b \in G$, the quasihyperbolic distance $k(a, b)=k_{G}(a, b)$ is defined by

$$
k(a, b)=\inf l_{k}(\gamma)
$$

where the infimum is taken over all rectifiable arcs γ joining a and b in G.
We write $\gamma: a \curvearrowright b$ if γ is an arc from a to b. An arc $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic or briefly a geodesic if $l_{k}(\gamma)=k(a, b)$. For quasihyperbolic balls and spheres in G we use the notation

$$
\begin{gathered}
B_{k}(a, r)=\{x \in G: k(x, a)<r\}, \bar{B}_{k}(a, r)=\{x \in G: k(x, a) \leq r\}, \\
S_{k}(a, r)=\{x \in G: k(x, a)=r\} .
\end{gathered}
$$

A domain $D \subset \mathbf{R}^{n}$ is strictly convex if (1) it is convex and (2) D contains the open line segment (x, y) for each pair of boundary points $a, b \in \partial D$. A bounded domain is strictly convex as soon as it satisfies (2). A convex domain is strictly convex iff its boundary does not contain a line segment.

The quasihyperbolic metric of a domain in \mathbf{R}^{n} was introduced by Gehring and Palka [GP] in 1976, and it has turned out to be a useful tool, for example, in the theory of quasiconformal maps. It is known [GO, Lemma 1] that a quasihyperbolic geodesic between given points always exists. Martin [Ma] proved in 1985 that quasihyperbolic geodesics are C^{1} smooth with Lipschitz continuous derivatives. However,

[^0]several questions on the basic quasihyperbolic geometry remain open, for example the following three conjectures:
1.2. Uniqueness conjecture. There is a universal constant $c_{\mathrm{U}}>0$ such that if $a, b \in G$ and $k(a, b)<c_{\mathrm{U}}$, then there is only one quasihyperbolic geodesic $\gamma: a \curvearrowright b$.
1.3. Prolongation conjecture. There is a universal constant $c_{\mathrm{P}}>0$ such that if $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic with $l_{k}(\gamma)=k(a, b)<c_{\mathrm{P}}$, then there is a quasihyperbolic geodesic $\gamma_{1}: a \curvearrowright b_{1}$ such that $\gamma \subset \gamma_{1}$ and $l\left(\gamma_{1}\right)=c_{\mathrm{P}}$.
1.4. Convexity conjecture. There is a universal constant $c_{\mathrm{C}}>0$ such that the quasihyperbolic ball $B_{k}(a, r)$ is strictly convex for all $r<c_{\mathrm{C}}$.

If the condition of one of the conjectures, say 1.2 , holds for a domain $G \subset \mathbf{R}^{n}$ with c_{U} replaced by a constant $c>0$, we say that G satisfies the conjecture 1.2 with $c_{\mathrm{U}}=c$.
1.5. In $[\mathrm{MV}]$ we proved that convex domains satisfy all three conjectures without any restriction to the quasihyperbolic distance. The domain $G_{1}=\mathbf{R}^{2} \backslash\{0\}$ and the points $a=-1, b=1$ show that one must have $c_{\mathrm{U}} \leq \pi$ and $c_{\mathrm{P}} \leq \pi$. Moreover, the same domain shows that $c_{\mathrm{C}} \leq 1$; see [Kl, 3.5] or Corollary 3.7 of the present paper.

The main purpose of this paper is to prove that the three conjectures are true in the case $n=2$.

We show in 2.3 and 2.6 that $1.4 \Rightarrow 1.2 \Rightarrow 1.3$ in all dimensions. The rest of the paper is devoted to the proof of the Convexity conjecture for planar domains with the sharp constant $c_{\mathrm{C}}=1$. This will imply the other two conjectures with $c_{\mathrm{U}}=2, c_{\mathrm{P}}=\pi / 2$, which will be improved to $c_{\mathrm{P}}=2$ in 8.11.

The strategy of the proof is as follows: We start with the case of the punctured plane $G_{1}=\mathbf{R}^{2} \backslash\{0\}$. This domain was considered in 1986 by Martin and Osgood [MO], who made the important observation that the exponential function e^{z} transforms euclidean length in \mathbf{R}^{2} to quasihyperbolic length in G_{1}. The quasihyperbolic geodesics and disks of G_{1} are therefore well understood.

Next we consider the case where $Q=\mathbf{R}^{2} \backslash G$ is a finite set. This set defines a Voronoi diagram $\operatorname{Vor} Q$, which is the decomposition of the plane into Voronoi cells

$$
D_{q}=\left\{x \in \mathbf{R}^{2}:|x-q|<|x-p| \text { for all } p \in Q \backslash\{q\}\right\},
$$

$q \in Q$. See, for example, [OBS]. Each cell is an open polygon, possibly a half plane or a parallel strip, and $\mathbf{R}^{2}=\bigcup\left\{\bar{D}_{q}: q \in Q\right\}$. If γ is a quasihyperbolic geodesic of G and if α is a component of $\gamma \cap D_{q}$, then $\bar{\alpha}$ is a geodesic in $\mathbf{R}^{2} \backslash\{q\}$ and therefore well known. To study the whole geodesic, we must investigate its behavior at the edges of the polygons D_{q}. This leads to a combinatorial analysis that will be carried out in Section 5, and we obtain the nonstrict Convexity conjecture for these domains in 5.7 and the strict one in 6.10.

Finally, to prove the Convexity conjecture for an arbitrary domain $G \subset \mathbf{R}^{2}$, we approximate G by a sequence of domains $G_{j}=\mathbf{R}^{2} \backslash Q_{j}$ where each Q_{j} is a finite subset of ∂G. Given $a \in G$ and $r>0$, the sets Q_{j} can be chosen so that the quasihyperbolic disk $B_{k}(a, r)$ of G is the intersection of the quasihyperbolic disks $B_{k_{j}}(a, r)$ of G_{j} and therefore convex if $r \leq 1$. To obtain strict convexity we need estimates for the strictness of the convexity of the disks $B_{k_{j}}(a, r)$. The proof will be completed in 7.7. Some further results and conjectures are given in Section 8.

We use the same notation as in [V3]. In particular, arcs are assumed to be oriented, that is, equipped with one of the two possible orderings. We write $\gamma: a \curvearrowright b$ if γ is an arc with first point a and last point b. An arc γ is C^{1} smooth or briefly smooth if it has a unit tangent vector $v(x)$ at every $x \in \gamma$ (one-sided at the endpoints) and if the map $v: \gamma \rightarrow S(1)$ is continuous. See [V3, 2.7]. We write $\dot{\gamma}=\gamma \backslash\{a, b\}$.

The affine subspace spanned by a set $A \subset \mathbf{R}^{n}$ is aff A. For open and closed balls and for spheres in \mathbf{R}^{n} we use the notation $B(a, r), \bar{B}(a, r), S(a, r)$, where the center a may be omitted if $a=0$. In particular, $S(1)$ is the unit sphere of \mathbf{R}^{n}.

It is often convenient to parametrize an arc or a path by quasihyperbolic length. We say that $g:[0, r] \rightarrow G$ is a quasihyperbolic parametrization if $l_{k}(g \mid[0, t])=t$ for all $t \in[0, r]$. Then $r=l_{k}(g)$ and

$$
\begin{equation*}
\left|g^{\prime}(t)\right|=\delta(g(t)) \tag{1.6}
\end{equation*}
$$

almost everywhere. Every rectifiable arc $\gamma \subset G$ has a quasihyperbolic parametrization $g:[0, r] \rightarrow \gamma$, and g satisfies the Lipschitz condition

$$
\begin{equation*}
|g(s)-g(t)| \leq M|s-t| \tag{1.7}
\end{equation*}
$$

where $M=\max \{\delta(x): x \in \gamma\}$.
If γ is a geodesic, then g is an isometry from $[0, r]$ into the metric space (G, k), and we say that g is a geodesic path from $g(0)$ to $g(r)$. Then g is C^{1} by [Ma, 4.8] and (1.6) holds for all $t \in[0, r]$. Instead of $[0, r]$, the parametric interval of a geodesic path may be $\left[t_{0}, t_{0}+r\right]$ for some $t_{0} \in \mathbf{R}$.

Acknowledgement. I thank Olli Martio for useful discussions and for comments on various drafts of the paper.

2. General results

In this section we give some results on quasihyperbolic geometry, valid in all dimensions. A domain $D \subset \mathbf{R}^{n}$ is strictly starlike with respect to a point $a \in D$ if D is bounded and if each ray from a meets ∂D at exactly one point. From [V3, 3.11] we get
2.1. Lemma. If $0<r<\pi / 2$, then every quasihyperbolic ball $B_{k}(a, r)$ in a domain $G \subset \mathbf{R}^{n}$ is strictly starlike with respect to a. Hence $S_{k}(a, r)$ is homeomorphic to the unit sphere $S(1)$. Moreover, if $x \in \bar{B}_{k}(a, r)$, then the closed ball $\bar{A}(a, x)=$ $\bar{B}((a+x) / 2,|a-x| / 2)$ lies in G.

We next consider sequences of geodesic paths.
2.2. Theorem. Let $G \subset \mathbf{R}^{n}$ be a domain and let $g_{j}:[0, r] \rightarrow G$ be a sequence of geodesic paths such that $g_{j}(0) \rightarrow a \in G, g_{j}(r) \rightarrow b \in G$. Then:
(1) There is a convergent subsequence of $\left(g_{j}\right)$.
(2) Each convergent subsequence $\left(h_{j}\right)$ of $\left(g_{j}\right)$ converges uniformly to a geodesic path h from a to b.
(3) If there is only one geodesic path g from a to b, then $\left(g_{j}\right)$ converges uniformly to g.

Proof. There is a compact set in G containing all geodesics im g_{j}. By (1.7) and by Ascoli's theorem, there is a subsequence $\left(h_{j}\right)$ of $\left(g_{j}\right)$ converging uniformly to a path $h:[0, r] \rightarrow G$. Then $l_{k}(h) \leq \liminf _{j \rightarrow \infty} l_{k}\left(h_{j}\right)=r($ see $[M V, 3.1])$, whence $\gamma=\operatorname{im} h$ is a quasihyperbolic geodesic. Repeating the argument on subintervals of $[0, r]$ we
see that h is a geodesic path. Hence (1) and (2) are true, and (3) is a corollary of these.
2.3. Theorem. If a domain $G \subset \mathbf{R}^{n}$ satisfies the Convexity conjecture 1.4, it satisfies the Uniqueness conjecture 1.2 with $c_{\mathrm{U}}=2 c_{\mathrm{C}}$.

Proof. Assume that $a, b \in G$ with $k(a, b)=2 r<2 c_{\mathrm{C}}$ and that $\gamma_{1}, \gamma_{2}: a \curvearrowright b$ are quasihyperbolic geodesics. Let $z_{j} \in \gamma_{j}$ be the point bisecting the quasihyperbolic length of γ_{j}. If $z_{1} \neq z_{2}$, then for $y=\left(z_{1}+z_{2}\right) / 2$ we have $k(a, y)<r$ and $k(b, y)<r$ by 1.4. This implies the contradiction $k(a, b)<2 r=k(a, b)$, whence $z_{1}=z_{2}$. Iteration and continuity prove the theorem.
2.4. Theorem. Suppose that $c>0$ and that $G \subset \mathbf{R}^{n}$ satisfies the Prolongation conjecture 1.3 with all $c_{\mathrm{P}}<c$. Then it satisfies 1.3 with $c_{\mathrm{P}}=c$.

Proof. Let $\gamma_{0}: a \curvearrowright b$ be a quasihyperbolic geodesic in G with $l_{k}\left(\gamma_{0}\right)=c_{0}<c$. Choose a sequence $c_{0}<c_{1}<\ldots$ converging to c. Then there are quasihyperbolic geodesics $\gamma_{j}: a \curvearrowright b_{j}$ such that $\gamma_{j} \subset \gamma_{j+1}$ and such that $l_{k}\left(\gamma_{j}\right)=c_{j}$. As $k\left(b_{i}, b_{j}\right)=$ $c_{j}-c_{i}$ for $i<j$, the sequence $\left(b_{j}\right)$ is Cauchy and converges to a point $b \in G$ with $k(a, b)=c$. Now the union of all γ_{j} is a geodesic $\gamma: a \curvearrowright b$ with $l_{k}(\gamma)=c$.
2.5. Ball convexity and shuttles. We recall from [Ma, 2.2] that quasihyperbolic geodesics are ball convex. This means that if B is a euclidean ball in a domain $G \subset \mathbf{R}^{n}$ and if $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic with $a, b \in \bar{B}$, then $\gamma \subset \bar{B}$. This implies that sufficiently short geodesics are contained in shuttles, defined by

$$
\begin{aligned}
& Y(a, b ; R)=\bigcap\{B(z, R):|z-a|=|z-b|=R\} \\
& \bar{Y}(a, b ; R)=\bigcap\{\bar{B}(z, R):|z-a|=|z-b|=R\}
\end{aligned}
$$

where $|a-b| \leq 2 R$. If $n=2$, then $Y(a, b ; R)$ is a Jordan domain bounded by two circular arcs. The angle α of Y is defined by

$$
\sin \alpha=|a-b| / 2 R, \quad 0<\alpha \leq \pi / 2
$$

If $\gamma: a \curvearrowright b$ is a geodesic in $G \subset \mathbf{R}^{n}$ and if $2 R \leq \delta(x) \vee \delta(y)$, then $\gamma \subset \bar{Y}(a, b ; R)$ ([V3, 2.6]).
2.6. Theorem. If a domain $G \subset \mathbf{R}^{n}$ satisfies the Uniqueness conjecture 1.2, it satisfies the Prolongation conjecture 1.3 with $c_{\mathrm{P}}=c_{\mathrm{U}} \wedge \frac{\pi}{2}$.

Proof. Let $a \in G$ and let $0<r<s<c_{\mathrm{P}}$. For each $x \in S_{k}(a, s)$ there is a unique quasihyperbolic geodesic $\gamma_{x}: a \curvearrowright x$. Let $f(x)$ be the unique point in $\gamma_{x} \cap S_{k}(a, r)$. By 2.4 it suffices to show that $f: S_{k}(a, s) \rightarrow S_{k}(a, r)$ is surjective.

From 2.2 it follows that f is continuous. Since $s<\pi / 2$, the quasihyperbolic balls $B_{k}(a, r)$ and $B_{k}(a, s)$ are strictly starlike by 2.1 . Hence the central projection from a defines a homeomorphism $g: S_{k}(a, s) \rightarrow S_{k}(a, r)$. It suffices to show that f and g are homotopic, because then they have the same degree. For this, it suffices to show that $a \notin[f x, g x]$ for each $x \in S_{k}(a, s)$.

The ball $\bar{B}=\bar{A}(a, x)$ lies in G by 2.1. By the ball convexity of γ_{x} (see 2.5), $f x \in B$, and the theorem follows.

For nonzero vectors $a, b \in \mathbf{R}^{n}$ we let ang (a, b) denote the angle between a and b, defined by

$$
a \cdot b=|a||b| \cos \operatorname{ang}(a, b), 0 \leq \operatorname{ang}(a, b) \leq \pi
$$

2.7. Lemma. Let $g:[0, r] \rightarrow G$ be a geodesic path and let $0 \leq t<s \leq r, s \leq$ $t+1 / 2$. Then

$$
\left.\operatorname{ang}\left(g^{\prime}(t)\right), g(s)-g(t)\right) \leq 4(s-t)
$$

Proof. By a standard estimate we have

$$
k(x, y) / 2 \leq|x-y| / \delta(x) \leq 2 k(x, y)
$$

whenever $x, y \in G$ with either $|x-y| \leq \delta(x) / 2$ or $k(x, y) \leq 1$; see [V1, 2.5] or [V2, 3.9]. For $x=g(t), y=g(s)$ we have $k(x, y)=s-t \leq 1 / 2$, whence $|x-y| \leq \delta(x)$. By 2.5 this implies that $g[t, s] \subset \bar{Y}(x, y ; \delta(x) / 2)$. For $\alpha=\operatorname{ang}\left(g^{\prime}(t), y-x\right)$ we thus have

$$
\alpha \leq 2 \sin \alpha \leq 2|x-y| / \delta(x) \leq 4 k(x, y)=4(s-t)
$$

We apply 2.7 to show that in a convergent sequence of geodesics also the derivatives converge:
2.8. Theorem. Suppose that $\left(g_{j}\right)$ is a sequence of geodesic paths $g_{j}:[0, r] \rightarrow$ $G \subset \mathbf{R}^{n}$ converging to a path $g:[0, r] \rightarrow G$. Then
(1) g is a geodesic path and the convergence is uniform,
(2) $g_{j}^{\prime}(t) \rightarrow g^{\prime}(t)$ uniformly on $[0, r]$.

Proof. Part (1) follows from 2.2. By (1.6) we have $\left|g^{\prime}(t)\right|=\delta(g(t)),\left|g_{j}^{\prime}(t)\right|=$ $\delta\left(g_{j}(t)\right)$. Hence it suffices to show that ang $\left(g_{j}^{\prime}(t), g^{\prime}(t)\right) \rightarrow 0$ uniformly on $[0, r]$.

Assume that this is not true. Passing to a subsequence we may assume that there is a number $\theta>0$ and a sequence $\left(t_{j}\right)$ in $[0, r]$ such that $t_{j} \rightarrow t_{0} \in[0, r]$ and such that ang $\left(g_{j}^{\prime}\left(t_{j}\right), g^{\prime}\left(t_{j}\right)\right) \geq \theta$ for all j. Replacing $g(t)$ by $g(r-t)$ if necessary we may assume that $t_{0} \neq r \neq t_{j}$ for all j. Fix a number u such that $0<u<\theta / 10, s_{0}=t_{0}+u \leq r$ and $s_{j}=t_{j}+u \leq r$ for all j.

From 2.7 it follows that the angles ang $\left(g^{\prime}\left(t_{0}\right), g\left(s_{0}\right)-g\left(t_{0}\right)\right)$ and ang $\left(g^{\prime}\left(t_{j}\right), g_{j}\left(s_{j}\right)-\right.$ $\left.g_{j}\left(t_{j}\right)\right)$ are less than $2 \theta / 5$. Furthermore,

$$
g^{\prime}\left(t_{j}\right) \rightarrow g^{\prime}\left(t_{0}\right), g_{j}\left(s_{j}\right) \rightarrow g\left(s_{0}\right), g_{j}\left(t_{j}\right) \rightarrow g\left(t_{0}\right)
$$

as $j \rightarrow \infty$, and we obtain the contradiction $\theta \leq 4 \theta / 5$.
2.9. Normal vectors. We recall the theory of normal vectors from [V3, Sec. 5]. Let $a \in G \subset \mathbf{R}^{n}, r>0$, and set $S=S_{k}(a, r)$. A unit vector e is an inner normal vector of S at $b \in S$ if

$$
\liminf _{x \rightarrow b, k(x, a) \geq r} \operatorname{ang}(x-b, e) \geq \pi / 2,
$$

and a unit vector u is an outer normal vector of S at b if

$$
\liminf _{x \rightarrow b, k(x, a) \leq r} \operatorname{ang}(x-b, u) \geq \pi / 2 .
$$

By Theorem 2.10 below, an inner normal vector always exists, but it is possible that S has several inner normal vectors at some point $b \in S$. However, if an outer normal vector u exists, then both are unique and $u=-e$ by [V3, 5.3]. Then we say that u is the normal vector of S at b, and $T=b+u^{\perp}$ is the tangent hyperplane of S at b.
2.10. Theorem. Let $a \in G \subset \mathbf{R}^{n}, r>0$, let $\gamma: a \curvearrowright b \in S=S_{k}(a, r)$ be a quasihyperbolic geodesic, and let v be the unit tangent vector of γ at b. Then $-v$ is an inner normal vector of S at b. If γ has a prolongation to a geodesic $\gamma_{1}: a \curvearrowright b_{1} \neq b$, then v is a normal vector of S at b.

If G satisfies the Uniqueness and Prolongation conjectures 1.2 and 1.3 with a constant c and if $r<c$, then S is smooth, that is, it has a continuous normal vector. If $B_{k}(a, r)$ is convex, then S is smooth.
Proof. The first part of the theorem follows from [V3, 5.4, 5.10].
In the second part, let $u(y)$ be the normal vector of S at $y \in S$. Let $\left(b_{j}\right)$ be a sequence in $S_{k}(a, r)$ converging to $b \in S$, and let $g_{j}:[0, r] \rightarrow G$ be the unique geodesic path from a to b_{j}. By 2.2, the sequence $\left(g_{j}\right)$ converges to a geodesic path g with $\operatorname{im} g=\gamma$. Then $g_{j}^{\prime}(r) \rightarrow g^{\prime}(r)$ by 2.8. It follows that

$$
u\left(b_{j}\right)=g_{j}^{\prime}(r) / \delta\left(b_{j}\right) \rightarrow g^{\prime}(r) / \delta(b)=u(b)
$$

whence u is continuous.
Finally, assume that $D=B_{k}(a, r)$ is convex. Let T be a supporting hyperplane of D at $y \in S$. Let H be the component of $\mathbf{R}^{n} \backslash T$ containing D and let $u(y)$ be the unit normal vector of T with $y+u(y) \notin H$. Then $u(y)$ is a normal vector of S at y. To prove that u is continuous in a neighborhood of a point $b \in S$ we may assume that $b=0$ and that $u(b)=-e_{n}$. Now there is a neighborhood V of 0 in S such that V is the graph of a convex function $h: U \rightarrow \mathbf{R}$, defined in an ($n-1$)-dimensional ball U. This function is differentiable at every point and therefore C^{1} by a classical result on convex functions; see [Ro, 25.5.1]. Hence u is continuous.
2.11. Distortion of geodesics. Let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in a domain $G \subset \mathbf{R}^{n}$ and let $v(x)$ be the unit tangent vector of γ at $x \in \gamma$. Then $v: \gamma \rightarrow S(1)$ is continuous but it need not be differentiable. However, it is Lipschitz, and a sharp estimate for a generalized curvature of γ was given by Martin in $[\mathrm{Ma},(4.10),(4.11)]$. From this theory it is easy to obtain the sharp estimate ang $(v(a), v(b)) \leq k(a, b)$. We give a slightly modified treatment of Martin's theory.

The following was proved in [Ma, 2.5]; the stronger condition $|x|<(d-r) / 2$ is not needed.
2.12. Lemma. Suppose that $x, z, p \in \mathbf{R}^{n}$ with $|x| \leq d-r,|z|=r,|p| \geq$ $d, d / 2<r<d$. If $x^{\prime} \in(x, z)$, then

$$
|x-p| /\left|x^{\prime}-p\right|<|x-z| /\left|x^{\prime}-z\right| .
$$

2.13. Cap convexity theorem. (cf. [Ma, 2.4]) Let $G \subset \mathbf{R}^{n}$ be a domain, let $x_{0}, z \in G$ with $\left|z-x_{0}\right|=r, \delta\left(x_{0}\right)=d, d / 2<r<d$. Let $0<t \leq d-r$ and let γ be a quasihyperbolic geodesic with endpoints on the cap $C=S(z, r) \cap \bar{B}\left(x_{0}, t\right)$. Then $\gamma \subset \bar{B}(z, r) \cap \bar{B}\left(x_{0}, t\right)$.

Proof. We may assume that $x_{0}=0$. By ball convexity 2.5, we have $\gamma \subset$ $\bar{B}\left(x_{0}, t\right)$. Assume that the theorem is false. Then there is a geodesic $\gamma: a \curvearrowright b$ with $a, b \in C, \gamma \cap \bar{B}(z, r)=\{a, b\}$. Let u be the inversion in the sphere $S(z, r)$. Then $\left|u^{\prime}(x)\right|=r^{2} /|x-z|^{2}$. By the convexity of $B\left(x_{0}, d\right)$ we have $[x, z] \subset B\left(x_{0}, d\right) \subset G$ for each $x \in \gamma$. Hence $u \gamma \subset G$. It suffices to show that $l_{k}(u \gamma)<l_{k}(\gamma)$.

We have

$$
\begin{equation*}
l_{k}(u \gamma)=\int_{\gamma} \frac{\left|u^{\prime}(x)\right||d x|}{\delta(u x)}=r^{2} \int_{\gamma} \frac{|d x|}{\delta(u x)|x-z|^{2}} . \tag{2.14}
\end{equation*}
$$

Choosing $p \in \partial G$ with $|u x-p|=\delta(u x)$ and applying 2.12 with $x^{\prime}=u x$ we get

$$
\frac{\delta(x)}{\delta(u x)} \leq \frac{|x-p|}{|u x-p|}<\frac{|x-z|}{|u x-z|}=\frac{|x-z|^{2}}{r^{2}}
$$

for all $x \in \dot{\gamma}$. This and (2.14) yield $l_{k}(u \gamma)<l(\gamma)$.
With the aid of cap convexity one can replace the shuttle in 2.5 by a narrower one if the geodesic γ is short:
2.15. Theorem. Let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in $G \subset \mathbf{R}^{n}$ such that $s:=|a-b|<d / 2$ where $d=\delta(a) \vee \delta(b)$. Then $\gamma \subset \bar{Y}(a, b ; d-s)$. For the angle $\alpha(s)$ of the shuttle we have

$$
\lim _{s \rightarrow 0} \frac{\alpha(s)}{s}=\frac{1}{2 d} .
$$

Proof. We may assume that $d=\delta(a) \geq \delta(b)$. Set $r=d-s$ and let z be a point with $|z-a|=|z-b|=r$. Now 2.13 gives $\gamma \subset \bar{B}(z, r)$, whence $\gamma \subset \bar{Y}(a, b ; r)$. As $\sin \alpha(s)=s / 2(d-s)$, the theorem follows.
2.16. Theorem. Let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in $G \subset \mathbf{R}^{n}$ and let $v(x)$ be the unit tangent vector of γ at $x \in \gamma$. Then ang $(v(a), v(b)) \leq k(a, b)$.

Proof. Set $\Delta=[0, k(a, b)]$ and let $g: \Delta \rightarrow \gamma$ be the quasihyperbolic parametrization of γ. Define $\varphi: \Delta \rightarrow \mathbf{R}$ by $\varphi(t)=\operatorname{ang}(v(g(t)), v(a))$. It suffices to show that

$$
\begin{equation*}
\limsup _{t \rightarrow t_{0}} \frac{\left|\varphi(t)-\varphi\left(t_{0}\right)\right|}{\left|t-t_{0}\right|} \leq 1 \tag{2.17}
\end{equation*}
$$

for all $t_{0} \in \Delta$, since this implies that φ is 1-Lipschitz.
Set

$$
x_{0}=g\left(t_{0}\right), x=g(t), d=\delta\left(x_{0}\right), s=\left|x-x_{0}\right|,
$$

and assume that $s<d / 2$. By 2.15, the arc $\gamma\left[x_{0}, x\right]$ lies in a shuttle with chord $\left[x_{0}, x\right]$ and angle $\alpha(s)$. Here $\left|\varphi(t)-\varphi\left(t_{0}\right)\right| \leq 2 \alpha(s)$. Since $\alpha(s) / s \rightarrow 1 / 2 d$ and since $\left|g^{\prime}\left(t_{0}\right)\right|=d$ by (1.6), this implies (2.17).

From 2.16 we obtain as an easy corollary:
2.18. Theorem. Let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in $G \subset \mathbf{R}^{n}$ with $k(a, b) \leq \pi / 2$. Let $x, y \in \gamma, x \neq y$, and let L be either the tangent of γ at x or the line aff $\{x, y\}$. Then the tangent of γ is nowhere perpendicular to L, and the orthogonal projection of γ into L is injective.

3. The domains G_{1} and G_{2}

3.1. In this section we consider domains $G \subset \mathbf{R}^{2}$ such that $Q=\mathbf{R}^{2} \backslash G$ consists of one or two points and start with the punctured plane $G_{1}=\mathbf{R}^{2} \backslash\{0\}$, which has been studied by Martin and Osgood [MO] in 1986 and recently by Klén [Kl]. We shall make extensive use of the exponential map

$$
F: \mathbf{R}^{2} \rightarrow G_{1}, \quad F(z)=e^{z}, \quad F(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right) .
$$

Recall that F is an angle-preserving covering map with $F(z)=F\left(z^{\prime}\right)$ iff $z=z^{\prime}+2 m \pi i$ for some $m \in \mathbf{Z}$. Thus F is injective in each strip $\{(x, y): a<y<a+2 \pi\}, a \in \mathbf{R}$.

Every path $g:\left[t_{1}, t_{2}\right] \rightarrow G_{1}$ has an F-lift $g^{*}:\left[t_{1}, t_{2}\right] \rightarrow \mathbf{R}^{2}$ with $F \circ g^{*}=g$, and g^{*} is unique as soon as we fix the point $g^{*}\left(t_{1}\right) \in F^{-1}\left\{g\left(t_{1}\right)\right\}$.

Martin and Osgood made the important observation that F transforms euclidean lengths to quasihyperbolic lengths. We recall its proof.
3.2. Lemma. [MO, p. 38] Let $g:[0, \lambda] \rightarrow \mathbf{R}^{2}$ be a rectifiable path. Then the quasihyperbolic length of $F \circ g$ in G_{1} is equal to the euclidean length of g.

Proof. We may assume that g is a length parametrization with $\lambda=l(g)$. We have $\delta(w)=|w|$ for $w \in G_{1}$. As $(F \circ g)^{\prime}(t)=F(g(t)) g^{\prime}(t)$ and $\left|g^{\prime}(t)\right|=1$ a.e., we get

$$
l_{k}(F \circ g)=\int_{0}^{\lambda} \frac{\left|(F \circ g)^{\prime}(t)\right|}{|F(g(t))|} d t=\int_{0}^{\lambda} d t=\lambda .
$$

A domain $D \subset \mathbf{R}^{2}$ is a Jordan domain if it is bounded and if ∂D is a Jordan curve (topological circle). A Jordan domain D is smooth if ∂D is a C^{1} smooth curve.
3.3. Lemma. Let $D \subset \mathbf{R}^{2}$ be a Jordan domain with rectifiable boundary. If $0 \in D$, then $l_{k}(\partial D) \geq 2 \pi$ in G_{1}.

Proof. Choose a path $g:[0, \lambda] \rightarrow \partial D$ such that $g(0)=g(\lambda)$ and such that $g \mid[0, \lambda)$ is injective. Let $g^{*}:[0, \lambda] \rightarrow \mathbf{R}^{2}$ be an F-lift of g. As g is not null-homotopic, we have $g^{*}(0) \neq g^{*}(\lambda)$. By 3.2 this gives

$$
l_{k}(\partial D)=l\left(\gamma^{*}\right) \geq\left|g^{*}(0)-g^{*}(\lambda)\right| \geq 2 \pi
$$

3.4. Geodesics in G_{1}. From Lemma 3.2 it follows that a quasihyperbolic geodesic $\gamma: a \curvearrowright b$ in G_{1} can be found as follows. Choose an arbitrary point $a^{*} \in$ $F^{-1}\{a\}$ and then $b^{*} \in F^{-1}\{b\}$ such that $\left|a^{*}-b^{*}\right|$ is minimal. Then $\gamma=F\left[a^{*}, b^{*}\right]$.

If $k(a, b)<\pi$, then γ is unique. It is a subarc of a logarithmic spiral, possibly of a circle centered at 0 or a ray emanating from 0 ; these limiting cases are also regarded as logarithmic spirals. We say that the origin is the center of the spiral.
3.5. Quasihyperbolic disks in G_{1}. From 3.2 it follows that a quasihyperbolic disk in G_{1} is obtained from

$$
B_{k}(a, r)=F B\left(a^{*}, r\right),
$$

where a^{*} is an arbitrary point in $F^{-1}\{a\}$.
3.6. Theorem. If $p \in \mathbf{R}^{2}$ and $0<r<\pi$, then $D=F B(p, r)$ is a smooth Jordan domain. If $r \leq 1$, then D is strictly convex. If $r<1$, then the curvature radius of ∂D at each point has the upper bound

$$
R_{0}(p, r)=\frac{r\left|e^{p}\right| e^{r}}{1-r}
$$

If $r>1$, then D is not convex.
Proof. As F is a C^{∞} embedding in each strip $s<\operatorname{Im} z<s+2 \pi i$, the first part of the theorem is clear. A parametrization for ∂D is given by $g(t)=F\left(p+r e^{i t}\right)=$ $a e^{r e^{i t}}, 0 \leq t \leq 2 \pi$, where $a=e^{p}$. Suppose that $r \leq 1$. Setting $\varphi(t)=\arg g^{\prime}(t)$ we have

$$
\varphi(t)=\arg a+r \sin t+t+\pi / 2
$$

Hence $\varphi^{\prime}(t)=r \cos t+1>0$ except for $r=1, t=\pi$. Consequently, φ is strictly increasing on $[0,2 \pi]$, whence D is strictly convex. Furthermore,

$$
\left|g^{\prime}(t)\right|=r\left|e^{p}\right|\left|e^{r e^{i t}}\right| \leq r\left|e^{p}\right| e^{r}
$$

If $r<1$, the curvature of ∂D at a point $g(t)$ is therefore

$$
\varphi^{\prime}(t) /\left|g^{\prime}(t)\right| \geq(1-r) / r\left|e^{p}\right| e^{r}=1 / R_{0}(p, r)
$$

If $r>1$, then $\varphi^{\prime}(t)<0$ in a neighborhood of π, whence D is not convex.
By 3.5 we get the result of $[\mathrm{Kl}, 3.10]$ for $n=2$:
3.7. Corollary. The domain G_{1} satisfies the Convexity conjecture 1.4 with the sharp constant $c=1$.
3.8. The domain G_{2}. We next consider the complement of two points in \mathbf{R}^{2}, which can be normalized as

$$
G_{2}=\mathbf{R}^{2} \backslash\{0,2\}
$$

The vertical line

$$
L_{0}=\{z: \operatorname{Re} z=1\}
$$

divides the plane into two open half planes $H=\{z: \operatorname{Re} z<1\}$ and $\tilde{H}=\{z: \operatorname{Re} z>$ $1\}$. For $z \in G_{2}$ we have $\delta(z)=|z| \wedge|z-2|$, whence quasihyperbolic geodesics lying in H or in \tilde{H} are parts of logarithmic spirals as explained in 1.4. To study the behavior of a geodesic meeting L_{0} we set

$$
C^{*}=F^{-1} L_{0}, \quad U=F^{-1} H
$$

Then

$$
C^{*}=C_{0}+2 \pi i \mathbf{Z}, \quad C_{0}=\left\{(x, y) \in \mathbf{R}^{2}:-\pi / 2<y<\pi / 2, x=-\log \cos y\right\} .
$$

The curve C_{0} lies in the half strip $x \geq 0,-\pi / 2<y<\pi / 2$ with horizontal asymptotes $y= \pm \pi / 2$. The function $f(y)=-\log \cos y$ is strictly convex.

We say that a set in \mathbf{R}^{2} is an $l c$-curve ($l \mathrm{c}$ for $\log \cos$) if it is of the form $C_{0}+z_{0}$ for some $z_{0} \in \mathbf{R}^{2}$. Thus C^{*} is the union of a countable number of lc-curves $C_{m}=C_{0}+$ $2 \pi i m, m \in \mathbf{Z}$. The set U is the domain with $\partial U=C^{*}$. It contains the left half plane $x<0$ and the closed horizontal strips $\pi / 2+2 m \pi \leq y \leq 3 \pi / 2+2 m \pi, m \in \mathbf{Z}$. The map F defines a covering map $\bar{U} \rightarrow \bar{H}$, and it maps each C_{m} homeomorphically onto L_{0}. If $L \subset \mathbf{R}^{2}$ is an arbitrary line not containing the origin, we can write $L=e^{z_{0}} L_{0}$ for some $z_{0} \in \mathbf{R}^{2}$, and thus $F^{-1} L=C^{*}+z_{0}$ consists of lc-curves $C_{0}+z_{0}+2 \pi i m, m \in \mathbf{Z}$.

We next study quasihyperbolic geodesics meeting L_{0} but consider only the case $k(a, b)=l_{k}(\gamma) \leq \pi$.
3.8. Lemma. Let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in G_{2} such that $l_{k}(\gamma) \leq \pi$ and $a, b \in L_{0}$. Then $\gamma=[a, b]$.

Proof. Assume that $\gamma \neq[a, b]$. Passing to a subarc we may assume that $\gamma \cap L_{0}=$ $\{a, b\}$. By symmetry we may assume that $\gamma \subset \bar{H}$. Let $\gamma^{*}: a^{*} \curvearrowright b^{*}$ be an F-lift of γ with $a^{*} \in C_{0}$. As $l\left(\gamma^{*}\right)=l_{k}(\gamma) \leq \pi$ by 3.2 , we have $b^{*} \in C_{0}$. Let α^{*} be the subarc of C_{0} between a^{*} and b^{*}. Then $l\left(\alpha^{*}\right)<l\left(\gamma^{*}\right)=l_{k}(\gamma)$. Since $l\left(\alpha^{*}\right)=l_{k}\left(F \alpha^{*}\right)=l_{k}([a, b])$, this gives a contradiction.
3.10. Geodesics in \bar{H}. Suppose that $a, b \in \bar{H}$ and that $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic in G_{2} with $l_{k}(\gamma) \leq \pi$. From 3.9 it follows that $\gamma \in \bar{H}$. Let $\gamma^{*}: a^{*} \curvearrowright b^{*}$ be an F-lift of γ. By 3.2, the arc γ^{*} is a geodesic in the inner metric $d_{\bar{U}}$ of \bar{U}, defined by

$$
d_{\bar{U}}\left(a^{*}, b^{*}\right)=\inf \left\{l(\alpha) \mid \alpha: a^{*} \curvearrowright b^{*}, \alpha \subset \bar{U}\right\} .
$$

Since $l\left(\gamma^{*}\right) \leq \pi$, the arc γ^{*} meets at most one component of C^{*}, and we may assume that this is C_{0}. There are three cases:

Case 1. $\left[a^{*}, b^{*}\right] \cap C_{0}=\varnothing$. Now $\gamma^{*}=\left[a^{*}, b^{*}\right]$ and $\gamma \subset H$ is a quasihyperbolic geodesic in G_{1}, hence a part of a logarithmic spiral.

Case 2. $\left[a^{*}, b^{*}\right] \cap C_{0}=\left\{z_{0}\right\}$ is a singleton. Again γ is a geodesic in G_{1}, but now L_{0} is a tangent of γ at z_{0}.

Case 3. $\left[a^{*}, b^{*}\right]$ meets C_{0} at two points. If $a, b \in H$, then the $d_{\bar{U}}$-geodesic γ^{*} is a union $\left[a^{*}, x^{*}\right] \cup C_{0}\left[x^{*}, y^{*}\right] \cup\left[y^{*}, b^{*}\right]$ where the line segments meet C_{0} tangentially at the endpoints x^{*} and y^{*}. If $a \in L_{0}$ or $b \in L_{0}$, then the corresponding line segment degenerates to a point.

The geodesic $\gamma=F \gamma^{*}$ consists of the line segment $\left[F\left(x^{*}\right), F\left(y^{*}\right)\right] \subset L_{0}$ and (possibly) of two arcs of logarithmic spirals in \bar{H}.

Case 3. A geodesic in \bar{H} containing a segment of L_{0}
Let $\varrho_{0}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection in $L_{0}, \varrho_{0}(x, y)=(2-x, y)$. If $\tilde{a}, \tilde{b} \in \tilde{H}$ with $k(\tilde{a}, \tilde{b}) \leq \pi$, then a geodesic $\tilde{\gamma}: \tilde{a} \curvearrowright \tilde{b}$ is $\varrho_{0} \gamma$ where γ is a geodesic from $a=\varrho_{0} \tilde{a}$ to $\varrho_{0} \tilde{b}$ given above.
3.11. Geodesics from H to \tilde{H}. We shall make use of the sense-reversing angle-preserving covering map

$$
\tilde{F}=\varrho_{0} \circ F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \backslash\{2\} .
$$

Observe that $\tilde{F}^{-1} \tilde{H}=U$ and that $\tilde{F}=F$ on C^{*}.

Suppose that $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic in G_{2} with $a \in H, b \in$ $\tilde{H}, l_{k}(\gamma) \leq \pi$. Let $x, y \in \gamma$ be the first and the last point of γ in L_{0}, respectively. From 3.9 it follows that $\gamma \cap L_{0}=[x, y]$, where the case $x=y$ may occur. Write $\alpha=[x, y], \quad \gamma_{1}=\gamma[a, x], \quad \gamma_{2}=\gamma[y, b]$. If $x \neq y$, the arc α has a unique F-lift $\alpha^{*}: x^{*} \curvearrowright y^{*}$ on C_{0}, and α^{*} is also an \tilde{F}-lift of α. Furthermore, the arc γ_{1} has a unique F-lift to a line segment $\gamma_{1}^{*}=\left[a^{*}, x^{*}\right] \subset \bar{U}$, and γ_{2} has a unique \tilde{F}-lift to a line segment $\gamma_{2}^{*}=\left[y^{*}, b^{*}\right] \subset \bar{U}$. Let $\varphi \in[0, \pi / 2]$ be the angle between $\left[a^{*}, x^{*}\right]$ and the tangent of C_{0} at x^{*}. We consider three cases.

Case 1. $x=y$ and $\varphi>0$. Now γ crosses L_{0} at the point $x=y$, and the angle between L_{0} and the tangent of γ at x is φ. Hence also the angle between γ_{2}^{*} and the tangent of C_{0} at $x^{*}=y^{*}$ is φ. We may think that the pair $\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)$ represents a light beam from a^{*}, which reflects from the convex mirror C_{0} to b^{*}. We say that the pair $\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)$ is the (F, \tilde{F})-lift of γ.

Case 1. Crossing overpass from H to \tilde{H}
Case 2. $x=y$ and $\varphi=0$. This case is almost similar to Case 1 , but now $\gamma_{1}^{*} \cup \gamma_{2}^{*}=\left[a^{*}, b^{*}\right]$ and γ touches L_{0} at the overpass point x.

Case 3. $x \neq y$. Since γ is smooth, the line segments γ_{1}^{*} and γ_{2}^{*} meet C_{0} tangentially, and the arc $\gamma_{1}^{*} \cup \alpha \cup \gamma_{2}^{*}$ is similar to γ^{*} in Case 3 of 3.10. The arc γ consists of the line segment $[x, y]$ and two arcs of logarithmic spirals.

Case 3. Sliding overpass from H to \tilde{H}

Terminology. In Cases $1,2,3$ we say that the overpass from H to \tilde{H} of the geodesic γ is crossing, touching or sliding, respectively.
3.12. Geodesic germs. We say that two quasihyperbolic geodesics $\gamma: a \curvearrowright b$ and $\gamma^{\prime}: a^{\prime} \curvearrowright b^{\prime}$ in a domain G are equivalent if $a=a^{\prime}$ and if there is a neighborhood U of a such that $\gamma \cap U=\gamma^{\prime} \cap U$. An equivalence class is a geodesic germ or briefly a germ.

We let $[\gamma]$ denote the germ containing γ. Each germ $[\gamma]$ with $\gamma: a \curvearrowright b$ has a well-defined starting point a and a direction $v \in S(1)$, which is the unit tangent vector of γ at a. We want to find all germs in G_{2} with given $a \in G_{2}$ and $v \in S(1)$.

Suppose first that $a \in H$ and that $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic in G_{2} with $\gamma \subset H$. Choose a point $a^{*} \in F^{-1}\{a\}$ and an F-lift $\gamma^{*}: a^{*} \curvearrowright b^{*}$ of γ. Then γ^{*} is a line segment $\left[a^{*}, b^{*}\right]$, and $b^{*}-a^{*}$ has the same direction as $v^{*}=v / a$. Hence there is precisely one germ starting at a to the direction v.

By symmetry, the same is true if $a \in \tilde{H}$. Furthermore, if $a \in L_{0}$ and $v \neq \pm e_{2}$, the same argument proves that the germ from a to the direction v is uniquely determined.

Next assume that $a \in L_{0}, v=e_{2}$. The discussion in 3.10 shows that there are three germs $[\gamma]$ from a to the direction e_{2} : one with $\dot{\gamma} \subset H$, one with $\dot{\gamma} \subset \tilde{H}$, and one such that γ contains a line segment $\left[a, a+t e_{2}\right], t>0$. The case $v=-e_{2}$ is similar.

4. Voronoi diagrams and quasihyperbolic geodesics

4.1. Voronoi diagrams. In this section we assume that $Q \subset \mathbf{R}^{2}$ is a finite set containing at least two points. We shall study quasihyperbolic geodesics in the domain $G_{Q}=\mathbf{R}^{2} \backslash Q$. The section is preparation for Sections 5 and 6 where we prove the basic conjectures for G_{Q}.

Recall from the introduction that the Voronoi diagram $\operatorname{Vor} Q$ of Q is the finite family of Voronoi cells

$$
D_{q}=\left\{x \in \mathbf{R}^{2}:|x-q|<|x-p| \text { for all } p \in Q \backslash\{q\}\right\}, q \in Q
$$

The point q is the nucleus of the cell D_{q}. Each cell is a finite intersection of open half planes, hence a convex domain. If D_{q} is bounded, it is a convex polygon with m edges and m vertices for some $m \geq 3$. If D_{q} is unbounded, there are three possibilities:
(1) D_{q} is a half plane,
(2) D_{q} is a parallel strip,
(3) D_{q} has $m \geq 1$ vertices $v_{1}, \ldots, v_{m} \in \mathbf{R}^{2}$, and ∂D_{q} consists of $m+1$ edges: the line segments $\left[v_{j}, v_{j+1}\right], 1 \leq j \leq m-1$, and two rays, emanating from v_{1} and v_{m}.

The cases (1) and (2) occur only if Q is contained in a line, and then the edges are lines. The domains D_{q} are disjoint, and their closures \bar{D}_{q} cover the plane. If $q \neq p$ and \bar{D}_{q} meets \bar{D}_{p}, then $\bar{D}_{q} \cap \bar{D}_{p}$ is a common edge or a common vertex. The latter case can occur only if there is a circle containing four points of Q. We shall use the notation
$X=X(Q)=$ the union of all edges of $\operatorname{Vor} Q$.
We give a generalization of Lemma 3.9:
4.2. Edge theorem. Let γ be a quasihyperbolic geodesic in G_{Q} with $l_{k}(\gamma) \leq \pi$ and let J be an edge of $\operatorname{Vor} Q$. Then $\gamma \cap J$ is a singleton or a line segment.

Proof. If the theorem is false, then there is an edge $J=\bar{D}_{p} \cap \bar{D}_{q}$ and a geodesic $\gamma: a \curvearrowright b$ such that $a, b \in J, l_{k}(\gamma) \leq \pi, \gamma \neq[a, b]$. Let k_{2} be the quasihyperbolic
metric of the domain $\mathbf{R}^{2} \backslash\{p, q\}$. Since $k \geq k_{2}$, we obtain by 3.9 the contradiction

$$
l_{k}(\gamma) \geq l_{k_{2}}(\gamma)>l_{k_{2}}([a, b])=l_{k}([a, b])
$$

4.3. Terminology. Let $U \subset \mathbf{R}^{2}$ be an open set and let $\gamma \subset \bar{U}$ be an arc in \bar{U} with endpoints a and b. We recall that γ is a crosscut of U if $\gamma \cap \partial U=\{a, b\}$ and an endcut of U if $\gamma \cap \partial U$ is $\{a\}$ or $\{b\}$.
4.4. The standard decomposition. Let $\gamma: a \curvearrowright b$ be a geodesic in G_{Q} with $l_{k}(\gamma) \leq \pi$. If α is a component of $\gamma \backslash X$, then $\bar{\alpha}$ is a crosscut of a cell $D \in \operatorname{Vor} Q$ or perhaps an endcut if α contains one of the endpoints of γ. By 4.2 we obtain a unique decomposition of γ into subarcs

$$
\gamma=\gamma_{1} \cup \cdots \cup \gamma_{m}
$$

where $\gamma_{\nu}=\gamma\left[x_{\nu-1}, x_{\nu}\right], x_{0}=a, x_{m}=b$, and each γ_{ν} is either a line segment on some edge of $\operatorname{Vor} Q$ or a crosscut or (if $\nu=1, m$) an endcut of a cell $D \in \operatorname{Vor} Q$. This is called the standard decomposition of γ.
4.5. Orientation. Let $W \subset \mathbf{R}^{2}$ be a domain and let $\gamma: a \curvearrowright b$ be a smooth arc on ∂W such that
(i) $\dot{\gamma}$ is open in ∂W,
(ii) $\gamma \subset \partial\left(\mathbf{R}^{2} \backslash \bar{W}\right)$.

For $x \in \gamma$ let $v(x)$ be the unit tangent vector of γ at x. The vector $n(x)=i v(x)$ is the left normal vector of γ at x. For each $x \in \dot{\gamma}$ there is $s_{x}>0$ such that either (1) $x+\operatorname{tn}(x) \in W$ for $0<t<s_{x}$ or (2) $x-\operatorname{tn}(x) \in W$ for $0<t<s_{x}$. Moreover, if (1) holds at some point x, it holds at every $x \in \dot{\gamma}$. Then we say that W lies on the left-hand side of γ and that γ is positively oriented in W. In case (2), W lies on the right-hand side of γ and γ is negatively oriented.

If W is a smooth Jordan domain, an orientation of ∂W can be defined by choosing a continuous unit tangent vector $v(x)$ of $\partial D, x \in \partial D$. The orientation is positive if $x+\operatorname{tiv}(x) \in W$ for small $t>0$.
4.6. The direction angle. Let $\gamma: a \curvearrowright b$ be a smooth arc in \mathbf{R}^{2} and let $v(x)$ be the tangent vector as above. The direction angle $\varphi(x)=\arg v(x)$ is defined up to a multiple of 2π, and it is uniquely determined as a continuous function as soon as we fix $\varphi\left(x_{0}\right)$ for some $x_{0} \in \gamma$.
4.7. The maps F_{q}. For each $q \in Q$ we define the covering map $F_{q}: \mathbf{R}^{2} \rightarrow$ $\mathbf{R}^{2} \backslash\{q\}$ by

$$
F_{q}(z)=F(z)+q=e^{z}+q .
$$

Setting $U_{q}=F_{q}^{-1} D_{q}$ we obtain covering maps $U_{q} \rightarrow D_{q}, \bar{U}_{q} \rightarrow \bar{D}_{q}, \partial U_{q} \rightarrow \partial D_{q}$.
Assume that the cell D_{q} is bounded and let J_{1}, \ldots, J_{m} be the successive edges of D_{q} in the positive orientation. Let L_{ν} be the line containing J_{ν}. From 3.8 we see that the preimage $F_{q}^{-1} L_{\nu}$ consists of disjoint lc-curves $C_{n}^{\nu}=C_{0}^{\nu}+2 n \pi i, n \in \mathbf{Z}$, where $C_{0}^{\nu}=C\left(z_{\nu}\right)=C_{0}+z_{\nu}$ and $F_{q}\left(z_{\nu}\right)$ is the point of L_{ν} closest to q. The boundary ∂U_{q} consists of successive arcs $\ldots, K_{-1}^{m}, K_{0}^{1}, \ldots, K_{0}^{m}, K_{1}^{1}, \ldots$ such that $F_{q} K_{n}^{\nu}=J_{\nu}$ and $K_{n}^{\nu} \subset C_{n}^{\nu}$. Each horizontal $\operatorname{line} l_{y}=\{z: \operatorname{Im} z=y\}$ meets ∂U_{q} at exactly one point $w(y)$, and F_{q} maps the ray $l_{y} \cap \bar{U}_{q}$ onto the line segment $\left(q, F_{q}(w(y))\right]$.

If D_{q} is unbounded, then ∂U_{q} again consists of arcs $K_{n}^{\nu} \subset C_{n}^{\nu}$ but some of these are unbounded and ∂U_{q} is not connected. In fact, a horizontal line l_{y} meets ∂U_{q} iff D_{q} does not contain the ray $\left\{q+t e^{i y}: t \geq 0\right\}$.

Let d_{q} be the inner euclidean metric of \bar{U}_{q}, defined by

$$
d_{q}(a, b)=\inf \left\{l(\gamma) \mid \gamma: a \curvearrowright b, \gamma \subset \bar{U}_{q}\right\} .
$$

For given $a, b \in \bar{U}_{q}$, a d_{q}-geodesic $\gamma: a \curvearrowright b$ always exists and is unique. If $a, b \in \partial U_{q}$, then γ consists of a finite number of subarcs, each of which is either a subarc of some K_{n}^{ν} or a line segment joining two points of ∂U_{q} in \bar{U}_{q}. Moreover, the projection $\operatorname{Im} z$ is strictly monotone for $z \in \gamma$.
4.8. Lemma. Suppose that $q \in Q$ and that $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic in G_{Q} such that $a, b \in \partial D_{q}, \gamma \subset \bar{D}_{q}$. Then γ consists of a finite number of successive subarcs, each of which is either a line segment on ∂D_{q} or a subarc of a logarithmic spiral with center q.

The direction angle φ of γ is monotone on γ and strictly monotone on each component of $\gamma \cap D_{q}$. The q-component A_{q} of $D_{q} \backslash \gamma$ is a convex Jordan domain with $\gamma \subset \partial A_{q}$, and φ is increasing iff A_{q} lies on the left-hand side of γ.

Proof. Let $\gamma^{*}: a^{*} \curvearrowright b^{*}$ be an $F_{q^{-}}$lift of γ. By Lemma 3.2, the arc γ^{*} is a $d_{q^{-}}$ geodesic in \bar{U}_{q} and has the structure explained in 4.7. Hence γ has the required structure. If $\operatorname{Im} a^{*}<\operatorname{Im} b^{*}$, then $z \mapsto \operatorname{Im} z$ is strictly increasing on γ^{*}, whence $x \mapsto \arg (x-q)$ is strictly increasing on γ. The lemma follows.
4.9. Lemma. Suppose that $D_{q} \in \operatorname{Vor} Q$ and that $\gamma: a \curvearrowright b$ is a smooth crosscut of $\mathbf{R}^{2} \backslash \bar{D}_{q}$. Let $W \subset \mathbf{R}^{2} \backslash \bar{D}_{q}$ be the Jordan domain bounded by γ and an arc $\alpha: a \curvearrowright b$ on ∂D_{q}. If the direction angle of γ is decreasing, then W lies on the right-hand side of γ.

Proof. Let J be an edge of D_{q} containing a subarc of α and let L be the line containing J. Then there is an open half plane H bounded by L such that $D_{q} \subset$ $\mathbf{R}^{2} \backslash \bar{H}$. Now W meets H, and we can choose a point $x \in \gamma \cap H$ such that $d(x, L)$ is maximal. The tangent line L_{1} of γ at x is parallel to L and there is a component H_{1} of $\mathbf{R}^{2} \backslash L_{1}$ containing W. As φ is decreasing, the points $x+\operatorname{tn}(x)$ lie in $\mathbf{R}^{2} \backslash H_{1}$ for $t \geq 0$, and the lemma follows.
4.10. Terminology. Let $D \in \operatorname{Vor} Q$ and let $\gamma: a \curvearrowright b$ be a crosscut of $U=$ $\mathbf{R}^{2} \backslash \bar{D}$. Then there is a unique bounded component W of $U \backslash \gamma$. We say that γ encircles a point x in U if $x \in W$. We also say that the open arc γ encircles x.
4.11. Lemma. Let $\gamma: a \curvearrowright b$ be a crosscut of the half plane $H=\{z: \operatorname{Re} z<1\}$ with $0 \notin \gamma$, and let $\gamma^{*}: a^{*} \curvearrowright b^{*}$ be an F-lift of γ (see 3.1). Then the points a^{*} and b^{*} belong to different components of $F^{-1} \partial H$ iff γ encircles the origin in H. Moreover, in this case $l_{k}(\gamma)>\pi$ in the domain $\mathbf{R}^{2} \backslash\{0\}$.

Proof. Let W be the Jordan domain as in 4.10. Then γ does not encircle 0 iff the Jordan curve ∂W is null-homotopic in $\mathbf{R}^{2} \backslash\{0\}$. As F is a universal covering map, this holds iff the F-lifts of ∂W are Jordan curves, and the first part of the lemma follows.

If a^{*} and b^{*} are in different components of $F^{-1} \partial H$, then 3.2 yields

$$
l_{k}(\gamma)=l\left(\gamma^{*}\right) \geq\left|a^{*}-b^{*}\right|>\pi .
$$

4.12. Theorem. Let $p \in Q$ and let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic in G_{Q} with $\gamma \cap \bar{D}_{p}=\{a, b\}$. Then γ encircles some point of Q. Moreover, $l_{k}(\gamma)>\pi$.

Proof. Assume that the first part of the theorem is false. Then there are p and γ as in the theorem such that γ does not encircle any point of Q. Set $Q_{\gamma}=\{q \in$ $\left.Q: D_{q} \cap \gamma \neq \varnothing\right\}$ and $m=\# Q_{\gamma}$. We may assume that m has the least possible value over all such p and γ. Since γ is smooth, we have $m \geq 1$.

Let W be as in 4.10. We may assume that γ is positively oriented in W. Let $q \in Q_{\gamma}$. By the minimality of m, the set $\gamma_{q}=\gamma \cap \bar{D}_{q}$ is a subarc of γ, and we may apply Lemma 4.8 to γ_{q}. If the direction angle φ of γ is increasing on γ_{q}, then γ_{q} is positively oriented in A_{q}. Hence $A_{q} \subset W$, which gives the contradiction $q \in W$.

It follows that φ is decreasing on γ_{q} and hence on the whole arc γ. By 4.9 this implies that γ is negatively oriented in W, contrary to the assumption. Hence γ encircles a point $q \in Q$.

As D_{p} is convex, there is a half plane H containing q such that $\bar{H} \cap D_{p}=\varnothing$. Furthermore, a subarc $\beta=\gamma\left[a^{\prime}, b^{\prime}\right]$ is a crosscut of H, and β encircles q in H. Let k^{\prime} be the quasihyperbolic metric of $\mathbf{R}^{2} \backslash\{q\}$. By 4.11 we get $l_{k}(\gamma) \geq l_{k^{\prime}}(\beta)>\pi$.
4.13. Cell theorem. Let $a, b \in G_{Q}$ be points with $k(a, b) \leq \pi$ such that $a, b \in \bar{D}$ for some cell $D \in \operatorname{Vor} Q$. If γ is a quasihyperbolic geodesic in G_{Q} from a to b, then $\gamma \subset \bar{D}$.

Proof. This follows directly from 4.12 .
4.14. Geodesic germs in G_{Q}. Let $a \in G_{Q}, v \in S(1)$. We study geodesic germs from a to the direction v; see 3.12. If $a \in D_{q}$ for some $q \in Q$, we see with the aid of the covering map F_{q} that there is precisely one germ from a to the direction v. The same is true if $a \in \partial D_{q}$ and $a+t v \in D_{q}$ for small $t>0$. Finally assume that $a \in \partial D_{q}$ and that $a+t v \in J$ for small $t \geq 0$ where J is an edge of D_{q}. Then $J=\bar{D}_{q} \cap \bar{D}_{p}$ for some $p \in Q \backslash\{q\}$, and the situation is essentially the same as in the domain G_{2} with $a \in L_{0}, v=e_{2}$; see 3.12. Thus there is precisely one germ $[\gamma]$ with $\dot{\gamma} \subset D_{q}$, one with $\dot{\gamma} \subset D_{p}$, and one such that γ contains a subsegment of J.

5. Basic conjectures in G_{Q}

In this section we continue the study of the domain $G_{Q}=\mathbf{R}^{2} \backslash Q$ where $Q \subset \mathbf{R}^{2}$ is a finite set with $\# Q \geq 2$ and show that it satisfies the conjectures 1.2, 1.3 and a nonstrict version of 1.4. Although the Convexity conjecture 1.4 implies the other two by 2.3 and 2.6 , we start with the Uniqueness conjecture 1.2 , since it and the Prolongation conjecture 1.3 are needed in the proof of 1.4.
5.1. Theorem. The domain G_{Q} satisfies the Uniqueness conjecture 1.2 with the constant $c_{\mathrm{U}}=\pi / 2$.

Proof. Assume that the theorem is false. Then there are points $a, b \in G_{Q}$ with $k(a, b)<\pi / 2$ and geodesics $\gamma_{1}, \gamma_{2}: a \curvearrowright b$ such that $\gamma_{1} \cap \gamma_{2}=\{a, b\}$. We may assume that $a=0, b=\left(b_{1}, 0\right)$ with $b_{1}>0$. By Theorem 2.18, the arcs γ_{j} are graphs of smooth functions $f_{j}:\left[0, b_{1}\right] \rightarrow \mathbf{R}$ with $f_{j}(0)=f_{j}\left(b_{1}\right)=0$. We may assume that $f_{1}(t)<f_{2}(t)$ for $0<t<b_{1}$. Let W be the Jordan domain bounded by $\gamma=\gamma_{1} \cup \gamma_{2}$. If $q \in Q \cap W$, it follows from 3.3 that the quasihyperbolic length of γ in $\mathbf{R}^{2} \backslash\{q\}$ is at least 2π, whence $2 \pi \leq l_{k}(\gamma)<\pi$. This contradiction shows that $Q \cap W=\varnothing$.

For $x \in \gamma_{j}$ let $v_{j}(x)$ be the unit tangent vector of γ_{j} at x and set $\varphi_{j}(x)=$ $\arg v_{j}(x),-\pi / 2<\varphi_{j}(x)<\pi / 2$. Then $\varphi_{1}(a) \leq \varphi_{2}(a)$ and $\varphi_{1}(b) \leq \varphi_{2}(b)$. Setting

$$
\Delta \varphi_{j}=\varphi_{j}(b)-\varphi_{j}(a)
$$

we therefore have $\Delta \varphi_{2} \leq \Delta \varphi_{1}$. We shall show that $\Delta \varphi_{1}<\Delta \varphi_{2}$, which will give the desired contradiction.

For $j=1,2$ we let Q_{j} denote the family of all $q \in Q$ such that D_{q} meets γ_{j} but not γ_{3-j} and set $Q_{12}=\left\{q \in Q: \gamma_{1} \cap D_{q} \neq \varnothing \neq \gamma_{2} \cap D_{q}\right\}$. If γ_{j} meets D_{q}, then $\gamma_{j} \cap \bar{D}_{q}$ is a subarc $\gamma_{j}[x, y]$ by 4.13 , and we write

$$
\Delta_{q} \varphi_{j}=\varphi_{j}(y)-\varphi_{j}(x)
$$

Then

$$
\Delta \varphi_{j}=\sum_{q \in Q_{j}} \Delta_{q} \varphi_{j}+\sum_{q \in Q_{12}} \Delta_{q} \varphi_{j}
$$

Observe that φ_{j} is constant on each subarc of γ_{j} contained in an edge of Vor Q.
Let $q \in Q$ be such that D_{q} meets γ and assume first that D_{q} does not meet $\{a, b\}$. If $q \in Q_{1}$, then the q-component A_{q} of $D_{q} \backslash \gamma_{1}$ lies on the right-hand side of $\gamma_{1} \cap \bar{D}_{q}$, since $q \in W$ in the opposite case. By 4.8 this implies that φ_{1} is decreasing on $\gamma_{1} \cap \bar{D}_{q}$, whence $\Delta_{q} \varphi_{1}<0$. Similarly $\Delta_{q} \varphi_{2}>0$ for all $q \in Q_{2}$.

Let $q \in Q_{12}$ and set $\gamma_{1}\left[x_{1}, y_{1}\right]=\gamma_{1} \cap \bar{D}_{q}, \gamma_{2}\left[x_{2}, y_{2}\right]=\gamma_{2} \cap \bar{D}_{q}$. These arcs consist of crosscuts of D_{q} and of line segments on ∂D_{q} as explained in 4.8. Let A_{q}^{j} be the q-component of $D_{q} \backslash \gamma_{j}$. Assume first that A_{q}^{1} lies on the left-hand side of $\gamma_{1} \cap \bar{D}_{q}$. Since $q \notin W$, also A_{q}^{2} lies on the left-hand side of $\gamma_{2} \cap \bar{D}_{q}$. Moreover, $\gamma_{2} \cap \bar{D}_{q}$ contains a crosscut $\gamma_{2}\left[x_{2}^{\prime}, y_{2}^{\prime}\right]$ of D_{q} separating q and $\gamma_{1} \cap \bar{D}_{q}$ in D_{q}. Setting $\omega_{1}=\operatorname{ang}\left(x_{1}-q, y_{1}-q\right), \omega_{2}=\operatorname{ang}\left(x_{2}^{\prime}-q, y_{2}^{\prime}-q\right)$ we have $\omega_{1}<\omega_{2}$. By a fundamental property of logarithmic spirals, we have $\omega_{1} \geq \Delta_{q} \varphi_{1}, \omega_{2}=\varphi_{2}\left(y_{2}^{\prime}\right)-\varphi_{2}\left(x_{2}^{\prime}\right) \leq \Delta_{q} \varphi_{2}$. Hence $0<\Delta_{q} \varphi_{1}<\Delta_{q} \varphi_{2}$.

If the domains A_{q}^{1} and A_{q}^{2} lie on the right-hand side of $\gamma_{1} \cap \bar{D}_{q}$ and $\gamma_{2} \cap \bar{D}_{q}$, respectively, we similarly obtain $0>\Delta_{q} \varphi_{2}>\Delta_{q} \varphi_{1}$.

If D_{q} contains one of the endpoints a, b, we obtain the inequality $\Delta_{q} \varphi_{1}<\Delta_{q} \varphi_{2}$ by an obvious modification of the above arguments. Combining the estimates yields $\Delta \varphi_{1}<\Delta \varphi_{2}$, and the theorem is proved.
5.2. Theorem. The domain G_{Q} satisfies the Prolongation conjecture 1.3 with the constant $c_{\mathrm{P}}=\pi / 2$.

Proof. This follows directly from Theorems 5.1 and 2.6.
5.3. Theorem. If $a \in G_{Q}$ and if $r<\pi / 2$, then $B_{k}(a, r)$ is a smooth Jordan domain.

Proof. This follows from the results 2.1, 2.10, 5.1, 5.2.
The proof of the Convexity conjecture will be based on the following local characterization of the strict convexity of a Jordan domain:
5.4. Lemma. Suppose that $D \subset \mathbf{R}^{2}$ is a Jordan domain such that
(1) D has a tangent T_{b} at every point $b \in \partial D$,
(2) there is a finite set $E \subset \partial D$ such that each point $p \in \partial D \backslash E$ has a neighborhood $V(b)$ with $\bar{D} \cap V(b) \subset H_{b} \cup\{b\}$ where H_{b} is a component of $\mathbf{R}^{2} \backslash T_{b}$.

Then D is strictly convex.
Proof. First observe that ∂D does not contain any line segment. Furthermore, the neighborhood $V(b)$ can be chosen to be an arbitrarily small disk $B(b, r)$.

Fact 1. Suppose that ∂D is divided into subarcs α and β by points $x, y \in \partial D$ such that
(i) $(x, y) \subset \mathbf{R}^{2} \backslash \bar{D}$,
(ii) α is a crosscut of the Jordan domain D^{\prime} bounded by $[x, y] \cup \beta$.

Let L be the line containing $[x, y]$ and let $z \in \alpha$ be a point where $d(z, L)$ is maximal. Then $z \in E$.

Assume that $z \notin E$. Let $V(z)=B(z, r)$ be a disk given by (2) with $V(z) \subset D^{\prime}$. Now α is a crosscut of D^{\prime}, and the components of $D^{\prime} \backslash \alpha$ are D and a Jordan domain U with $\partial U=[x, y] \cup \alpha$. The line T_{z} is parallel to L. Let H_{z} be the component of $\mathbf{R}^{2} \backslash T_{z}$ with $H_{z} \cap L=\varnothing$, and let W be the half disk $V(z) \cap H_{z}$. Since W does not meet $\alpha \cup \beta=\partial D$, we have either $W \subset D$ or $W \subset \mathbf{R}^{2} \backslash \bar{D}$.

If $W \subset D$, then $T_{z} \cap V(z) \subset \bar{D}$, which is a contradiction by (2). If $W \subset \mathbf{R}^{2} \backslash \bar{D}$, then $W \subset D^{\prime} \backslash \bar{D}=U$, which is impossible, because $d(z, L) \geq d(p, L)$ for all $p \in \bar{U}$. Fact 1 is proved.

Assume that the lemma is false. Then there are $x, y \in \partial D$ such that $(x, y) \subset$ $\mathbf{R}^{2} \backslash \bar{D}$. Let α, β, L, z be as in Fact 1 . Then $z \in E$ by Fact 1 . Since E is finite, there is a disk $B=B(z, r) \subset D^{\prime}$ such that $B \cap E=\{z\}$. Let H_{z} and H_{z}^{\prime} be the components of $\mathbf{R}^{2} \backslash T_{z}$ where $H_{z} \cap L=\varnothing$ as in the proof of Fact 1, and set $W=H_{z} \cap B$. Now $\alpha \subset \bar{H}_{z}^{\prime}$. Since α contains no line segment, there is a point $z_{1} \in \alpha \cap H_{z}^{\prime}$ with $\alpha\left[z, z_{1}\right] \subset B$. As T_{z} is a tangent of D, there is $z_{2} \in\left(z, z_{1}\right] \cap \alpha$ with $\left(z, z_{2}\right) \cap \alpha=\varnothing$.

Again $W \cap \partial D=\varnothing$ and again W cannot lie in $\mathbf{R}^{2} \backslash \bar{D}$. Hence $W \subset D$. Let u be the unit vector perpendicular to T_{z} such that $z+u \in H_{z}^{\prime}$. Then u is normal vector of D at z, whence $\left(z, z_{2}\right) \subset \mathbf{R}^{2} \backslash \bar{D}$. Setting $\alpha_{2}=\alpha\left[z, z_{2}\right]$ and applying Fact 1 with the substitution $(x, y, \alpha) \mapsto\left(z, z_{2}, \alpha_{2}\right)$ we get the desired contradiction $\stackrel{\circ}{\alpha}_{2} \cap E \neq \varnothing$.
5.5. Harmful arcs. Recall that X is the union of all edges of $\operatorname{Vor} Q$. Moreover, we let X_{0} denote the finite set of all vertices of the cells in $\operatorname{Vor} Q$.

In the proof of the convexity of a quasihyperbolic disk $B_{k}(a, r), r \leq 1$, we study quasihyperbolic geodesics $\gamma: a \curvearrowright b \in S_{k}(a, 1)$ and the behavior of quasihyperbolic circles $S_{k}(a, u), u \leq 1$, along γ. In order to limit the number of cases and subcases we shall rule out certain arcs with unpleasant properties. We say that an arc $\alpha: a_{1} \curvearrowright b_{1}$ in G_{Q} is harmful to a if
(i) α is a subarc of a quasihyperbolic geodesic $\gamma: a \curvearrowright b$ with $l_{k}(\gamma)=1$,
(ii) $a_{1} \in X_{0}$,
(iii) $a_{1} \neq a$,
(iv) $\alpha \cap X$ does not contain a line segment.

We let $A=A(Q, a)$ denote the union of all arcs harmful to a. If we are working with a fixed a, we briefly say that α is harmful if it is harmful to a.
5.6. Lemma. (1) The set A is a finite union of harmful arcs,
(2) $A \cap S_{k}(a, u)$ is finite for all $u \in(0,1]$,
(3) $A \cap X$ is finite.

Proof. Suppose that $\alpha: a_{1} \curvearrowright b_{1}$ is harmful to a. Let $\gamma: a \curvearrowright b$ be as in (i). Since $l_{k}(\alpha) \leq l_{k}(\gamma)=1$, it follows from (iv) and from the Edge theorem 4.2 that each edge J of Vor Q contains at most one point of α. Hence $\alpha \cap X$ is finite, and (3) will follow from (1).

By Theorem 5.1, the geodesic $\gamma\left[a, a_{1}\right]$ is uniquely determined by a_{1}, whence also the tangent vector $v\left(a_{1}\right)$ of α at a_{1} is uniquely determined by a_{1}. Let $\alpha=\alpha_{1} \cup \cdots \cup \alpha_{m}$
be the standard decomposition of α; see 4.4. By (iv), the arcs α_{j} are crosscuts of Voronoi cells for $j \leq m-1$; the arc α_{m} may be an endcut. From the discussion in 4.14 we see that there are at most two possibilities for α_{1} and hence at most two possibilities for $v\left(a_{2}\right)$. Repeating the argument we see that (1) is true, and (2) is an obvious corollary.

We next give the nonstrict version of the Convexity conjecture for G_{Q}.
5.7. Theorem. If $a \in G_{Q}$ and $0<r \leq 1$, then $B_{k}(a, r)$ is convex.

Proof. To simplify notation we write $B_{r}=B_{k}(a, r), S_{r}=S_{k}(a, r)$. By 5.3, B_{r} is a smooth Jordan domain. Let $b \in S_{k}(a, 1)$ and let $\gamma: a \curvearrowright b$ be the unique quasihyperbolic geodesic. Let $\gamma=\gamma_{1} \cup \cdots \cup \gamma_{m}$ be the standard decomposition of γ with $\gamma_{\nu}=\gamma\left[x_{\nu-1}, x_{\nu}\right]$. Set $\Delta=[0,1]$ and let $g: \Delta \rightarrow \gamma$ be the quasihyperbolic parametrization. For $t_{\nu}=k\left(a, x_{\nu}\right)$ and $\Delta_{\nu}=\left[t_{\nu-1}, t_{\nu}\right]$ we have $\gamma_{\nu}=g \Delta_{\nu}$. We express the set $M=\{1, \ldots, m\}$ as a disjoint union $M=M_{1} \cup M_{2}$ where $\nu \in M_{1}$ if γ_{ν} is a crosscut or and endcut of a Voronoi cell D_{ν} and $\nu \in M_{2}$ if γ_{ν} is a segment of an edge in $\operatorname{Vor} Q$.

Suppose that $\nu \in M_{1}$. Let $q_{\nu} \in Q$ be the nucleus of D_{ν} and write $F_{\nu}(z)=$ $e^{z}+q_{\nu}, U_{\nu}=F_{\nu}^{-1} D_{\nu}$. Fix a point $x_{\nu-1}^{*} \in F_{\nu}^{-1}\left\{x_{\nu-1}\right\}$ and let $g_{\nu}^{*}: \Delta_{\nu} \rightarrow \bar{U}_{\nu}$ be the F_{ν}-lift of $g_{\nu}=g \mid \Delta_{\nu}$ with $g_{\nu}^{*}\left(x_{\nu-1}\right)=x_{\nu-1}^{*}$. Then g_{ν}^{*} is an affine euclidean isometry of Δ_{ν} onto a line segment $\gamma_{\nu}^{*}=\left[x_{\nu-1}^{*}, x_{\nu}^{*}\right] \subset \bar{U}_{\nu}$ with $F_{\nu} \gamma_{\nu}^{*}=\gamma_{\nu}$. Set

$$
v_{\nu}^{*}=\frac{x_{\nu}^{*}-x_{\nu-1}^{*}}{\left|x_{\nu}^{*}-x_{\nu-1}^{*}\right|}, \quad p_{\nu}=x_{\nu-1}^{*}-t_{\nu-1} v_{\nu}^{*}
$$

Then

$$
\begin{equation*}
\left|g_{\nu}^{*}(u)-p_{\nu}\right|=u \tag{5.8}
\end{equation*}
$$

for all $u \in \Delta_{\nu}$.
If $t_{\nu-1}<u<t_{\nu}$ and if $Y \subset S_{u} \cap D_{\nu}$ is an arc neighborhood of the point $y=g(u)$, then Y has an F_{ν}-lift to an arc Y^{*} containing $y^{*}=g_{\nu}^{*}(u)$. We say that the index $\nu \in M$ is good (for γ) if
(1) $\nu \in M_{1}$,
(2) γ_{ν} is not contained in a harmful arc,
(3) for each $u \in\left(t_{\nu-1}, t_{\nu}\right)$ there is an arc neighborhood Y of $y=g(u)$ in $S_{u} \cap D_{\nu}$ such that $Y^{*} \subset \bar{B}\left(p_{\nu}, u\right)$.

We shall use induction to show that all indices satisfying (1) and (2) are good.
Fact 1. If $1 \in M_{1}$, then 1 is a good index.
Conditions (1) and (2) are clearly true. Now $p_{1}=x_{0}^{*} \in \bar{U}_{1}$. If $x_{0}^{*} \in U_{1}$, there is an arc neighborhood Y of y such that Y^{*} is a circular arc of $S\left(x_{0}^{*}, u\right)$. The same is true if $x_{0}^{*} \in \partial U_{1}$ and if γ_{1}^{*} is not tangent to an arc in ∂U_{1}. In the tangential case Y^{*} can be chosen to be an arc of the d_{1}-circle $S_{d_{1}}\left(x_{0}^{*}, u\right)$ where d_{1} is the inner metric of \bar{U}_{1}, and again $Y^{*} \subset \bar{B}\left(x_{0}^{*}, u\right)$.

Fact 2. If $\nu \geq 2, \nu \in M_{1}, \nu-1 \in M_{2}, x_{\nu-1} \notin X_{0}$, then ν is good.
Conditions (1) and (2) are again clear. Now $\gamma_{\nu-1}=\left[x_{\nu-2}, x_{\nu-1}\right]$ lies on a common edge J of Voronoi cells D and \tilde{D}. Since $x_{\nu-1} \notin X_{0}$, the arc γ_{ν} is a crosscut of D or \tilde{D} (or possibly an endcut if $\nu=m$). We may assume that $\gamma_{\nu} \subset \bar{D}$ and thus $D=D_{\nu}$. Now $y \in D_{\nu}$ and we may again use the function $F_{\nu}(z)=e^{z}+q_{\nu}$. The F_{ν}-lift of $\gamma_{\nu-1}$ is a subarc $\gamma_{\nu-1}^{*}=C\left[x_{\nu-2}^{*}, x_{\nu-1}^{*}\right]$ of an lc-curve C with $F_{\nu} C=\operatorname{aff} J$, and the line segment $\gamma_{\nu}^{*}=\left[x_{\nu-1}^{*}, x_{\nu}^{*}\right]$ is tangent to C at $x_{\nu-1}^{*}$.

There is an arc neighborhood $Y_{1} \subset S_{u}$ of y such that for each $z \in Y_{1}$ the geodesic $\gamma_{z}: a \curvearrowright z$ contains a line segment $\left[x_{\nu-2}, x\right] \subset J$. The F_{ν}-lift γ_{z}^{*} of $\gamma_{z}\left[x_{\nu-2}, z\right]$ is a geodesic in the inner metric d_{ν} of \bar{U}_{ν}, and the F_{ν}-lift Y_{1}^{*} of Y_{1} lies on the d_{ν}-circle $S_{d_{\nu}}\left(x_{\nu-2}^{*}, u-t_{\nu-2}\right)$. The arc Y_{1}^{*} can be obtained by taking a thread of length $u-t_{\nu-2}$ with one endpoint at $x_{\nu-2}^{*}$, keeping it taut and moving the other endpoint so that the thread stays in \bar{U}_{ν}.

It follows from classical curve theory that Y_{1}^{*} is an arc of the involute (= evolvent) of C. The curvature center of Y_{1}^{*} at y^{*} is $x_{\nu-1}^{*}$ and the curvature radius is $\left|x_{\nu-1}^{*}-y^{*}\right|=$ $k\left(x_{\nu-1}, y\right)<u$. Hence there is an arc neighborhood Y^{*} of y^{*} in Y_{1}^{*} with $Y^{*} \subset \bar{B}\left(p_{\nu}, u\right)$, and Fact 2 is proved.

Fact 3. If $\nu \geq 2, \nu \in M_{1}, x_{\nu-1} \notin X_{0}$ and $\nu-1$ is good, then ν is good.
Conditions (1) and (2) are again clear. Now there are unique cells $D_{\nu-1}, D_{\nu}$ containing $\dot{\gamma}_{\nu-1}$ and $\dot{\gamma}_{\nu}$, respectively. Since $x_{\nu-1} \notin X_{0}$, there are three possibilities (see 3.11 and 3.10):
(1) $D_{\nu-1} \neq D_{\nu}$ and γ crosses the common edge $J=\bar{D}_{\nu-1} \cap \bar{D}_{\nu}$ at $x_{\nu-1}$.
(2) As (1) but γ touches J at $x_{\nu-1}$.
(3) $D_{\nu-1}=D_{\nu}, \gamma$ touches an edge J at $x_{\nu-1}$ and returns to $D_{\nu-1}$.

We prove case (1) in detail. Let $q_{\nu-1}, q_{\nu}$ be the nuclei of $D_{\nu-1}, D_{\nu}$, and let $\varrho: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection in the line L containing J. We shall apply the covering map $F_{\nu-1}(z)=e^{z}+q_{\nu-1}$ in $D_{\nu-1}$ and the map $\tilde{F}_{\nu-1}=\varrho \circ F_{\nu-1}$ in D_{ν}, modifying in an obvious way the treatment in 3.11, replacing H by $D_{\nu-1}$ and \tilde{H} by D_{ν}. Fix a point $x_{\nu-1}^{*} \in F_{\nu-1}^{-1}\left\{x_{\nu-1}\right\}=\tilde{F}_{\nu-1}^{-1}\left\{x_{\nu-1}\right\}$ and let $g_{\nu-1}^{*}: \Delta_{\nu} \rightarrow \mathbf{R}^{2}$ and \tilde{g}_{ν}^{*} be the $F_{\nu-1}$-lift of $g_{\nu-1}$ and the $\tilde{F}_{\nu-1}$-lift of g_{ν} with $g_{\nu-1}^{*}\left(t_{\nu-1}\right)=\tilde{g}_{\nu}^{*}\left(t_{\nu-1}\right)=x_{\nu-1}^{*}$. Then the line segments $\gamma_{\nu-1}^{*}=\left[x_{\nu-2}^{*}, x_{\nu-1}^{*}\right]=g_{\nu-1}^{*} \Delta_{\nu-1}$ and $\tilde{\gamma}_{\nu}^{*}=\left[x_{\nu-1}^{*}, \tilde{x}_{\nu}^{*}\right]=\tilde{g}_{\nu}^{*} \Delta_{\nu}$ represent a light beam that reflects from the convex mirror C, which is an lc-curve in $F_{\nu-1}^{-1} L=\tilde{F}_{\nu-1}^{-1} L$; see 3.11, Case 1, and the figure below.

Fact 3, case (1). The dotted lines are perpendicular to T.

Fix $u_{0} \in\left(t_{\nu-2}, t_{\nu-1}\right)$ and set $y_{0}=g\left(u_{0}\right), y_{0}^{*}=g_{\nu-1}^{*}\left(u_{0}\right), \tilde{y}^{*}=\tilde{g}_{\nu-1}^{*}(u)$. Let T be the tangent of C at $x_{\nu-1}^{*}$ and let $\varrho_{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection in T. Since $\nu-1$ is a good index, there is an arc neighborhood $Y_{0} \subset S_{u_{0}}$ of y_{0} with $Y_{0}^{*} \subset \bar{B}\left(p_{\nu-1}, u_{0}\right)$. From 2.2 it follows that there is an arc neighborhood $Y \subset S_{u}$ of y such that every geodesic $\gamma_{z}: a \curvearrowright z \in Y$ meets Y_{0} at some point z_{0}. Let \tilde{Y}^{*} be the $\tilde{F}_{\nu-1}$-lift of Y containing \tilde{y}^{*} and set

$$
\tilde{v}_{\nu}^{*}=\frac{\tilde{x}_{\nu}^{*}-x_{\nu-1}^{*}}{\left|\tilde{x}_{\nu}^{*}-x_{\nu-1}^{*}\right|}, \quad \tilde{p}_{\nu}=x_{\nu-1}^{*}-t_{\nu-1} \tilde{v}_{\nu}^{*}
$$

Then $\left|\tilde{y}^{*}-p_{\nu}\right|=u$ and $\tilde{p}_{\nu}=\varrho_{T} p_{\nu-1}$.
Condition (3) in the definition of a good index is easily seen to be equivalent to

$$
\begin{equation*}
\tilde{Y}^{*} \subset \bar{B}\left(\tilde{p}_{\nu}, u\right) \tag{5.9}
\end{equation*}
$$

Indeed, the maps F_{ν} and $\tilde{F}_{\nu-1}$ are related by $F_{\nu}=\tilde{F}_{\nu-1} \circ \mu$ where μ is the reflection of \mathbf{R}^{2} in the horizontal line $\operatorname{Im} z=\arg \left(q_{\nu}-q_{\nu-1}\right)+\pi / 2$.

Let $z \in Y$ and let γ_{z} and $z_{0} \in \gamma_{z} \cap Y_{0}$ be as above. Let z_{1} be the unique point in $\gamma_{z} \cap J$ and let $\left[z_{0}^{*}, z_{1}^{*}\right]$ and $\left[z_{1}^{*}, z^{*}\right]$ give the ($F_{\nu-1}, \tilde{F}_{\nu-1}$)-lift of $\gamma_{z}\left[z_{0}, z^{*}\right]$. We must show that

$$
\left|\tilde{p}_{\nu}-z^{*}\right| \leq u
$$

By the convexity of the lc-curve C, we have $\left|z_{0}^{\prime}-z_{1}^{*}\right| \leq\left|z_{0}^{*}-z_{1}^{*}\right|$ where $z_{0}^{\prime}=\varrho_{T}\left(z_{0}^{*}\right)$. Furthermore,

$$
u-u_{0}=k\left(z_{0}, z\right)=\left|z_{0}^{*}-z_{1}^{*}\right|+\left|z_{1}^{*}-z^{*}\right| .
$$

Since $\left|z_{0}^{\prime}-\tilde{p}_{\nu}\right|=\left|z_{0}^{*}-p_{\nu-1}^{*}\right| \leq u_{0}$, we obtain

$$
\left|\tilde{p}_{\nu}-z^{*}\right| \leq\left|\tilde{p}_{\nu}-z_{0}^{\prime}\right|+\left|z_{0}^{\prime}-z_{1}^{*}\right|+\left|z_{1}^{*}-z^{*}\right| \leq u_{0}+\left(u-u_{0}\right)=u,
$$

and case (1) of Fact 3 is proved. We omit the proofs of cases (2) and (3), which are obtained by combining the proofs of case (1) and Fact 2.

Recall that A denotes the union of all arcs harmful to a; see 5.5.
Fact 4. If $\nu \in M_{1}$ and $\gamma_{\nu} \not \subset A$, then ν is a good index.
Assume that ν is not good. Then $\nu \geq 2$ by Fact 1 . Since γ_{ν} is not harmful, we have $x_{\nu-1} \notin X_{0}$. Hence $\nu-1 \in M_{1}$ by Fact 2 and $\nu-1$ is not good by Fact 3. As $\gamma_{\nu} \not \subset A$ implies $\gamma_{\nu-1} \not \subset A$, we may proceed inductively and see that $1 \in M_{1}$ and 1 is not good, which is a contradiction by Fact 1 .

From Lemma 5.6 it follows that the set $Z=(A \cap X) \cup X_{0}$ is finite.
Fact 5. If $0<t<1$, and if $S_{t} \cap Z=\varnothing$, then $S_{t} \cap X$ is finite.
Assume that $z \in S_{t} \cap X$. It suffices to show that there is an arc neighborhood $Y \subset S_{t}$ of z such that $Y \cap X=\{z\}$. Since $X_{0} \cap S_{t}=\varnothing, z$ is an interior point of an edge J of Vor Q. Let γ be a quasihyperbolic geodesic from a through z with $l_{k}(\gamma)=1$. By Theorem 2.10, the quasihyperbolic circle S_{t} has a tangent T_{z} at z, and T_{z} is perpendicular to the tangent vector $v(z)$ of γ at z. Hence the arc Y exists if $v(z)$ is not perpendicular to J.

Assume that $v(z) \perp J$. Let $\gamma=\gamma_{1} \cup \cdots \cup \gamma_{m}$ be the standard decomposition of γ. Then $z \in \gamma_{\nu}=\gamma\left[x_{\nu-1}, x_{\nu}\right]$ for some ν, and z is an endpoint of γ_{ν}, since $\gamma_{\nu} \not \subset J$. We may choose ν so that $z=x_{\nu}$. Then $t=t_{\nu}=k\left(a, x_{\nu}\right)$ and ν is a good index for γ by Fact 4.

The $\operatorname{arc} \gamma_{\nu}$ is a crosscut or (if $\nu=1$) an endcut of a cell $D_{\nu} \in \operatorname{Vor} Q$. We use the notation $F_{\nu}(w)=e^{w}+q_{\nu}$ and $g_{\nu}:\left[t_{\nu-1}, t_{\nu}\right] \rightarrow \gamma_{\nu}$ as before. Let g_{ν}^{*} be an F_{ν}-lift of g_{ν}. Then $\gamma_{\nu}^{*}=\operatorname{im} g_{\nu}$ is a line segment $\left[x_{\nu-1}^{*}, x_{\nu}^{*}\right]$, which meets orthogonally a lift J^{*} of J
lying on an lc-curve C. Fix $u \in\left(t_{\nu-1}, t_{\nu}\right)$ and set $y=g_{\nu}(u) \in \dot{\gamma}_{\nu}, y^{*}=g_{\nu}^{*}(u) \in \dot{\gamma}_{\nu}^{*}$. As ν is a good index, there is an arc neighborhood Y_{0} of y in S_{u} with F_{ν}-lift $Y_{0}^{*} \subset$ $\bar{B}\left(p_{\nu}, u\right)$. Then the euclidean distance $d\left(x^{*}, C\right)>t-u$ for all $x^{*} \in Y_{0}^{*} \backslash\left\{y^{*}\right\}$, whence $k(x, J)>t-u$ for all $x \in Y_{0} \backslash\{y\}$. Hence there is an arc neighborhood Y of z in S_{t} with $Y \cap J=\{z\}$, and Fact 5 is proved.

We turn to the proof of Theorem 5.7. Let Z be as above and suppose that $0<r<1$ and that $S_{r} \cap Z=\varnothing$. As Z is finite, it suffices to show that B_{r} is convex. We show that the conditions of Lemma 5.4 are satisfied with the substitution $D \mapsto B_{r}, E \mapsto(X \cup A) \cap S_{t}$. This will imply that B_{r} is in fact strictly convex.

By Fact 5 and Lemma 5.6, the set E is finite. Let $y \in S_{r} \backslash E$, and let $\gamma: a \curvearrowright b$ be a quasihyperbolic geodesic containing y with $l_{k}(\gamma)=1$. Let $\gamma=\gamma_{1} \cup \cdots \cup \gamma_{m}$ be the standard decomposition of γ. As $y \notin X$, there is ν such that $y \in \dot{\gamma}_{\nu}$, and γ is a crosscut or an endcut of a cell D_{ν}. Furthermore, we have $y \notin A$, whence $\gamma_{\nu} \not \subset A$. By Fact 4, the index ν is good for γ. With notation as before we obtain an arc neighborhood $Y \subset S_{r}$ of y such that the F_{ν}-lift Y^{*} of Y satisfies $Y^{*} \subset \bar{B}\left(p_{\nu}, r\right)$.

By Theorem 3.6, the domain $W=F_{\nu} B\left(p_{\nu}, r\right)$ is a strictly convex smooth Jordan domain. The tangent T of W at y is also a tangent of the arc Y. There is a component H_{y} of $\mathbf{R}^{2} \backslash T$ such that $\bar{W} \subset H_{y} \cup\{y\}$, and therefore $\bar{B}_{r} \cap V(y) \subset H_{y} \cup\{y\}$ for some neighborhood $V(y)$ of y. Hence B_{r} is convex by 5.4.

6. Strict convexity in G_{Q}

In this section we show that a quasihyperbolic disc $B_{k}(a, r)$ in $G_{Q}=\mathbf{R}^{2} \backslash Q$ is strictly convex for $r<1$. Moreover, we give an estimate for the strictness, which is needed in the next section to obtain the result for arbitrary domains in \mathbf{R}^{2}. As a quasihyperbolic circle $S_{k}(a, r)$ need not be C^{2} smooth, it does not always have a curvature in the ordinary sense. We must therefore introduce a more general notion, called outer curvature radius. First, an elementary lemma:
6.1. Lemma. Suppose that $0<t_{0}<R$ and that $f:\left[-t_{0}, t_{0}\right] \rightarrow \mathbf{R}$ is a convex C^{1} function such that $f(0)=0$ and such that

$$
f(x) \geq g(x):=R-\sqrt{R^{2}-x^{2}}
$$

for all $x \in\left[-t_{0}, t_{0}\right]$. Then $\left|f^{\prime}(x)\right| \geq|x| / 2 R$ for all $x \in\left[-t_{0}, t_{0}\right]$.
Proof. We may assume that $x>0$. Since f is convex and since $g(x)>x^{2} / 2 R$, we get

$$
f^{\prime}(x)>f(x) / x \geq g(x) / x>x / 2 R .
$$

6.2. Outer curvature radius. Suppose that $W \subset \mathbf{R}^{2}$ is a convex Jordan domain and that $\gamma=\partial W$ is C^{1} smooth. For this it suffices to know that W has a tangent at every point of γ, since a convex differentiable function is C^{1}; see [Ro, 25.5.1]. Assume that γ is positively oriented in W and let $v(x)$ be the unit tangent vector of γ at $x \in \gamma$. Then the left normal vector $n(x)=i v(x)$ is directed into W; see 4.5. The outer curvature radius $R(x)$ of γ at x is the infimum of all numbers $r>0$ such that there is an arc neighborhood $Y \subset \gamma$ of x contained in $\bar{B}(x+r n(x), r)$. If there is no such r, we set $R(x)=\infty$. If γ is C^{2} smooth, then $R(x)$ is equal to the ordinary curvature radius.
6.3. Lemma. Suppose that W is a convex Jordan domain with smooth boundary $\gamma=\partial W$, that $E \subset \gamma$ is a finite set and that $R(x) \leq R_{0}<\infty$ for all $x \in \gamma \backslash E$. Let $\alpha: a \curvearrowright b$ be a positively oriented arc on γ. Then

$$
\varphi(b)-\varphi(a) \geq l(\alpha) / 2 R_{0}
$$

where $\varphi(x)=\arg v(x)$ is the direction angle of γ.
Proof. Assume first that $E=\varnothing$. Set $\lambda=l(\alpha)$ and let $g:[0, \lambda] \rightarrow \alpha$ be the length parametrization of α. Write $\varphi(s)=\varphi(g(s))$ and let $0 \leq t \leq \lambda$. It suffices to show that

$$
\begin{equation*}
\liminf _{h \rightarrow 0} \frac{\varphi(t+h)-\varphi(t)}{h} \geq \frac{1}{2 R_{0}} \tag{6.4}
\end{equation*}
$$

since a bisection argument then gives $\varphi\left(s_{2}\right)-\varphi\left(s_{1}\right) \geq\left(s_{2}-s_{1}\right) / 2 R_{0}$ for $0 \leq s_{1}<$ $s_{2} \leq \lambda$.

We normalize the situation so that $g(t)=0, \varphi(t)=0$. Let $R_{1}>R_{0}$. By the definition of outer curvature, there is an arc neighborhood Y of 0 in ∂W that is a graph of a convex C^{1} function $f:[-\delta, \delta] \rightarrow \mathbf{R}$ such that $f(x) \geq R_{1}-\sqrt{R_{1}^{2}-x^{2}}$ for all $x \in[-\delta, \delta]$. By Lemma 6.1 we have $f^{\prime}(x) \geq|x| / 2 R_{1}$ for all $|x| \leq \delta$.

Let $0<h \leq \delta$. There is $x_{h} \in(0, h)$ such that $g(h)=\left(x_{h}, f\left(x_{h}\right)\right)$. Then $f^{\prime}\left(x_{h}\right)=\tan \varphi(h)$, and we obtain

$$
\frac{\varphi(h)}{h} \geq \frac{\varphi(h)}{\tan \varphi(h)} \frac{1}{2 R_{1}} \frac{x_{h}}{h} .
$$

As $h \rightarrow 0$, we have $x_{h} / h \rightarrow 1$ and $\varphi(h) / \tan \varphi(h) \rightarrow 1$, whence

$$
\liminf _{h \rightarrow 0+} \frac{\varphi(h)}{h} \geq \frac{1}{2 R_{1}}
$$

The case $h \rightarrow 0$ - is treated similarly. As $R_{1} \rightarrow R_{0}$, we get (6.4).
The case $E \subset\{a, b\}$ follows by a limiting argument. The general case is proved applying the special case to each component of $\alpha \backslash E$.
6.5. Lemma. Let W and $\alpha \subset \gamma=\partial W$ be as in 6.3. Then there is $z \in \alpha$ such that

$$
d(z, \text { aff }\{a, b\}) \geq \frac{|a-b|^{2}}{4\left(1+2 R_{0}\right)^{2}}
$$

Proof. Let $z \in \alpha$ be the point where $h=d(z$, aff $\{a, b\})$ is maximal. We normalize the situation so that $z=0$ and $\varphi(z)=0$. Then $a_{2}=b_{2}=h$ for the second coordinates. We may assume that $\left|a_{1}\right| \leq\left|b_{1}\right|$ and that $b_{1} \geq 0$. It suffices to show that

$$
\begin{equation*}
b_{1} \leq\left(1+2 R_{0}\right) \sqrt{h} \tag{6.6}
\end{equation*}
$$

If $b_{1} \leq \sqrt{h}$, this is clearly true. Assume that $b_{1}>\sqrt{h}$ and let $x \in \alpha(0, b)$ be the unique point with $x_{1}=\sqrt{h}$. Now

$$
b_{1} \leq \sqrt{h}+h / \tan \varphi(x) \leq \sqrt{h}+h / \varphi(x)
$$

By 6.3 we have $\varphi(x) \geq \sqrt{h} / 2 R_{0}$, and (6.6) follows.

We return to the domain $G_{Q}=\mathbf{R}^{2} \backslash Q$. Let $a \in G_{Q}$. As in 5.5 we let A denote the union of all arcs harmful to a. Moreover, we set $Z=(A \cap X) \cup X_{0}$ as in Fact 5 of 5.7. The set Z is finite by Lemma 5.6.
6.7. Lemma. Let $a \in G_{Q}, 0<r<1$, and suppose that $S_{k}(a, r) \cap Z=\varnothing$. Then there is a finite set $E \subset S_{k}(a, r)$ such that the outer curvature radius of $S_{k}(a, r)$ is at most $K(r) \delta(a)$ for all $y \in S_{k}(a, r) \backslash E$ where

$$
K(r)=\frac{r e^{3 r}}{1-r}
$$

Proof. We show that the lemma holds with $E=(X \cup A) \cap S_{k}(a, r)$, which is finite by Fact 5 of 5.7 and by Lemma 5.6. Let $y \in S_{k}(a, r) \backslash E$ and choose a quasihyperbolic geodesic $\gamma: a \curvearrowright b$ such that $y \in \gamma$ and such that $l_{k}(\gamma)=1$. Using the notation of the proof of 5.7 we consider the covering map $F_{\nu}(z)=e^{z}+q_{\nu}$ where q_{ν} is the nucleus of the Voronoi cell D_{ν} containing y. We find an arc neighborhood Y of y in $S_{k}(a, r)$ such that the F_{ν}-lift Y^{*} of Y is contained in a disk $\bar{B}\left(p_{\nu}, r\right)$ where p_{ν} is a point with $\left|p_{\nu}-y^{*}\right|=r=k(a, y)$.

By Theorem 3.6, the domain $F_{\nu} B\left(p_{\nu}, r\right)$ is a smooth strictly convex Jordan domain, and the curvature radius of its boundary at each point is at most

$$
R_{0}\left(p_{\nu}, r\right)=\frac{r\left|e^{p_{\nu}}\right| e^{r}}{1-r}
$$

Consequently, it suffices to show that

$$
\begin{equation*}
\left|e^{p_{\nu}}\right| \leq e^{2 r} \delta(a) \tag{6.8}
\end{equation*}
$$

Let k_{ν} be the quasihyperbolic metric of $\mathbf{R}^{2} \backslash\left\{q_{\nu}\right\}$. By Lemma 3.2 we get

$$
r=\left|p_{\nu}-y^{*}\right|=k_{\nu}\left(F_{\nu}\left(p_{\nu}\right), F_{\nu}\left(y^{*}\right)\right)=k_{\nu}\left(e^{p_{\nu}}+q_{\nu}, y\right) \geq \log \frac{\left|e^{p_{\nu}}\right|}{\left|y-q_{\nu}\right|}=\log \frac{\left|e^{p_{\nu}}\right|}{\delta(y)}
$$

Since $r=k(a, y) \geq \log \frac{\delta(y)}{\delta(a)}$, this implies (6.8).
6.9. Lemma. Let $a \in G_{Q}, 0<r<1$ and let $\alpha: x \curvearrowright y$ be an arc in $S_{k}(a, r)$. Then there is $z \in \alpha$ such that

$$
d(z, \text { aff }\{x, y\}) \geq \frac{|x-y|^{2}}{4(1+2 K(r) \delta(a))^{2}}
$$

Proof. If $S_{k}(a, r) \cap Z=\varnothing$, the estimate holds by 6.5 and 6.7 . As Z is finite, the case $S_{k}(a, r) \cap Z \neq \varnothing$ follows by an easy limiting process.
6.10. Theorem. The domain G_{Q} satisfies the Convexity conjecture 1.4 with the sharp constant $c_{\mathrm{C}}=1$.

Proof. This follows from 5.7 and 6.9.

7. Arbitrary planar domains

In this section we prove the main results of the paper.
7.1. Approximation. Let $G \subset \mathbf{R}^{2}$ be a bounded domain. For each positive integer j we choose a finite set $Q_{j} \subset \partial G$ such that
(1) $Q_{j} \subset Q_{j+1}$,
(2) $d\left(x, Q_{j}\right)<1 / j$ for all $x \in \partial G$.

Writing $G_{j}=\mathbf{R}^{2} \backslash Q_{j}$ and

$$
\delta_{j}=\delta_{G_{j}}, \quad k_{j}=k_{G_{j}}, \quad \delta=\delta_{G}, \quad k=k_{G}
$$

we have

$$
\begin{equation*}
\delta(x) \leq \delta_{j+1}(x) \leq \delta_{j}(x) \leq \delta(x)+1 / j \tag{7.2}
\end{equation*}
$$

for all $j \in \mathbf{N}, x \in G$. Hence

$$
\delta_{j}(x) \searrow \delta(x)
$$

uniformly in G. For a rectifiable arc $\gamma \subset G \subset G_{j}$ we have

$$
\begin{equation*}
l_{k_{j}}(\gamma) \nearrow l_{k}(\gamma) \tag{7.3}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
k_{j}(a, b) \nearrow k(a, b) \tag{7.4}
\end{equation*}
$$

for all $a, b \in G$.
Since $G \subset G_{j+1} \subset G_{j}$, the sequence $\left(k_{j}(a, b)\right)$ is increasing and $\lim _{j \rightarrow \infty} k_{j}(a, b) \leq$ $k(a, b)$. To prove the converse inequality we choose for each $j \in \mathbf{N}$ a quasihyperbolic geodesic $\gamma_{j}: a \curvearrowright b$ in G_{j}. For each $x \in \gamma_{j}$ we have

$$
k(a, b) \geq k_{j}(a, b) \geq k_{j}(a, x) \geq \log \frac{\delta_{j}(a)}{\delta_{j}(x)} \geq \log \frac{\delta(a)}{\delta_{j}(x)} .
$$

Thus

$$
\delta_{j}(x) \geq \delta(a) e^{-k(a, b)}=: s>0 .
$$

If $1 / j<s / 2$, then (7.2) implies that $\gamma_{j} \subset G$ and that $1 / \delta(x)-1 / \delta_{j}(x) \leq 1 / j s \delta(x)$ for all $x \in \gamma_{j}$. Consequently,

$$
k_{j}(a, b)=\int_{\gamma_{j}} \frac{|d x|}{\delta_{j}(x)} \geq(1-1 / j s) l_{k}\left(\gamma_{j}\right) \geq(1-1 / j s) k(a, b),
$$

and (7.4) follows.
7.5. Theorem. Let $G \subset \mathbf{R}^{2}$ be a domain and let $a \in G, 0<r \leq 1$. Then $B_{k}(a, r)$ is a convex smooth Jordan domain.

Proof. Replacing G by a component of $G \cap B(a, R)$ with a large R we may assume that G is bounded. Let $G_{j}=\mathbf{R}^{2} \backslash Q_{j}$ be as in 7.1. By (7.4) we have

$$
\bar{B}_{k}(a, r)=\bigcap\left\{\bar{B}_{k_{j}}(a, r): j \in \mathbf{N}\right\} .
$$

As the domains $B_{k_{j}}(a, r)$ are convex by 5.7 , the set $\bar{B}_{k}(a, r)$ is convex. Since $B_{k}(a, r)$ is a Jordan domain by 2 , it is convex, and the smoothness follows from the last part of 2.10 .
7.6. Lemma. Let $G \subset \mathbf{R}^{2}$ be a domain and let $a \in G, 0<r<1$. Let $\alpha: x \curvearrowright y$ be an arc in $S_{k}(a, r)$. Then there is $z \in \alpha$ such that

$$
d(z, L) \geq \frac{|x-y|^{2}}{4(1+2 K(r) \delta(a))^{2}},
$$

where $L=\operatorname{aff}\{x, y\}$ and $K(r)$ is as in 6.7.

Proof. We may again assume that G is bounded. For each j we choose points $x_{j}, y_{j} \in S_{k_{j}}(a, r) \cap L$. Let $\alpha_{j}: x_{j} \curvearrowright y_{j}$ be the subarc of $S_{k_{j}}(a, r)$ for which $\stackrel{\circ}{\alpha}$ is contained in the Jordan domain bounded by $\alpha_{j} \cup\left[x_{j}, y_{j}\right]$. By 6.9 we find a point $z_{j} \in \alpha_{j}$ for which

$$
d\left(z_{j}, L\right) \geq \frac{\left|x_{j}-y_{j}\right|^{2}}{4\left(1+2 K(r) \delta_{j}(a)\right)^{2}}
$$

Passing to a subsequence we may assume that $\left(z_{j}\right)$ converges to a point $z \in \alpha$. Now z satisfies the lemma.
7.7. Main theorem. Let $G \subset \mathbf{R}^{2}$ be a domain.
(1) The Convexity conjecture 1.4 holds for G with the sharp constant $c_{\mathrm{C}}=1$.
(2) The Uniqueness conjecture 1.2 holds for G with $c_{U}=2$.
(3) The Prolongation conjecture 1.3 holds for G with $c_{\mathrm{P}}=2$.

Proof. Part (1) follows from 7.5 and 7.6. By Theorems 2.3 and 2.6, this implies (2) and (3) with $c_{\mathrm{U}}=2, c_{\mathrm{P}}=\pi / 2$. The improvement $c_{\mathrm{P}}=2$ will be proved in 8.11.
7.8. Sharpness. I do not know whether $B_{k}(a, 1)$ is always strictly convex. The constants in (2) and (3) are presumably not sharp. The punctured plane G_{1} gives the upper bounds $c_{\mathrm{U}} \leq \pi, c_{\mathrm{P}} \leq \pi$, and it is possible that the constants $c_{\mathrm{U}}=c_{\mathrm{P}}=\pi$ are valid for all planar domains.

The dimensions $n \geq 3$ remain open, but the following example shows that the uniqueness constant c_{U} must be less than π in \mathbf{R}^{3}. Let $G=\mathbf{R}^{3} \backslash\left\{-e_{3}, e_{3}\right\}$ and let $a=-2 e_{1}, b=2 e_{1}$. Explicit calculation shows that $l_{k}([a, b])=2 \log (2+\sqrt{5})>2.88$ and $l_{k}(\gamma)=2 \pi / \sqrt{5}<2.81$ for the semicircle $\gamma: a \curvearrowright b, \gamma \subset \mathbf{R}^{2}$. Hence $[a, b]$ is not a quasihyperbolic geodesic in G. If $\alpha: a \curvearrowright b$ is a geodesic, then $\varrho \alpha$ is another geodesic where $\varrho: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is the reflection in the line span e_{1}. Thus $c_{\mathrm{U}}<2.81$ for this domain.
7.9. Theorem. If $a \in G \subset \mathbf{R}^{2}$ and $r<\pi / 2$, then the quasihyperbolic disk $B_{k}(a, r)$ is a smooth Jordan domain.

Proof. By 2.1, $B_{k}(a, r)$ is a Jordan domain, and the smoothness follows from 2.10 and 7.7.

8. Other topics

In this section we give some further results and make some conjectures on the quasihyperbolic geometry of domains in \mathbf{R}^{n}.
8.1. Quasihyperbolic convexity. Let $G \subset \mathbf{R}^{n}$ be a domain. A set $A \subset G$ is quasihyperbolically convex in G if $\gamma \subset A$ whenever $\gamma: a \curvearrowright b$ is a quasihyperbolic geodesic in G with $a, b \in A$.
8.2. Quasihyperbolic convexity conjecture. There is a universal constant $c_{\mathrm{QH}}>0$ such that the quasihyperbolic ball $B_{k}(a, r)$ is quasihyperbolically convex for all $r<c_{\mathrm{QH}}$.
8.3. Remark. Using the function $F(z)=e^{z}$ as in Section 3 it is easy to show that the punctured plane satisfies 8.2 with $c_{\mathrm{QH}}=\pi / 2$.
8.4. Local geodesics. Let $G \subset \mathbf{R}^{n}$ be a domain and let $\Delta \subset \mathbf{R}$ be a closed interval, possibly unbounded. A map $g: \Delta \rightarrow G$ is a locally geodesic path if each $t_{0} \in \Delta$ has an interval neighborhood $\Delta_{0} \subset \Delta$ such that $g \mid \Delta_{0}$ is a geodesic path. An arc $\gamma \subset G$ is a local geodesic if $\gamma=\operatorname{im} g$ for some injective locally geodesic path.

For example, the map $g: \mathbf{R} \rightarrow G_{1}=\mathbf{R}^{2} \backslash\{0\}, g(t)=M e^{i t}, M>0$, is a locally geodesic path.

Suppose that $g: \Delta \rightarrow G \subset \mathbf{R}^{n}$ is a locally geodesic path. Then g is C^{1} with $\left|g^{\prime}(t)\right|=\delta(g(t))$ for all $t \in \Delta$. The vector $v(t)=g^{\prime}(t) / \delta(g(t))$ is the unit tangent vector of g at $g(t)$. From 2.16 we see that

$$
\begin{equation*}
\operatorname{ang}(v(s), v(t))=\operatorname{ang}\left(g^{\prime}(s), g^{\prime}(t)\right) \leq|s-t| \tag{8.5}
\end{equation*}
$$

for all $s, t \in \Delta$. More generally, the total variation of $t \mapsto \operatorname{ang}\left(v\left(t_{0}\right), v(t)\right)$ is at most $s-t_{0}$ on any subinterval $\left[t_{0}, s\right] \subset \Delta$.

The Prolongation theorem 7.7(3) implies:
8.6. Theorem. Every geodesic path $g:\left[t_{1}, t_{2}\right] \rightarrow G \subset \mathbf{R}^{2}$ can be extended to a locally geodesic path $g_{1}: \mathbf{R} \rightarrow G$.
8.7. Theorem. If $g:[0, r] \rightarrow G \subset \mathbf{R}^{n}$ is a locally geodesic path and if $r \leq \pi$, then g is injective.

Proof. Assume that g is not injective. We may assume that $g(0)=g(r)=0$. Let $t_{0} \in(0, r)$ be the point where $|g(t)|$ is maximal, set $x_{0}=g\left(t_{0}\right)$ and $u=g^{\prime}\left(t_{0}\right)$. Then $u \cdot x_{0}=0$. Let $t_{1} \in\left(0, t_{0}\right)$ be the point where $u \cdot g(t)$ is minimal and let $t_{2} \in\left(t_{0}, r\right)$ be the point where $u \cdot g(t)$ is maximal. Then $u \cdot g^{\prime}\left(t_{j}\right)=0$ for $j=1,2$, and (8.5) yields the contradiction

$$
\pi \geq l_{k}(g)>l_{k}\left(g \mid\left[t_{1}, t_{0}\right]\right)+l_{k}\left(g \mid\left[t_{0}, t_{2}\right]\right) \geq \pi / 2+\pi / 2=\pi .
$$

8.8. Local geodesic conjecture. There is a universal constant $c_{\mathrm{LG}}>0$ such that if $g: \Delta \rightarrow G \subset \mathbf{R}^{n}$ is a locally geodesic path with $l_{k}(g) \leq c_{\mathrm{LG}}$, then g is a geodesic path.

We show in 8.10 that the conjecture holds for $n=2$. First we show that two short geodesics can be joined together.
8.9. Theorem. Let $s_{1}, s_{2} \in(0,1]$, let $g:\left[0, s_{1}+s_{2}\right] \rightarrow G \subset \mathbf{R}^{2}$ be a path such that the restrictions $g_{1}=g \mid\left[0, s_{1}\right]$ and $g_{2}=g \mid\left[s_{1}, s_{1}+s_{2}\right]$ are geodesic paths and such that g is differentiable at s_{1}. Then g is a geodesic path.

Proof. Suppose first that $s_{1}<1, s_{2}<1$. Set $a=g(0), z=g\left(s_{1}\right), b=g\left(s_{1}+s_{2}\right)$, and let $L=z+g^{\prime}\left(s_{1}\right)^{\perp}$ be the normal of g at z. By 2.10, the line L is a common tangent of the quasihyperbolic disks $B_{k}\left(a, s_{1}\right)$ and $B_{k}\left(b, s_{2}\right)$ at z. Since these disks are strictly convex by $7.7(1)$, their closures meet only at z. Consequently, the unique quasihyperbolic geodesic $\gamma: a \curvearrowright b$ contains z, whence $\gamma[a, z]=\operatorname{im} g_{1}, \gamma[z, b]=\operatorname{im} g_{2}$ and therefore $\gamma=\operatorname{im} g$.

The case where $s_{1}=1$ or $s_{2}=1$ follows by an easy limiting process.
8.10. Theorem. The Local geodesic conjecture 8.8 holds for all planar domains with $c_{\mathrm{LG}}=2$.

Proof. Let $0<r \leq 2$ and let $g:[0, r] \rightarrow G \subset \mathbf{R}^{2}$ be a locally geodesic path. There is a subdivision of $[0, r]$ by points $0=t_{0}<t_{1}<\cdots<t_{m}=r$ such that
$g \mid\left[t_{\nu-1}, t_{\nu}\right]$ is a geodesic path for each ν and such that $r / 2$ is one of the points t_{ν}. By successive applications of 8.9 we see that $g \mid[0, r / 2]$ and $g \mid[r / 2, r]$ are geodesic paths, and the theorem follows by one further application.
8.11. Theorem. The Prolongation conjecture 1.3 holds for all planar domains with $c_{\mathrm{P}}=2$.

Proof. This follows from 8.6 and 8.10.
We finally show that the Prolongation conjecture implies a limiting version.
8.12. Theorem. Let $G \subset \mathbf{R}^{n}$ be a domain satisfying the Prolongation conjecture 1.3 with a constant c. Let $a \in G$ and let $v \in S(1)$. Then there is a quasihyperbolic geodesic $\gamma: a \curvearrowright b$ such that $l_{k}(\gamma)=c$ and such that v is the unit tangent vector of γ at a.

Proof. Let $c \wedge(1 / 2)>r_{1}>r_{2}>\ldots$ be a sequence converging to 0 . For each j there is a geodesic path $g_{j}:[0, c] \rightarrow G$ with $g_{j}(0)=a, g_{j}\left(r_{j}\right)=a+\left|g_{j}\left(r_{j}\right)\right| v$. The geodesics im g_{j} lie in the compact set $\bar{B}(a, c)$. Passing to a subsequence we may assume by Ascoli's theorem and by 2.2 that $\left(g_{j}\right)$ converges to a geodesic path $g:[0, c] \rightarrow G$. By 2.7 we have ang $\left(g_{j}^{\prime}(0), v\right) \leq 4 r_{j}$. By 2.8 this yields ang $\left(g^{\prime}(0), v\right)=$ 0 .

References

[GO] Gehring, F. W., and B. G. Osgood: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36, 1979, 50-74.
[GP] Gehring, F. W., and B. P. Palka: Quasiconformally homogeneous domains. - J. Anal. Math. 30, 1976, 172-199.
[Kl] KlÉn, R.: Local convexity properties of quasihyperbolic balls in punctured space. - J. Math. Anal. Appl. 342, 2008, 192-201.
[Ma] Martin, G. J.: Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric. - Trans. Amer. Math. Soc. 292, 1985, 169-191.
[MO] Martin, G. J., and B. G. Osgood: The quasihyperbolic metric and associated estimates on the hyperbolic metric. - J. Anal. Math. 47, 1986, 37-53.
[MV] Martio, O., and J. Väisälä: Quasihyperbolic geodesics in convex domains II. - Pure Appl. Math. Q. (to appear).
[OBS] Okabe, A., B. Boots, and K. Sugihara: Spatial tessellations: Concepts and applications of Voronoi diagrams. - Wiley, 2000.
[Ro] Rockafellar, R. T.: Convex analysis. - Princeton University Press, 1970.
[V1] Väısälä, J.: Free quasiconformality in Banach spaces I. - Ann. Acad. Sci. Fenn. Math. 15, 1990, 355-379.
[V2] VÄISÄLÄ, J.: The free quasiworld. Freely quasiconformal and related maps in Banach spaces. - In: Quasiconformal geometry and dynamics (Lublin, 1996), Banach Center Publ. 48, Polish Acad. Sci., Warsaw, 1999, 55-118.
[V3] VÄISÄLÄ, J.: Quasihyperbolic geometry of domains in Hilbert spaces. - Ann. Acad. Sci. Fenn. Math. 32, 2007, 559-578.

[^0]: 2000 Mathematics Subject Classification: Primary 30C65.
 Key words: Quasihyperbolic geodesic, quasihyperbolic ball, Voronoi diagram.

